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Abstract

Large graphs abound in machine learning, data mining, and several related areas.
A useful step towards analyzing such graphs is that of obtaining certain summary
statistics—e.g., or the expected length of a shortest path between two nodes, or
the expected weight of a minimum spanning tree of the graph, etc. These statis-
tics provide insight into the structure of a graph, and they can help predict global
properties of a graph. Motivated thus, we propose to study statistical properties
of structured subgraphs (of a given graph), in particular, to estimate the expected
objective function value of a combinatorial optimization problem over these sub-
graphs. The general task is very difficult, if not unsolvable; so for concreteness we
describe a more specific statistical estimation problem based on spanning trees.
We hope that our position paper encourages others to also study other types of
graphical structures for which one can prove nontrivial statistical estimates.

1 Introduction

A cornucopia of applications in machine learning and related areas involve large-scale graphs. To-
wards analyzing such graphs a basic step is that of obtain certain summary statistics. For example,
we might want to know what might be the expected length of a shortest path between two nodes, or
what is the expected weight of an associated minimum spanning tree, etc. Such statistics provide
insight into the global structure of a graph; and estimating them helps predict properties of the entire
graph without having to actually look at the whole graph, a very practical scenario.

Our considerations stem from a classic paper of Frieze [1985], who studied the expected value of
the weight of a minimum spanning tree (MST) of a complete graph on n nodes, with edge-weights
distributed according to a common distribution function. For such graphs, Frieze obtained an explicit
value for the expected weight of an MST as n tends to infinity. In subsequent years, his analysis
has been refined and extended to cover more general graphs, and under different assumptions—
see [Steele, 2002] and the references therein.

This precedent suggests that with increasing sizes, one can estimate statistical properties of various
combinatorial structures on graphs. This statement brings us to the key challenge of this paper.

Problem 1 (Statistics on graphical structures). LetGn = (Vn, E) be a graph with n vertices, and
let G be a collection of certain “structured” subgraphs of Gn. Let φ : G → R+ be function that
measures the “cost” of a subgraph in G. As n tends to infinity, what can we say about the expected
value E[ming∈G φ(g)] of the minimum cost structure, and under what restrictions on the structures
G and on the cost function φ?

Our current paper is a position paper that advances Problem 1 as a key research question worthy of
careful investigation. Admittedly, in general this problem is very difficult; perhaps too broad to be
useful. But our ultimate aim is less to tackle the general problem and more to identify special classes
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of structures and cost functions, for which we can make nontrivial statistical statements. We hope
that this workshop paper stimulates discussion and also encourages others to study this problem.

2 Formulation

Let us now move onto a somewhat more formal treatment of Problem 1.

Let Gn = (Vn, En) be a graph with n vertices and |En| edges. For any vertex v ∈ Vn we observe
an integer-valued random variable Xv : Ω → {1, 2, . . . , k} (on an appropriate probability space
Ω). Here k is assumed to be finite, but otherwise unknown. We call the collection {Xv | v ∈ Vn} a
random coloring of the graph Gn.1

Assume that {Xv | v ∈ Vn} form a collection of completely independent random variables and that
they are identically distributed according to a distribution function FX .

Further, suppose that for any pair of vertices vi, vj ∈ Vn we observe a real-valued random variable
Yvi,vj : Ω → R+, where {Yvi,vj | vi, vj ∈ Vn} form a collection of completely independent
random variables that are identically distributed according to a distribution function F . It is also
assumed for now that the X’s and Y ’s are completely independent of each other. We will add extra
assumptions on F and FX below, when necessary.

Remark: The above assumption on edge weights corresponds to the case when Gn is a complete
graph on n vertices. To study general graphs on n vertices, one has to consider only the reduced
collection of random variables {Yvi,vj | (vi, vj) ∈ En}.

Denote by G = {G |G ⊆ Gn}, a collection of (structured) subgraphs of Gn. Fix a cost function
φ : G → R+. Ultimately, we will be interested in the case when φ is a set function (over the sets of
vertices or edges participating in the subgraphs characterized by G).

Often, a more convenient and specific form of φ might be assumed, namely that for any G =
(V,E) ⊆ Gn there exists a decomposition

φ(G) = φ({(Xv, Ye) | v ∈ V, e ∈ E}) = φ1({Ye | e ∈ E}) + φ2({Xv | v ∈ V }), (1)

where φ1 is a cost function that depends only on the edges, and φ2 depends only on the vertices.

