Supplementary material for "Online Submodular Minimization for Combinatorial Structures"

1. Problems when applying the algorithms in (Kakade et al., 2009) to the submodular-cost setting

Kakade et al. (2009) show online approximation algorithms that use an offline approximation algorithm as a black box. Their method generalizes online gradient descent (Zinkevich, 2003) to use the approximation algorithm in an approximate projection. Their cost function is of the form $c: 2^E \times \mathbb{R}^d \to \mathbb{R}$, $c(S,w) = \langle \phi(S),w \rangle$ and must be linear in w. That means, it is the dot product between some feature vector of S and a weight vector. (In the paper, they leave nonlinear costs as an open problem.)

To use this framework, we must express any nondecreasing submodular f via a cost vector w^f as $c(S, w^f) = f(S)$. The set of non-decreasing submodular functions on E is equivalent to a convex cone in $\mathbb{R}^{2^{|E|}}$. This set has a non-empty relative interior (e.g., $f(S) = \log(1 + |S|)$. As a result, simple linear algebra shows that a full basis is needed to represent all such f meaning that w has an exponential dimension d. But then the regret bound in (Kakade et al., 2009) is exponential in |E|, since it is linear in ||w||, i.e., proportional to \sqrt{d} . Whilst the norm issue can possibly be resolved, the algorithm also assumes that, given any $w \in \mathbb{R}^d$, we can project it onto the set of those w for which $c(\cdot, w)$ is a nondecreasing submodular function. Given the results in (?), this too seems to be non-trivial.

2. Rounding scheme for cuts

We consider the problem

$$\min f(S)$$
 s.t. S is an (s,t) cut.

The corresponding convex program uses the same constraints as the linear program for minimum (s, t) cut, and introduces additional variables π for the nodes:

$$\min \quad \tilde{f}(x)$$
s.t.
$$x(e) \ge \pi(v) - \pi(u) \quad \forall (u, v) \in E$$

$$\pi(t) - \pi(s) \ge 1$$

$$\pi \in [0, 1]^V, \ x \in [0, 1]^E.$$

$$(1)$$

The additional node variables π essentially indicate the membership of a node in the s side (label 0) or t side (label 1) of the cut. The constraints demand that an edge e from a label-zero node to a label-one node should be selected, that is, x(e) = 1. These edges will eventually make up the cut.

Let x^* be the optimal solution of Program (1). We test the values of $x^*(e)$ as rounding thresholds in decreasing order. If the set C_i of edges e with $x^*(e)$ greater than the threshold contains a cut, we stop and prune C_i to a minimal cut. Pruning is one minimum cut computation, where edges in $E \setminus C_i$ have infinite weight.

```
Algorithm 1 rounding procedure given x^* order E such that x^*(e_1) \ge x^*(e_2) \ge \ldots \ge x^*(e_m) for i = 1, \ldots, m do let C_i = \{e_j \mid x^*(e_j) \ge x^*(e_i)\} if C_i is a cut then prune C_i to \widehat{C} and return \widehat{C} end if end for
```

Lemma 6. Let \widehat{C} be the rounded solution returned by Algorithm 1, and C^* the optimal cut. Then $f(\widehat{C}) \leq |P_{\max}|f(C) \leq (n-1)f(C)$, where P_{\max} is the longest simple path in the graph.

Proof. Summing up the constraints on x(e) in Program (1) over any (s,t) path shows that the sum of x(e) along any path must be at least $\pi(t) - \pi(s) \ge 1$. That means, at least one edge from every path must be included in the cut. (In the relaxation, the weight x can be distributed along the path.) Thus, the above program is equivalent to the following program:

$$\min \quad \tilde{f}(x) \tag{2}$$
 s.t.
$$\sum_{e \in P} x(e) \ge 1 \quad \forall (s,t)\text{-paths } P$$

$$x \in [0,1]^E.$$

Program (2) is a submodular covering program. Thus, thresholded rounding is possible analogous to other covering programs (Iwata & Nagano, 2009). Let θ be the rounding threshold that implied the final C_i . In the worst case, x^* is uniformly distributed along the

longest path, and then θ must be $|P_{\max}|^{-1}$ to include at least one of the edges in P_{\max} . Since \tilde{f} is non-decreasing like f and also positively homogeneous, it holds that

$$f(\hat{C}) \le f(C_i) = \tilde{f}(\chi_{C_i})$$

$$\le \tilde{f}(\theta^{-1}x^*) \le \theta^{-1}\tilde{f}(x^*) \le \theta^{-1}\tilde{f}(\chi_{C^*}) = \theta^{-1}f(C^*).$$

