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Abstract— We analyze the problem of data sets reduction
for support vector classification. The work is also motivated
by distributed problems, where sensors collect binary
measurements at different locations moving inside an
environment that needs to be divided into a collection of regions
labeled in two different ways. The scope is to let each agent
retain and exchange only those measurements that are mostly
informative for the collective reconstruction of the decision
boundary. For the case of separable classes, we provide the exact
conditions and an efficient algorithm to determine if an element
in the training set can become a support vector when new
data arrive. The analysis is then extended to the non-separable
case deriving a sufficient discardability condition and a general
data selection scheme for classification. Numerical experiments
relative to the distributed problem show that the proposed
procedure allows the agents to exchange a small amount of the
collected data to obtain a highly predictive decision boundary.

Index Terms— distributed classification, support vector
machines, model reduction, distributed machine learning,
simplex, convex analysis

I. INTRODUCTION

Wireless communication and new low-cost technologies
are promoting the deployment of networks containing a large
number of sensors, often called also nodes, or agents, able to
communicate and collaborate to achieve a common objective.
Examples of applications of these networks abound and we
cite e.g. environmental monitoring and remote surveillance
of hazardous areas [1], [2]. Although these new technologies
promise great advantages, they also lead to challenging
novel theoretical and a practical questions, e.g. related to
distributed learning [3] and information compression [4].

Motivated by collaborative ad-hoc wireless sensor
networks where the nodes are randomly distributed over
a region of interest and collaborate to achieve a common
goal, we study the problem of discarding data that are
non informative for support vector machines (SVM) based
classification algorithms, see [5], [6], [7], [8]. A general
application motivating this paper is a remote surveillance
system where agents move inside an environment collecting
binary measurements at different locations with the aim to
divide the area into a collection of regions labeled in two
different ways. A practical example is coastal monitoring
by a swarm of underwater agents checking for zones that
can be navigated by submarines carrying illegal narcotics.
From the distributed framework setting, we assume that the

The research leading to these results has received funding from the
European Union Seventh Framework Programme [FP7/2007-2013] under
grant agreement n◦257462 HYCON2 Network of excellence and n◦223866
FeedNetBack, by Progetto di Ateneo CPDA090135/09 funded by the
University of Padova, and by the Italian PRIN Project “New Methods
and Algorithms for Identification and Adaptive Control of Technological
Systems”.

agents have limited communication capabilities. Hence it
is crucial to retain and exchange only those measurements
that are mostly informative for the collective reconstruction
of the decision boundary, a problem similar to the one of
obtaining bounded-sized solutions, see e.g. [9] and references
therein. We remark that, in this framework, it may be
worth increasing the computational burden if this reduces
the communication one.

Relevant to the problem treated in this paper is the
literature on classification via SVM describing algorithms
to update the training set once new data arrive. The
developed strategies aim to keep not only the data that
are support vectors (SVs) but also those that may become
SVs with high probability. One of the first methods applied
was the so-called chunking [10], where at each step a
quadratic programming problem is constructed starting from
all the previously computed SVs and some of the currently
misclassified data. There is also an entire field where
authors propose on-line recursive algorithm for training
support vector machines one vector at a time, usually
called Incremental Machine Learning, see [11]. The update
of the decision boundary is performed selecting that part
of the training set that is considered mostly informative.
Such selection is typically done by hyperplane-distance
based heuristic approaches, see e.g. [12], [13]. In [14]
authors propose the reduction of the number of support
vectors exploiting linear dependency of the already computed
support vectors in the feature space. This work is extended
in [15] and in [16] by considering approximate linear
dependency instead of exact linear dependency. In [17]
authors propose to heuristically extract candidates of SV
before the SVM training step, exploiting the intuition that
the couple of two data-points of opposite classes having
minimal distance will likely become a couple of SV. In [18]
the computational requirements for the classification step of
an already trained SVM are reduced using ex-novo vectors,
called synthetic vectors. In [19] the problem of discarding
the SVs that least contribute to the decision surface is
also discussed, pointing out how the selection process is
time-consuming being generally a noticeable-size problem.
Clustering techniques are also discussed in [20], [21], [22].