For concreteness, we now focus on the following statistical goal: estimate the average cost (per
vertex) of a minimal cost spanning tree of Gn—henceforth, φ-MST.2 We want a computationally
efficient procedure for this estimate, and the estimator itself must be consistent. Additionally, we
also care about the corresponding rates of convergence.

Since the original graphGmay be very large and a direct computation of the (minimal cost) spanning
tree may be infeasible, we suggest computing an estimator based on a suitably constructed auxiliary
graph that is much smaller thanG, but exhibits similar statistical properties. To this end, we propose
the following generic method.

Method

1. On the basis of the coloring {Xv | v ∈ V }, construct a suitable (possibly problem-
dependent)

√
n -consistent estimate F̂X of the distribution function FX .

2. Using the collection {Ye | e ∈ E}, construct a suitable
√

|E| -consistent estimate F̂ of the
edge weight distribution function F . Note that when Gn is a complete graph, already the
standard empirical distribution function gives an n-consistent estimate.

3. Generate an auxiliary graph G
′

d(n) = (V
′

d(n), E
′

d(n)), having d(n) vertices, where d(n) is
suitably chosen and satisfies the growth conditions

lim
n→∞

d(n) = ∞ , lim
n→∞

d(n)

n
= 0 . (2)

1We can also consider infinite colorings based on Xv : Ω → N; but for simplicity we study only finite ones.
2A similar discussion also applies to other problems such as shortest paths, cuts, etc.
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4. Simulate i.i.d. random variables {X ′

v | v
′ ∈ V

′

d(n)} and {Y ′

e | e ∈ E
′

d(n)} from the distri-
bution function estimates constructed at Steps 1 and 2 correspondingly. (Remark: for a
complete graph Gn, we generate G

′

d(n) to be complete as well.)

5. Find the minimum φ-cost spanning tree ST(G
′

d(n)); compute φ(ST(G
′

d(n))). (Remark:
This step requires solution of a potentially hard discrete optimization problem.)

Based on the above generic method, we introduce the estimate:

Âvcost(Gn) :=
φ(ST(G

′

d(n)))

d(n)
. (3)

Processing the reduced graphG
′

d(n) is obviously much faster than processingGn itself. But we need

to theoretically characterize to what extent it is acceptable to process G
′

d(n). To that end, we attempt
to investigate the following main questions:

• When is the above method consistent;
• What can be the rate of convergence of the estimator (3); and
• What is the computational complexity of the new method.

We show that the above estimation procedure has a highly nontrivial behavior. Statistical analysis
remains nonetheless possible, but requires delicate results from discrete probability as well as novel
statistical methods. We provide below theoretical justification of our approach for some basic cases.

3 Applications to special cases

Consider the case when φ2 ≡ 0, and the spanning tree weight depends only on edge weights.3 As
before, let G = {G |G ⊆ Gn} be the chosen collection of (structured) subgraphs of Gn. Next,
assume that for an arbitrary member G = (V,E) ∈ G the edge-cost set function φ1, defined in (1),
satisfies additionally

φ1

(
{Ye | e ∈ E}

)
= φ1

(∑
e∈E

Ye

)
, (4)

and that φ1 is continuous and nondecreasing. This includes for example the important class of sub-
modular functions that can be expressed as nondecreasing concave functions of sums (see e.g., [Sto-
bbe and Krause, 2010, Goel et al., 2010]).

Based on the assumptions (1) and (4), we can prove the following.
Proposition 2. Let F be a distribution function that is continuously differentiable at 0, having
F (0) = 0 and F ′(0) > 0. Suppose that F has finite mean and variance. Assume that the cost
function φ satisfies (1) and (4) with φ2 ≡ 0. Then for a minimum spanning tree of the complete
graph Gn it holds that

lim
n→∞

EF φ(ST(Gn)) = φ1(ζ(3)/F
′(0)) , (5)

where ζ is the Riemann Zeta function. Moreover, for any ε > 0,

lim
n→∞

Pr(|φ(ST(Gn))− ζ(3)/F ′(0)| > ε) = 0 . (6)

The proof uses results from [Frieze, 1985] and [Steele, 2002]. Using this proposition, we will prove
a consistency theorem for our estimator (3) for the case of complete graphs3 and a wide class of
edge-dependent weight functions.