The first inequality follows from monotonicity of f and the fact that $\widehat{C} \subseteq C_i$. Similarly, the relation between $\widetilde{f}(\chi_{C_i})$ and $\widetilde{f}(\theta^{-1}x^*)$ holds because \widetilde{f} is nondecreasing: by construction, $x^*(e) \geq \theta \chi_{C_i}(e)$ for all $e \in E$, and hence $\chi_{C_i}(e) \leq \theta^{-1}x^*(e)$. Finally, we use the optimality of x^* to relate the cost to $f(C^*)$ (χ_{C^*} is also feasible, but x^* optimal). The lemma follows since $\theta^{-1} \leq |P_{\max}|$.

3. Detailed proof of Theorem 2

First, we re-state the theorem.

Theorem 2. For an approximation \hat{f} that satisfies (C1) and (C2), $M = \max_t f_t(E)$, and $\eta = T^{-1/2}$, Algorithm 2 achieves an expected α -regret $\mathbb{E}[R_{\alpha}(T)] \leq 3\alpha mM/\sqrt{T} = O(\alpha m/\sqrt{T})$.

Proof. Let

$$S_t = \underset{S \in \mathcal{S}}{\operatorname{argmin}} \sum_{\tau=1}^{t-1} \hat{f}_{\tau}(S) + \alpha r(S);$$

$$\widehat{S}_t = \underset{S \in \mathcal{S}}{\operatorname{argmin}} \sum_{\tau=1}^{t-1} \hat{f}_{\tau}(S); \quad S_t^* = \underset{S \in \mathcal{S}}{\operatorname{argmin}} \sum_{\tau=1}^{t} f_{\tau}(S).$$

First, we show a relation for $\sum_{t=1}^{T} \hat{f}_t(S_{t+1})$ and later relate it to the actual cost $\sum_{t=1}^{T} \hat{f}_t(S_t)$. The first inequality is

$$\sum_{t=1}^{T} \hat{f}_t(\hat{S}_{t+1}) \le \sum_{t=1}^{T} \hat{f}_t(\hat{S}_{T+1}). \tag{3}$$

It holds trivially for T = 1. The case T + 1 follows by induction and the optimality of \widehat{S}_{T+1} :

$$\sum_{t=1}^{T+1} \hat{f}_t(\widehat{S}_{t+1}) \leq \sum_{t=1}^{T} \hat{f}_t(\widehat{S}_{T+1}) + \hat{f}_{T+1}(\widehat{S}_{T+2})$$

$$\leq \sum_{t=1}^{T} \hat{f}_t(\widehat{S}_{T+2}) + \hat{f}_{T+1}(\widehat{S}_{T+2})$$

$$= \sum_{t=1}^{T+1} \hat{f}_t(\widehat{S}_{T+2}).$$

We now replace \hat{f}_1 in Equation (3) by $\hat{f}_1 + \alpha r$:

$$\sum_{t=1}^{T} \hat{f}_t(S_{t+1}) + \alpha r(S_1) \leq \sum_{t=1}^{T} \hat{f}_t(S_{T+1}) + \alpha r(S_{T+1})$$
$$\leq \sum_{t=1}^{T} \hat{f}_t(\widehat{S}_{T+1}) + \alpha r(\widehat{S}_{T+1}).$$

Rearranging the terms yields

$$\sum_{t=1}^{T} \hat{f}_t(S_{t+1}) \le \sum_{t=1}^{T} \hat{f}_t(\hat{S}_{T+1}) + \alpha(r(\hat{S}_{T+1}) - r(S_1)). \tag{4}$$