In [23] data reduction is obtained by means of heuristically
constructed hyperspheres and hypercones. If the new data
belong to these regions, they are discarded, otherwise they
are kept and the SVM retrained. In [24] the same authors
extend their previous work considering truncated hypercones,
in place of hyperspheres, to select the support vector
candidates. In [25] authors consider the separable case, and
propose an heuristic based on differences and ratios of



Mahalanobis distances between the data to establish if an
element in the training set is potentially near the decision
boundary or not.

In this scenario, the contributions of the present paper
are the following ones. In the first part of the paper the
case of linearly separable data set is discussed. Differently
from [25] and [26], the works that are closest to this work,
we provide the exact conditions that establish if an element
in the training set is a potential support vector (PSV), i.e.
if it can become a SV in the future. We also develop a
simple and efficient algorithm that allows each sensor to
retain only those data that are useful for the collective
reconstruction of the decision boundary. The analysis also
clarifies why data selection based only on the concept of
margin, i.e. on the distance of the data from the optimal
separatory hyperplane, may be misleading. In the second part
of the paper, the non-separable case is treated. A sufficient
condition that establishes when one datum cannot become
a SV if only one element is added to the training set is
provided. Then, a data selection algorithm, relying upon the
analysis developed in the separable case, is worked out.
Numerical experiments show that the proposed procedure
allows the agents to exchange a small amount of the collected
data to obtain a highly predictive decision boundary.

The paper is organized as follows. Section II reports
some of the notation used in the paper together with
some convex analysis notions. Section III provides a review
of SVM for classification. The concept of PSV is also
mathematically formalized. In Section IV such concept is
analyzed in the case of separable data sets and an exact
data selection algorithm useful for distributed classification is
worked out. In Section V the non-separable case is addressed,
developing an heuristic algorithm inspired by the finding in
the separable data framework. In Section VI some numerical
experiments are reported. Due to space limitation we defer
to future works an extensive comparison with other heuristic
techniques available in literature. Conclusions are finally
reported. Conclusions are then reported while the Appendix
contains all the proofs of the propositions contained in the
paper.

II. NOTATION AND REVIEW OF SOME CONVEX ANALYSIS
CONCEPTS

The following notation will be adopted in what follows:
• i indexes the elements in the training set;
• d is the dimension of the inputs domain;
• xi ∈ Rd is a generic input location;
• yi ∈ {+1,−1} is the generic feature;
• n is the total number of input locations;
• (w, b), with w ∈ Rd, b ∈ R is a generic hyperplane;
• D := {(xi, yi)}i=1,...,n is the training set. We will also

use the symbols “+” and “−” to indicate set-theoretic
additions and subtractions;

• X := {xi}i=1,...,n is the set of input locations;
• the sets of input locations corresponding to positive and

negative features are respectively denoted by

X+ := {xi ∈ X such that yi = +1} (1)

and
X− := {xi ∈ X such that yi = −1} ; (2)

• r := |X+| (implies that |X−| = n− r). Without loss of
generality, we also assume that{

yi = +1 if i = 1, . . . , r
yi = −1 if i = r + 1, . . . , n ;

(3)

• m is a generic hyperplane margin;
• operator ¬, defined by ¬ (+1) = −1, ¬ (−1) = +1;
• B (A) is the boundary of the (topological) set A;
• int (A) is the interior of the (topological) set A.
The following definition of separability is adopted in the

paper.

Definition 1. The data set D is said to be separable if there
exists w 6= 0 such that wTxi ≥ 0 for i = 1, . . . , r and
wTxi ≤ 0 for i = r + 1, . . . , n.