First, we need to introduce a special class of estimators.
3We alert the reader to the fact that analysis of just the expected weight of an ordinary (linear) MST for

general graphs is a difficult problem [Steele, 2002, Frieze et al., 2000].
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Definition 1 (Boundary respecting estimators). As above, we assume that F is a distribution
function that is continuously differentiable at 0, having F (0) = 0 and F ′(0) > 0. Let F be some
class of real-valued distribution functions that contains F . Suppose that we have a sequence of
functions {Ψ(n)

F }n≥1 such that for each n it holds that Ψ(n)
F = (F̂ (n), ψ

(n)
0 ), where F̂ (n) maps

Rn → F , and F̂ (n) is differentiable at 0 with the derivative ψ(n)
0 . Here ψ(n)

0 (X1, X2, . . . , Xn) is a
real-valued random variable itself.

Assume that there exists a real sequence {rn} such that for any i.i.d. sample X1, X2, . . . , Xn gen-
erated from a distribution F ∈ F , and any ε > 0, there exists a constant C(ε, F ) > 0 such that
for

Pr
(
|ψ(n)

0 (X1, X2, . . . , Xn)− F ′(0)| > ε
)
≤ C(ε, F )

rn
. (7)

If the sequence rn satisfies
lim

n→∞
rn = ∞ , (8)

we say that the estimator {Ψ(n)
F }n≥1 respects the boundary of distribution F from the class F . In

case the constant C(F ) above can be chosen independently of F ∈ F , we say that the estimator
{Ψ(n)

F }n≥1 respects the boundary uniformly for distributions from the class F . �

Such estimators actually exist—see [Balabdaoui, 2007] or [Alberts and Karunamuni, 2003] for ex-
amples. It is necessary to remark here that a statistical question of constructing estimates that are
consistent at boundary points can be tricky, and is certainly a nonstandard task. Blind use of stan-
dard methods can lead to incorrect results: many of the well-established estimation methods are
consistent in integral norms such as L1- or L2-norms, or within the interior of the parameter spaces.
Behavior of estimators at boundary points is substantially less studied, and the estimators that behave
well at the boundary are usually not governed by conventional statistical results.

An an illustration, we note that in the setup of the Definition 1, the usual kernel density estimator
gives a biased estimate of F ′(0), even if one substantially restricts the space F . Instead, Alberts and
Karunamuni [2003] proposes a modified kernel density estimator that has a correction for the bias
on the boundary.

On the other hand, it is important to observe that Definition 1 only requires that F and F
′

are
consistently estimated at the single boundary point 0; at other points F̂ (n) may even be inconsistent!
This leaves a lot of opportunities for nonstandard constructions of estimators. Surprisingly enough,
even inconsistent estimators are useful in our problem, as long as they respect the boundary.

Theorem 1 (Consistency). Let Gn be a complete graph on n vertices with random edge weights
and let the cost function φ satisfy (1) and (4) with φ2 ≡ 0. Consider the problem of estimating the
expected per vertex cost of an MST (using cost function φ) of Gn. Generate a complete auxiliary
graph G

′

d(n) on d(n) vertices, via sampling the new edge weights {Y ′

e | e ∈ E
′

d(n)} from the dis-

tribution function F̂ (n(n−1)/2)({Ye | e ∈ En}). Suppose that {Ψ(n)
F }n≥1 respects the boundary for

F .

1) Then, Âvcost(Gn) is a consistent estimate, in the sense that for any ε > 0

lim
n→∞

Pr
( ∣∣ Âvcost(Gn)−

1

n
φ1

(
ST(Gn)

) ∣∣ > ε

)
= 0 . (9)

2) Much more than that, our auxiliary sample allows estimating the weight of the MST itself consis-
tently in probability, i.e., for any ε > 0

lim
n→∞

Pr
( ∣∣ d(n) · Âvcost(Gn)− φ1(ST(Gn))

∣∣ > ε
)
= 0 . (10)

The meaning of this theorem is that, for example, in the case of random complete graphs, one can
consistently estimate some of their important characteristics by using just a small (but properly
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constructed) model of the initial large graph. In the particular case of spanning trees, one can
have the number of vertices d(n) grow to infinity arbitrarily slowly, but still obtain asymptotically
consistent estimates. This observation could be of much help in problems that require optimization
on huge networks that would be practically intractable to treat as a whole.