To transfer this result to the series of S_t , we use that $\hat{f}_t(S_t) \leq \hat{f}_t(S_{t+1}) + (\hat{f}_t(S_t) - \hat{f}_t(S_{t+1}))$:

$$\sum_{t=1}^{T} \hat{f}_{t}(S_{t}) \leq \sum_{t=1}^{T} \hat{f}_{t}(\hat{S}_{T+1}) + \sum_{t=1}^{T} (\hat{f}_{t}(S_{t}) - \hat{f}_{t}(S_{t+1})) + \alpha(r(\hat{S}_{T+1}) - r(S_{1})).$$
(5)

Condition (C1) implies that

$$\sum_{t=1}^{T} \hat{f}_t(\hat{S}_{T+1}) \le \sum_{t=1}^{T} \hat{f}_t(S_T^*) \le \alpha \sum_{t=1}^{T} f_t(S_T^*),$$

and that $\sum_{t=1}^{T} f_t(S_t) \leq \sum_{t=1}^{T} \hat{f}_t(S_t)$. Together with Equation (5), this yields

$$\sum_{t=1}^{T} f_t(S_t) - \alpha \sum_{t=1}^{T} f_t(S_T^*)$$

$$\leq \sum_{t=1}^{T} (\hat{f}_t(S_t) - \hat{f}_t(S_{t+1})) + \alpha (r(\hat{S}_{T+1}) - r(S_1)).$$
(6)

It remains to bound the two terms on the right hand side, and these bounds depend on $r \in [0, M/\eta]^E$.

We first address the random perturbation r in $[0, M/\eta]^E$. The last term can be bounded as

$$\alpha \mathbb{E}[r(\widehat{S}_{T+1}) - r(S_1)] \le \alpha m M / \eta.$$
 (7)

To bound the expected sum of differences of the function values, we use a technique by Hazan & Kale (2009). For the analysis, one can assume that r is resampled in each round. We first bound $P(S_t \neq S_{t+1})$. A simple union bound holds:

$$P(S_t \neq S_{t+1}) \leq \sum_{i=1}^{m} P(e_i \in S_t \text{ and } e_i \notin S_{t+1}) + \sum_{i=1}^{m} P(e_i \notin S_t \text{ and } e_i \in S_{t+1}).$$
(8)

To bound the right hand side, we fix i and look at $P(e_i \in S_t \text{ and } e_i \notin S_{t+1})$. Denote the components of r by r_j and define $r': 2^E \to \mathbb{R}$ as $r'(S) = \sum_{e_j \in S, j \neq i} r_j$, so $r'(e_j) = r(e_j) = r_j$ for all $j \neq i$, but $r'(e_i) = 0$; and define $\Phi'_t: 2^E \to \mathbb{R}$ as $\Phi'_t(S) = \sum_{\tau=1}^{t-1} \hat{f}_\tau + \alpha r'(S)$. Now let

$$S^1 = \underset{S \in \mathcal{S}, e_i \notin S}{\operatorname{argmin}} \Phi'_t(S); \qquad S^2 = \underset{S \in \mathcal{S}, e_i \notin S}{\operatorname{argmin}} \Phi'_t(S).$$

The event $e_i \in S_t$ only happens if $\Phi'_t(S^1) + \alpha r_i < \Phi'_t(S^2)$ and $S_t = S^1$. On the other hand, to have $e_i \notin S_{t+1}$, it must be that $\Phi'_t(S^1) + \alpha r_i \ge \Phi'_t(S^2) - \alpha M$, since otherwise

$$\sum_{t=1}^{t+1} \hat{f}_t(S^1) + \alpha r(S^1) = \Phi'_t(S^1) + \alpha r_i + \hat{f}_t(S^1)$$