We recall also the following basic definitions and facts on
geometry and convex analysis:
• a cone K ⊆ Rd is a set such that if x ∈ K and λ ≥ 0

then λx ∈ K;
• the convex hull of the set {x1, . . . , xn} is defined as

Hcvx (x1, . . . , xn) :=

n∑
i=1

λixi (4)

with the additional constraints λi ≥ 0 for i = 1, . . . , n
and

∑n
i=1 λi = 1;

• a convex cone K ⊆ Rd is a set such that if x1, x2 ∈ K
and λ1, λ2 ≥ 0 then λ1x1 + λ2x2 ∈ K;

• the conical hull of the set {x1, . . . , xn} is defined as

Hcnc (x1, . . . , xn) :=

n∑
i=1

λixi (5)

with the additional constraint λi ≥ 0 for i = 1, . . . , n.
Notice that every conical hull is a convex cone;

• the lineality of a convex cone K is defined as

Lin (K) := K ∩ −K (6)

and corresponds to the smallest subspace contained in
K;

• the polar of a cone K is indicated with K◦ and
corresponds to the set of vectors forming angles not
smaller than 90◦with every x ∈ K, i.e.

K◦ := {z ∈ Rd
∣∣ zTx ≤ 0 ∀x ∈ K } . (7)

In addition, if K is a closed convex cone, one has

(K◦)
⊥

= Lin (K) . (8)

III. SUPPORT VECTOR MACHINES FOR CLASSIFICATION
AND THE k-STEP PSV CONCEPT

Given a separable training set D, the support vector
classifier determines the optimal hyperplane by solving the
following convex optimization problem

min
w,b
‖w‖ (9)

s.t. yi(w
Txi + b) ≥ 1, i = 1, . . . , n.



(a) Separable Case (b) Non Separable Case

Fig. 1. Examples of Support Vector Classifiers, decision boundaries and
margins for the separable and non-separable cases.

The margin m is 1/‖w‖ so that the optimal hyperplane
provides the largest margin, as displayed in the left panel
of Fig. 1. The elements of the training set whose distance is
exactly m are the SVs.

Given a non-separable training set D, the usual
formulation of the support vector classifier instead involves
a convex optimization problem that allows some elements to
be misclassified. It is given by

min
w,b

1

2
‖w‖2 + C

n∑
i=1

ξi (10)

s.t. yi(w
Txi + b) ≥ 1− ξi, ξi ≥ 0, ∀i

where the positive scalar C is the so called regularization
parameter. An alternative formulation where also the bias
term b is penalized is given by

min
w

1

2
‖w‖2 + C

n∑
i=1

ξi (11)

s.t. yi(w
T x̄i) ≥ 1− ξi, ξi ≥ 0, ∀i

where x̄i = [xTi 1]T . An example of resulting hyperplane
is visible in the right panel of Fig. 1. Notice that, after the
solution is computed, the elements in the training set belong
to three different groups. The first one contains the data that
are correctly classified and outside their margins: these data
are not SVs. The second group contains SVs given by the
elements sitting on their margins: these data are also called
marginal SVs. The third group contains the SVs associated
to the possibly misclassified observations inside the margins.

The following new definitions are fundamental for our
purposes. It is important to stress that they depend on which
situation is studied. To be more specific, in the separable case
xi is a SV according to the properties of the problem (9),
while in the non separable case xi is a SV according
to formulations (10) or (11). In addition, in the separable
context it is assumed that all the future data added to D lead
to a new training set which is still separable.

Definition 2. We say that xi is a k-step PSV for the dataset
D, if there exists a data set D∗ containing k elements s.t.
xi is a SV for the augmented dataset D + D∗. In addition,
PSVk(D) indicates the set of all the k-step PSV contained
in D.

Definition 3. We say that xi is a k-step discardable input
location for the dataset D if it is not a k-step PSV for
D. In addition, Disck(D) indicates the set of all the k-step
discardable elements contained in D.

Hence, notice that xi ∈ PSVk(D) ⇔ xi /∈ Disck(D). In
what follows, when k = 1, we write PSV(D) and Disc(D)
in place of PSV1(D) and Disc1(D), respectively.