4 Related work and open problems

In this section we first summarize some related work, and then discuss a list of open problems and
challenges arising from this paper.

4.1 Related work

Random graph theory is a mature subject (see [Bollobás, 2001]); but our interest is more specific.
In particular, we draw upon work on estimating weights of (ordinary) MSTs dating back to [Frieze,
1985]. For a good summary, and additional references we refer to the paper of Steele [2002]. Bert-
simas [1990] studies a closely related but very different formulation, wherein he assumes that nodes
may be present (or absent) with a certain probability. Based on this model, he studies what the
expected weight of an MST might be. In contrast, we assume that the edge weights are random
(according to specific law), and we study the expected value under a cost function strictly more
general than the ordinary linear cost used for MSTs. Also note that in our framework one tends to
build auxiliary graphs on d(n) ≪ n vertices, so our method is intended to works for graphs that
are incomparably smaller than the original graph, while Bertsimas [1990] studies graphs on O(n)
nodes.

To make our method practical, we depend on availability of an algorithm to solve the φ-MST prob-
lem on the auxiliary graph. For appropriate choices of the cost function φ, recent algorithms such as
those of [Stobbe and Krause, 2010] or [Jegelka and Bilmes, 2011b,a] might offer practical methods
for tackling the subproblem on the auxiliary graphs. Additionally, there is a well-developed body
on submodular optimization that we could tap into; see for instance [Chudak and Nagano, 2007,
Fujishige, 2005, Iwata and Nagano, 2009]. We note, however, that submodular set functions offer
only one class of possible cost functions—if algorithms (or approximation algorithms) are available
for other type of cost functions, we could benefit from those too—e.g., those in [Murota, 2003].

4.2 Open Problems

Since this is a position paper that also advances a new set of research problems, there are numerous
aspects that remain to be studied. We highlight some of the important questions below.

An important open problem is to determine the types of deterministic or random graphs for which
we can ensure consistency of the estimator from Theorem 1. There are fine probabilistic results on
MSTs for several classes of random graphs, both asymptotic and finite sample (see [Steele, 2002,
Frieze et al., 2000] and references therein). Most notably, a lot is known about MSTs of cubes, and
some other “regular” graphs. And, as some reflection shows, for such graphs, it is easy to check
whether the estimator from Theorem 1 is consistent or not. But more generally, even if there is no
hope to get closed form probabilistic results about the weight of the φ-MSTs, its proposed estimator
may be expected to be consistent in many more interesting cases.

As shown in [Steele, 2002], the expected weight of a (linear) MST of an arbitrary connected graph
G can be represented as an integral of a function that depends on the Tutte polynomial of G. This
observation leads us to conjecture that the expected weight of the φ-MST for submodular φ might
be representable as a Choquet integral involving Tutte polynomials. If this is the case, our estimators
will also be randomized approximations of certain Choquet integrals, a curious byproduct.

As usual, it would be valuable to study rates of convergence of our estimators, as well as some
basic properties such as asymptotic variance. The fact that these estimators can be consistent even
when they are based on a “small” graph (with d(n) ≪ n vertices), is promising since it provides
theoretical grounds for replacing processing on giant networks by processing suitably constructed,
smaller networks. Results on variance and rates of convergence of the estimators will contribute
towards judging actual accuracy of such replacements.
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Since we expect our estimation to work on large graphs, it is crucial that we be able to minimize
the cost function φ efficiently, at least on the auxiliary graph G

′

d(n). This raises the cornerstone
question: for which types of cost functions φ (submodular, monotone, etc.) does there exist an
efficient optimization method for finding (at least approximately) the desired minimum cost structure
(spanning tree, path, etc.) that simultaneously also respects our statistical estimation procedure. The
present short paper suggests that this class of cost functions is rich (at least infinite-dimensional).

Finally, we close by mentioning that even though we illustrated only spanning trees, the same argu-
ment extends to obtaining estimators for any other graphical structures such as paths, cuts, etc., as
long as suitable estimators are available for corresponding linear cost functions. More challengingly,
we wish to consider deriving conditions on φ1 and φ2 in the decomposition (1), under which one
obtains consistent estimators.
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