$$< \Phi'_t(S^2)$$

$$< \Phi'_t(B) + \hat{f}_t(B)$$

for all $B \in \mathcal{S}$ with $e_i \notin B$. Here, we used that $\hat{f}_t(S) \leq \alpha f_t(S) \leq \alpha M$ for all $S \subseteq E$. Let $v = \alpha^{-1}(\Phi'(S^2) - \Phi'(S^1))$, then $e_i \in S_t$ and $e_i \notin S_{t+1}$ only if $r_i \in [v - M, v]$. The number r_i is in this range with probability at most η since it is chosen uniformly at random from $[0, M/\eta]$, so $P(e_i \in S_t \text{ and } e_i \notin S_{t+1}) \leq \eta$. The bound on $P(e_i \notin S_t \text{ and } e_i \in S_{t+1})$ follows by an analogous argumentation. Together, those results bound (8):

$$P(S_t \neq S_{t+1}) \leq \sum_{i=1}^m P(e_i \in S_t \text{ and } e_i \notin S_{t+1})$$

$$+ \sum_{i=1}^m P(e_i \notin S_t \text{ and } e_i \in S_{t+1})$$

$$\leq 2m\eta.$$
(9)

Equation 9 helps to bound the sum of function values, using $\hat{f}(C) \leq \alpha M$ for all C:

$$\sum_{t=1}^{T} \mathbb{E} \left[\hat{f}_t(S_t) - \hat{f}_t(S_{t+1}) \right]$$

$$\leq \sum_{t=1}^{T} P(S_t \neq S_{t+1}) \max_{B \in \mathcal{S}} \hat{f}(B)$$

$$\leq 2\alpha m M T \eta. \tag{10}$$

Combining Inequalities (6), (7) and (10) results in

$$\mathbb{E}\left[\sum_{t=1}^{T} f_t(S_t)\right] - \alpha \sum_{t=1}^{T} f_t(S_T^*) \\ \leq \alpha M m / \eta + 2\alpha m M T \eta.$$

The final regret bound follows for $\eta = T^{-1/2}$.

4. Proof of Lemma 3

Lemma 3. Let \hat{f} be either \hat{f}_h or \hat{f}_t , with equal probabilities. Then $f(S) \leq \mathbb{E}[\hat{f}(S)] \leq (|V|/2)f(S)$ for all minimal (s,t)-cuts S.

Proof. First, we bound $\hat{f}_h(S)$. Let $\Delta_t(S)$ be the set of head nodes of edges in S, i.e., at most all nodes on the t side of the cut.

$$\hat{f}_h(S) = \sum_{v \in \Delta_t(S)} f(S \cap E_v^h)$$

$$\leq |\Delta_t(S)| \max_{v \in \Delta_t(S)} f(S \cap E_v^h)$$

$$\leq |\Delta_t(S)| f(S).$$

Analogously, it follows that $\hat{f}_t(S) \leq |\Delta_s(S)| f(S)$, $|\Delta_s(S)|$ being the number of tail nodes of edges in S. We combine these bounds to

$$\mathbb{E}[\hat{f}(S)] = (\hat{f}_h(S) + \hat{f}_t(S))/2$$

$$\leq f(S)(|\Delta_s(S)| + |\Delta_t(S)|)/2$$

$$\leq f(S)|V|/2.$$

5. Proof of Lemma 4

Let $S^* = \operatorname{argmin}_{S \in \mathcal{S}} \sum_t f_t(S)$, and $\hat{S}^* = \operatorname{argmin}_{S \in \mathcal{S}} \sum_t \hat{f}_t^2(S)$. We play S_t as prescribed by the algorithm \mathcal{A} .

Lemma 4. Let $\widehat{R}_{\mathcal{A}}$ be the regret of an online algorithm \mathcal{A} for cost functions \widehat{f}_t^2 . Using \mathcal{A} with \widehat{f}_t^2 when observing f_t leads to an α_g regret of $R_{\alpha_g}(T) \leq \widehat{R}_{\mathcal{A}}\alpha_g/\nu$.