IV. POTENTIAL SUPPORT VECTORS: THE SEPARABLE
CASE

A. Necessary and sufficient conditions for being a PSV

We start assuming that D is linearly separable according to
Definition 1. Given a dataset D and one of its input locations
xi, we define ∆j to be

∆j := xi − xj if j = 1, . . . , r, i = 1, . . . , r
∆j := xj − xi if j = r + 1, . . . , n, i = 1, . . . , r
∆j := xj − xi if j = 1, . . . , r, i = r + 1, . . . , n
∆j := xi − xj if j = r + 1, . . . , n, i = r + 1, . . . , n

(12)
Notice that the various ∆j depend both on xi and the whole
dataset D, but we omit this dependence to simplify the
notation. Without loss of generality, we often assume i = 1
(thus xi = x1 and yi = y1 = +1).

The following proposition provides a full characterization
of the concept of k-step PSV under the separability
assumption.

Proposition 4. Let D be separable. Then, the following
assertions are equivalent:

1) x1 ∈ PSV(D);
2) there exists an integer k s.t. x1 ∈ PSVk(D);
3) there exists w ∈ Rd, w 6= 0 s.t.

wT∆2 ≤ 0
...
wT∆n ≤ 0

; (13)

4) Hcnc (∆2, . . . ,∆n) 6= Rd.

Thus, in the separable case the concepts of one-step and k-
step PSV are equivalent. In other words, if it is not possible to
make xi a SV enriching the training set with a single element,
xi will never become a SV even adding an arbitrary number
of data. In addition, establishing if xi is a PSV involves the
linear feasibility problem (13).

B. Algorithm for data selection

The following sufficient discardability condition is useful
to obtain an efficient data selection algorithm. It formalizes
the intuitive fact that data not sitting on the boundary of the
convex hulls of the two classes can never become a PSV.

Proposition 5. If x1 ∈ int (Hcvx (x1, . . . , xr)) then x1 ∈
Disc (D).

We are now in a position to report the following numerical
procedure 1, allowing every sensor to retain only those
data that may influence the collective reconstruction of the
boundary.



Algorithm 1 Computation of PSV (D) (separable case)
1: input: the original training set D;

2: compute Hcvx (x1, . . . , xr) and Hcvx (xr+1, . . . , xn);
3: discard from D all the data in the interior of the two

convex hulls. Hence, obtain the reduced data set D(1)

containing n(1) ordered elements such that yi = 1 for
i = 1, . . . , r(1) and yi = −1 for i = r(1) + 1, . . . , n(1);

4: set the algorithm counter k to 1. For k = 1 to n(1), until
all the elements in D(1) have been analyzed, perform the
following operations:

(a) consider an element xi of D(k) that has not been
analyzed in the previous iterations;

(b) build the various ∆j according to (12) using the
elements contained in D(k) with r = r(k) and n =
n(k). Define ∆ as the matrix with rows given by
[∆T

2 ,∆
T
3 , . . . ,∆

T
n(k) ];

(c) if the null space of ∆ contains only the origin, apply
the simplex procedure to the problem

max
s
s1 + s2 + . . .+ sn(k)−1 (14)

s.t. ∆w + s ≤ 0, si ≥ 0, i = 1, . . . , n(k) − 1

just checking if the algorithm can move from the
origin (s = 0, w = 0) used as starting point;

(d) if the null space of ∆ contains only the origin and
the simplex does not move from the origin, define
D(k+1) as D(k) − (xi, yi), updating the values for
r(k+1), n(k+1). Otherwise, set D(k+1) to D(k);

(e) if k = n(1), set PSV(D) to D(k+1).
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Fig. 2. Data selection in the separable case. The optimal separating plane
is obtained solving problem (9), finding 3 SVs. The use of Algorithm 1
reveals that only other 3 data points must be retained to summarize all the
training set also when other data arrive.

In Fig. IV-B the algorithm is applied to a bi-dimensional
data set of 100 elements. The set PSV(D) obtained with
Algorithm 1 contains only 6 points. All the other data can
be discarded without any loss of information also when new
data arrive. Notice also that there are many data points which
are not PSV that are closer to the optimal hyperplane than
the true PSVs.

C. Computational considerations

The first and second step of Algorithm 1 require the
computation of convex hulls and may permit to find
many data points which are not PSVs. Using the “gift
wrapping” algorithm, the number of required operations
is O

(
nbd/2c + 1

)
, where b·c is the floor function, which

reduces to O(n log(n)) when d = 2 [27]. When d is large
or the points are mapped into a high-dimensional feature
space by the use of basis expansions, the computational cost
is prohibitive so that these two steps should be skipped.
However, as clear in the sequel, in the distributed setting
the work made by the agents for data selection may require
the use of a very low value for d, e.g. equal to 2 or 3. A more
sophisticated input space, possibly also infinite-dimensional,
might be needed only for the final reconstruction of the
decision boundary. This point will be further developed in
the numerical experiments section.

Finally, for what regards the second part of Algorithm 1,
problem (14) must be built for each element contained in
D(1). However, the procedure is more efficient because at
every iteration very few steps of the simplex algorithm must
be performed, just to verify if it is possible to leave the origin.
Notice also that the dimensions of the linear programming
problems to be faced may decrease over time as the iteration
counter increases.

V. POTENTIAL SUPPORT VECTORS: THE NON SEPARABLE
CASE

A. Sufficient condition for one-step discardability

Now, let D be a possibly non-separable set. Recall that
the optimal w ∈ Rd+1 which solves problem (11) admits
the representation

ŵ =

n∑
i=1

aix̄i . (15)

Then, the following sufficient condition for one-step
discardability holds.

Proposition 6. Let D be non separable and consider
problem (11) with solution given by (15). Define

ηi := yi −
n∑

j=1,j 6=i

aj x̄j , i = 1, . . . , n . (16)

Then, if
ηi < −1− nCx̄Ti x̄i (17)

it holds that x̄i ∈ Disc1(D).



B. Algorithm for data selection

Although interesting under a theoretical point of view,
the result reported in the previous subsection has some
drawbacks: even if restricted to the case k = 1, the
discardability condition depends only on the margin and
tends to be conservative, retaining many data points. For
this reason, we also propose an algorithm for data selection
in the non separable case based on the procedure obtained
for the separable scenario. The rationale is the following
one. After one sensor solves problem (10) using its own
D, it obtains the SVs providing information on the decision
boundary. Removing from D the SVs that are not marginal, it
obtains a separable data set denoted by D1. Algorithm 1 can
then be used to obtain PSV(D1) that represent other points
informative on the boundary. The data points that summarize
D are finally given by the union of PSV(D1) with the SV
not contained in D1. The algorithm is reported below.

Algorithm 2 Computation of PSV (D) (non-separable case)
1: inputs: the original training set D and the regularization

parameter C;

2: solve problem (10) and denote with D2 the set of SVs
which do not sit on the margin;

3: define the separable set D1 := D −D2;
4: compute PSV(D1) using Algorithm 1 with input D1;
5: return PSV(D1) + D2 as the data points summarizing

the training set D.

C. Further data reduction using a filling measure

In some cases, one would like each sensor to send a
number of input locations belonging to a certain class
not exceeding a certain threshold K. On the other hand,
the number of examples labeled with 1 or −1 in the set
PSV(D1) +D2 returned by Algorithm 2 may exceed K. In
such situations, Algorithm 3 below is especially useful since
it returns for each class the K input locations that maximize a
filling measure, see also [28, Sec. 7.3]. In particular, it selects
those K data that cover as much as possible the region visited
by the sensor according to a distance function v : Rd 7→ R.

In the following the distance d will be the Euclidean
distance. An example of application of Algorithm 3 with
the cardinality of I equal to 50 and K = 10 is given in
Fig. 3.