Proof. Since we use \hat{f}_t^2 in \mathcal{A} , the regret $\hat{R}_{\mathcal{A}}$ bounds $\sum_t (\hat{f}_t^2(S_t) - \hat{f}_t^2(\hat{S}^*))$. Therefore, we relate the actual regret, $\sum_t (f_t(S_t) - \alpha_g f_t(S^*))$, to the regret of \mathcal{A} . We use that $\hat{f}^2(S) \leq f^2(S) \leq \alpha_g^2 \hat{f}^2(S)$. We have that

$$\sum_{t} (f_{t}(S_{t}) - \alpha_{g} f_{t}(S^{*})) = \sum_{t} \frac{(f_{t}^{2}(S_{t}) - \alpha_{g}^{2} f_{t}^{2}(S^{*}))}{(f_{t}(S_{t}) + \alpha_{g} f_{t}(S^{*}))}$$

$$\leq \sum_{t} (f_{t}^{2}(S_{t}) - \alpha_{g}^{2} f_{t}^{2}(S^{*})) / (\alpha_{g} \nu)$$

$$\leq \sum_{t} \alpha_{g}^{2} (\hat{f}_{t}^{2}(S_{t}) - \hat{f}_{t}^{2}(S^{*})) / (\alpha_{g} \nu)$$

$$\leq \sum_{t} \alpha_{g} (\hat{f}_{t}^{2}(S_{t}) - \hat{f}_{t}^{2}(\hat{S}^{*})) / (\nu)$$

$$= \alpha_{g} \sum_{t} \hat{R}_{\mathcal{A}} / \nu,$$

since $\hat{S}^* = \operatorname{argmin}_{S \in S} \sum_{t} \hat{f}_t^2(S)$ is optimal for \hat{f}^2 . \square

6. Multiple labels for label costs in Algorithm 3

Here, we will outline how to simulate label costs when one edge can have more than one label. This simulation applies to the spanning tree example.

Let k be the maximum number of labels any edge can have. We assign k "slots" to each edge. Each label $\ell \in \pi(e)$ occupies $1 \leq \gamma_e(\ell) \leq k$ slots, such that $\sum_{\ell \in \pi(e)} \gamma_e(\ell) = k$. Define k copies $G_i = (V, E_i)$ of G. Edge e is contained in $E_i(L)$ if i of its slots are filled by labels in L. Then we use

$$g(L) = \sum_{i=1}^{k} r(E_i(L)).$$

This sum is still submodular, and maximum only if E(L) contains a tree of full edges. The approximation factor increases moderately to $O(\log(nk))$.

7. Lower bound for submodular minimum (s,t) cut

We prove a lower bound for the special case of Problem (1) in the main paper that S is the set of all (s,t)-cuts for given nodes s,t in a given graph. The ground set E is the set of edges.

$$\min f(S)$$
 s.t. S is an (s,t) cut (11)

The lower bound is information theoretic and assumes oracle access to the cost function.

Theorem 7. No polynomial-time algorithm can solve Problem (11) with an approximation factor better than $o(\sqrt{|E|/\log |E|})$.

The main idea of the proof is to construct two submodular cost functions f, h with different minima that are almost indistinguishable. In fact, with high probability they cannot be discriminated with a polynomial number of function queries. If the optima of h and f differ by a factor larger than α , then any solution for f within a factor α of the optimum would be enough evidence to discriminate f and h. As a result, a polynomial-time algorithm that guarantees an approximation factor α would lead to a contradiction. The proof technique is similar to that in (Goemans et al., 2009).

One of the functions, f, depends on a hidden random set $R \subseteq E$ that will be its optimal cut. We will use the following Lemma that assumes f to depend on a random set R.

Lemma 8 ((?), Lemma 2.1). If for any set $Q \subseteq E$, chosen without knowledge of R, the probability of $f(Q) \neq h(Q)$ over the random R is $m^{-\omega(1)}$, then any algorithm that makes a polynomial number of oracle queries has probability at most $m^{-\omega(1)}$ of distinguishing f and h.

The Lemma holds by a union bound and computation path argument.

Proof. Construct a graph G=(V,E) with ℓ parallel disjoint paths from s to t; each path has k edges. Let the random set $R\subset E$ be a cut consisting of $|R|=\ell$ edges. The cut contains one edge from each path uniformly at random. We define $\beta=8\ell/k<\ell$ (for k>8), and, for any $Q\subseteq E$,

$$h(Q) = \min\{|Q|, \ell\} \tag{12}$$

$$f(Q) = \min\{|Q \setminus R| + \min\{|Q \cap R|, \beta\}, \ell\}. \tag{13}$$

The functions differ only for the relatively few sets Q with $|Q \cap R| > \beta$ and $|Q \setminus R| < \ell - \beta$. Define ε such that $\varepsilon^2 = \omega(\log m)$, and set $k = 8\sqrt{m}/\varepsilon$ and $\ell = \varepsilon\sqrt{m}$.

Figure 1. Graph for the proof of Theorem 7.

We compute the probability that f and h differ for a given query set Q. Probabilities are over the unknown R. Since $f \leq h$, the probability of difference is P(f(Q) < h(Q)). If $|Q| \leq \ell$, then f(Q) < h(Q) only if $\beta < |Q \cap R|$, and the probability $P(f(Q) < h(Q)) = P(|Q \cap R| > \beta)$ increases as Q grows. If, on the other hand, $|Q| \geq \ell$, then the probability

$$P(f(Q) < h(Q)) = P(|Q \setminus R| + \min\{|Q \cap R|, \beta\} < \ell)$$

decreases as Q grows. Hence, the probability of difference is largest when $|Q| = \ell$.

So let $|Q| = \ell$. If Q spreads over $b \leq k$ edges of a path P, then the probability that Q includes the edge in $P \cap R$ is b/k. The expected overlap is the sum of hits on all paths, $\mathbb{E}[\ |Q \cap R|\] = |Q|/k = \ell/k$. Since the edges in R are independent across different paths, we bound the probability of a large intersection by a Chernoff bound, and Lemma 8 holds:

$$P(f(C) \neq h(C)) \leq P(|C \cap R| \geq 8\ell/k)$$

$$\leq 2^{-8\ell/k} = 2^{-\varepsilon^2} = 2^{-\omega(\log m)} = m^{-\omega(1)}.$$

With this result, Lemma 8 applies. No polynomial-time algorithm can guarantee to distinguish f and h with high probability. A polynomial algorithm with approximation factor better than the ratio of optima h(R)/f(R) would discriminate the two functions and thus lead to a contradiction. As a result, the lower bound will be the ratio of optima of h and f. The optimum of f is $f(R) = \beta$, and h has uniform cost ℓ for all minimal cuts. Hence, the ratio is $h(R)/f(R) = \ell/\beta = \sqrt{m/\varepsilon} = o(\sqrt{m/\log m})$.

For contradiction, assume there was an algorithm with approximation factor $\alpha = o(\sqrt{m/\log m})$. Set $\varepsilon = \sqrt{m}/(2\alpha)$, so $\varepsilon^2 = \omega(\log m)$ is satisfied. Given f for this ε , the algorithm would return a solution with cost at most $\alpha f(R) = \alpha \varepsilon^2 \le \varepsilon \sqrt{m}/2 < \varepsilon \sqrt{m}$. For h, it can only return a solution with strictly larger cost $\ell = \varepsilon \sqrt{m}$ and could thus distinguish f and h, contradicting Lemma 8.

References

Goemans, M. X., Harvey, N. J. A., Iwata, A., and Mirrokni, V. S. Approximating submodular functions

- everywhere. In *Proc. of the ACM-SIAM Symp. on Discrete Algorithms (SODA)*, 2009.
- Hazan, E. and Kale, S. Online submodular minimization. In Proc. of the Ann. Conf. on Neural Info. Processing Systems (NIPS), 2009.
- Iwata, S. and Nagano, K. Submodular function minimization under covering constraints. In Proc. of the Ann. Symp. on Foundations of Comp. Science (FOCS), 2009.
- Kakade, S., Kalai, A. T., and Ligett, K. Playing games with approximation algorithms. *SIAM Journal on Computing*, 39(3):1088–1106, 2009.
- Zinkevich, M. Online convex programming and infinitesimal gradient ascent. In *Proc. of the Int. Conf. on Machine Learning (ICML)*, 2003.