Remark 7. Notice that, if the data points are mapped into an
enlarged feature space by a kernel K : Rd 7→ R, associated
with a reproducing kernel Hilbert space HK with norm ‖·‖K ,
it is also possible to build a distance vK defined by

vK(xi, xj) = ‖K(xi, ·)−K(xj , ·)‖K
= K(xi, xi)− 2K(xi, xj) +K(xj , xj) .

For instance, using the Gaussian kernel

K(xi, xj) = e−(xi−xj)T Σ(xi−xj),

Algorithm 3 Computation of PSV (D) (filling measure case)
1: inputs: a set I of input locations and a distance function
v : Rd 7→ R;

2: Set the algorithm counter k to 1 and I(k) = I . Until the
cardinality of I(k) exceeds K, perform the following
operations

(a) discard from I(k) the element xp̃ where

p̃ = arg max
p

min
i6=p

min
j 6=i,j 6=p

v(xi, xj)

(b) define I(k+1) = I(k) − xp̃
3: return I(k+1) as the set of input locations that best cover

the visited space.
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Fig. 3. Application of Algorithm 3 to select 10 elements from a set
containing 50 input locations.

one obtains

p̃ = arg max
p

min
i6=p

min
j 6=i,j 6=p

(2− 2e−(xi−xj)T Σ(xi−xj))

= arg max
p

min
i6=p

min
j 6=i,j 6=p

(xi − xj)TΣ(xi − xj),

i.e. the weighted Euclidean distance.

VI. NUMERICAL EXPERIMENTS

We consider a scenario where 100 sensors are distributed
on a plane. Their initial positions are independent realizations
from a uniform distribution on [−0.5, 2]× [0, 2]. Each sensor
then moves according to a random walk with standard
deviation of the increments equal to 0.03 along both the axes.
After every step, the sensor acquires a measurement. More
precisely, the total number of data collected by an agent is
50 and data generation is as follows. Consider the curve(

(t−5)2

25 , e−0.5t + e−0.1t
)

with t ∈ R, displayed in Fig. 4
(dashed line). Let x and r denote the location of the sensor
and its distance from the curve, respectively. Then, when the
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Fig. 4. Optimal nonlinear decision boundary (dashed line). Left: the training set given by the union of all the data collected by the sensors. Right: the
training set obtained by the union of the data retained by the sensors using Algorithm 2. Algorithm 3 is also used to force every sensor to retain no more
than 5 data points per class. The solid line is the decision boundary obtained using SV classification with a Gaussian kernel.

point x is on the left (right) of the curve, the measurement
taken by the agent is +1 (−1) with probability 1− 0.5e−8r.

The left panel of Fig. 4 displays the 5000 data collected by
the network while Fig. 5 describes the type of work made by
the single sensor. Notice that the agent observes only a small
piece of the curve that can be well approximated by a low-
dimensional model, e.g. a linear or second-order polynomial
kernel. Hence, for data selection purposes, the feature space
does not need to be much enlarged. In particular, in our
case data selection is performed by Algorithm 2 using a
linear kernel and the dimension d of the input space remains
equal to 2. The value of C in (10) is set to 50. In addition,
Algorithm 3 is used to force every sensor to retain no more
than 5 data points per class. In the case the agent is not able
to derive the linear decision boundary, or all the collected
data belong to only one class, only 5 data belonging to one
single class are sent to the other agents.

The right panel of Fig. 4 displays the data exchanged by
the sensors. They correspond to almost 10% of all the data
and appear a good summary of the entire training set. In the
same panel the solid line is the decision boundary obtained
by a SV classifier, equipped with a Gaussian kernel still
adopting C = 50 and fed with the reduced data set. The
estimate appears reasonably close to the optimal solution
represented by the dashed line.

VII. CONCLUSIONS

We have discussed the problem data selection in support
vector classification problems, which is of paramount
importance in distributed classification frameworks. We have
introduced the new concept of k-step potential support vector
(PSV), completely characterizing it in the case of separable
training sets. Some insights about PSV in the non separable
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Fig. 5. Data selection performed by a single sensor in the non separable
case. The optimal separating plane is computed solving problem (10),
finding 11 SV. Using Algorithm 2, other 5 data points are found and added
to the 11 SV to summarize the entire training set.

case have been also obtained. A new general data selection
algorithm has been worked out, proving its effectiveness
through numerical simulations. In the near future, we aim to
show its effectiveness by comparing it with other techniques
proposed in literature. Moreover we aim to extend the
theoretical results relative to the non separable datasets case.
In this context, deriving conditions to establish if a datum is a
k-step PSV appears an interesting and challenging problem.

APPENDIX

PROOFS

Proof of Proposition 4. The following preliminary lemma is
first needed.



Lemma 8. x1 ∈ PSV (D) if and only if there exists an
hyperplane in Rd+1 to which (x1, 0) belongs that correctly
separates D.

Proof. Assume that x1 ∈ PSV (D). Then, by definition 2, if
x1 ∈ PSV (D) then there exists (x∗, y∗) s.t. x1 is support
vector for D + (x∗, y∗). If (w, b) is the optimal separating
hyperplane for D+ (x∗, y∗), then (w, b) is also a separating
hyperplane for D. Moreover, if m is the distance between
(w, b) and x1, the distance between (w, b) and the generic xj ,
j 6= 1 is not smaller than m because (w, b) was optimal for
D+ (x∗, y∗). Thus the translation of (w, b) passing through
x1 is still a separating hyperplane.
Now, assume that there exists an hyperplane (w, b) to which
(x1, 0) belongs that correctly separates D. Then it correctly
separates also D + (x1,¬y1) and it is immediate to see
that definition 2 is satisfied for k = 1 setting (x∗, y∗) =
(x1,¬y1).

We now prove the equivalence between the four
statements:

1) ⇔ 2) Clearly, 1) ⇒ 2) setting k = 1. Now, to check
that the reverse is true, suppose that x1 ∈ PSVk(D). Then,
there exists a set D∗ of cardinality k that makes x1 a SV for
D+D∗. Denote with D∗∗ a whatever set of cardinality k−1
contained in D∗. It must hold that x1 ∈ PSV (D +D∗∗).
By the preliminary lemma, there exists a hyperplane passing
through (x1, 0) which separates D+D∗∗. Such a hyperplane
also separates D, so that we obtain x1 ∈ PSV (D).

1) ⇔ 3) Using the preliminary lemma, it is immediate to
see that x1 ∈ PSV (D) is equivalent to the existence of a
hyperplane (w, b), with w 6= 0, satisfying wTx1 + b = 0

wTxj + b ≥ 0 if j = 2, . . . , r
wTxj + b ≤ 0 if j = r + 1, . . . , n

(18)

Properly subtracting member to member the various
inequalities and the first equality, we obtain{

wT (x1 − xj) ≤ 0 if j = 2, . . . , r
wT (xj − x1) ≤ 0 if j = r + 1, . . . , n

(19)

that, given definition (12), corresponds to system (13).

1) ⇔ 4) Letting K := Hcnc (∆2, . . . ,∆n), from the
previous point we know that

x1 ∈ PSV (D)⇔ K◦ 6= {0} (20)

or, equivalently:

x1 ∈ Disc (D)⇔ Lin (K) = Rd ⇔ K = Rd (21)

and this completes the proof.

Proof of Proposition 5. x1 ∈ int (Hcvx (x1, . . . , xr))
implies that for each direction v ∈ Rd, ‖v‖2 = 1 there exists

an amplitude α > 0 s.t. x1 + αv ∈ Hcvx (x1, . . . , xr), i.e.

x1 + αv =

r∑
j=2

λjxj (22)

with λ2, . . . , λr ≥ 0 and
∑r
j=2 λj = 1. Since x1 =∑r

j=2 λjx1 we have that

αv =

r∑
j=2

λj (xj − x1) . (23)

Exploiting definition (12) we can write

−v =

r∑
j=2

λ
′

j∆j (24)

with λ
′

j =
λj

α ≥ 0, thus −v ∈ Hcnc (∆2, . . . ,∆r). Since v
is a generic direction in Rd, one has

Hcnc (∆2, . . . ,∆r) = Rd (25)

and hence, using Proposition 4, we conclude that x1 ∈
Disc (D).

Proof of the correctness of Algorithm 1. First, it is
necessary to show that discarding elements of the training
set which are not PSV does not alter the nature of the
other elements, irrespective of the order with which they
are removed. This is proved in the lemma 9 reported
below. Then, the correctness of the algorithm is proved just
recalling Proposition 5 and noticing that, if the null space of
∆ contains only the null vector, condition (13) is satisfied
by w 6= 0 if and only if problem (14) is unbounded, which
in turn is equivalent to say that the simplex algorithm can
leave the origin.

Lemma 9. If xi, xj ∈ Disc (D), then xj ∈
Disc (D − (xi, yi)).

Proof. Assume w.l.o.g. xi = x1, xj = x2 and x1, x2 ∈
Disc (D). Since D is linearly separable, there exists an
hyperplane (w, b) correctly separating D, i.e. s.t.{

wTxj + b ≥ 0 if xj ∈ X+

wTxj + b ≤ 0 if xj ∈ X−
(26)

Let c := wTx1 + b. Now c ≥ 0 since (w, b) correctly
separates D, while x1 ∈ Disc (D) implies c 6= 0 because no
correctly separating hyperplanes can pass through (x1, 0). In
this way we have assured that c > 0.

Assume ab absurdo that x2 ∈ Disc (D) but
x2 ∈ PSV (D − (x1, y1)). Exploiting Lemma 8,
x2 ∈ PSV (D − (x1, y1)) implies that there exists

(
w̃, b̃

)
correctly separating D − (x1, y1), i.e. s.t.

w̃Tx2 + b̃ = 0

w̃Txj + b̃ ≥ 0 j = 3, . . . , r

w̃Txj + b̃ ≤ 0 j = r + 1, . . . , n

(27)



Since x2 ∈ Disc (D),
(
w̃, b̃

)
cannot correctly separate D,

and thus
(
w̃, b̃

)
must wrongly classify x1, i.e. it must be

w̃Tx1 + b̃ < 0 . (28)

Let c̃ := w̃Tx1 + b̃. Exploiting the definitions of c and c̃, we
can write 

wT

c
x1 +

b

c
= 1

w̃T

c̃
x1 +

b̃

c̃
= −1

(29)

Summing the two equations term by term we obtain(
w

c
+
w̃

c̃

)T
︸ ︷︷ ︸

=:w

x1 +

(
b

c
+
b̃

c̃

)
︸ ︷︷ ︸

=:b

= 0 (30)

i.e. an hyperplane
(
w, b

)
passing through (x1, 0). Dividing

now each term of (26) by c, each term of (27) by c̃ and then
summing term by term the just obtained systems we get

wTx1 + b = 0

wTxi + b ≥ 0 j = 2, . . . , r

wTxi + b ≤ 0 j = r + 1, . . . , n

(31)

that implies hyperplane
(
w, b

)
to be correctly separating D.

But this implies x1 ∈ PSV (D) which is a contradiction.
Hence, it must be x2 /∈ Disc (D − (x1, y1)). Cases x1 ∈ X−
or x2 ∈ X− can be handled using analogous arguments.

Proof of Proposition 6. The proof is based upon the analysis
developed on page 332 of [29]. Recall that x̄i is not a SV,
i.e. ai = 0, if and only if ηi < 1. Since 0 ≤ ai ≤ C, we
obtain that the maximum variation of ηi after a new datum
is added to D is nCx̄Ti x̄i. Hence, if ηi < −1 − nCx̄Ti x̄i
before adding the measurement, after adding it the new ηi is
less than −1 so that the new ai remains zero.
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