
Supplementary material for “Online Submodular Minimization for
Combinatorial Structures”

1. Problems when applying the
algorithms in (Kakade et al., 2009)
to the submodular-cost setting

Kakade et al. (2009) show online approximation algo-
rithms that use an offline approximation algorithm as
a black box. Their method generalizes online gradi-
ent descent (Zinkevich, 2003) to use the approxima-
tion algorithm in an approximate projection. Their
cost function is of the form c : 2E × Rd → R,
c(S,w) = 〈φ(S), w〉 and must be linear in w. That
means, it is the dot product between some feature vec-
tor of S and a weight vector. (In the paper, they leave
nonlinear costs as an open problem.)

To use this framework, we must express any non-
decreasing submodular f via a cost vector wf as
c(S,wf) = f(S). The set of non-decreasing submod-
ular functions on E is equivalent to a convex cone in
R2|E| . This set has a non-empty relative interior (e.g.,
f(S) = log(1 + |S|)). As a result, simple linear al-
gebra shows that a full basis is needed to represent
all such f meaning that w has an exponential dimen-
sion d. But then the regret bound in (Kakade et al.,
2009) is exponential in |E|, since it is linear in ‖w‖,
i.e., proportional to

√
d. Whilst the norm issue can

possibly be resolved, the algorithm also assumes that,
given any w ∈ Rd, we can project it onto the set of
those w for which c(·, w) is a nondecreasing submod-
ular function. Given the results in (?), this too seems
to be non-trivial.

2. Rounding scheme for cuts

We consider the problem

min f(S) s.t. S is an (s, t) cut.

The corresponding convex program uses the same con-
straints as the linear program for minimum (s, t) cut,
and introduces additional variables π for the nodes:

min f̃(x) (1)
s.t. x(e) ≥ π(v)− π(u) ∀(u, v) ∈ E
π(t)− π(s) ≥ 1

π ∈ [0, 1]V , x ∈ [0, 1]E .

The additional node variables π essentially indicate
the membership of a node in the s side (label 0) or t
side (label 1) of the cut. The constraints demand that
an edge e from a label-zero node to a label-one node
should be selected, that is, x(e) = 1. These edges will
eventually make up the cut.

Let x∗ be the optimal solution of Program (1). We
test the values of x∗(e) as rounding thresholds in de-
creasing order. If the set Ci of edges e with x∗(e)
greater than the threshold contains a cut, we stop and
prune Ci to a minimal cut. Pruning is one minimum
cut computation, where edges in E \ Ci have infinite
weight.

Algorithm 1 rounding procedure given x∗

order E such that x∗(e1) ≥ x∗(e2) ≥ . . . ≥ x∗(em)
for i = 1, . . . ,m do

let Ci = {ej | x∗(ej) ≥ x∗(ei)}
if Ci is a cut then

prune Ci to Ĉ and return Ĉ
end if

end for

Lemma 6. Let Ĉ be the rounded solution returned by
Algorithm 1, and C∗ the optimal cut. Then f(Ĉ) ≤
|Pmax|f(C) ≤ (n − 1)f(C), where Pmax is the longest
simple path in the graph.

Proof. Summing up the constraints on x(e) in Pro-
gram (1) over any (s, t) path shows that the sum of
x(e) along any path must be at least π(t)− π(s) ≥ 1.
That means, at least one edge from every path must
be included in the cut. (In the relaxation, the weight
x can be distributed along the path.) Thus, the above
program is equivalent to the following program:

min f̃(x) (2)

s.t.
∑

e∈P
x(e) ≥ 1 ∀(s, t)-paths P

x ∈ [0, 1]E .

Program (2) is a submodular covering program. Thus,
thresholded rounding is possible analogous to other
covering programs (Iwata & Nagano, 2009). Let θ be
the rounding threshold that implied the final Ci. In
the worst case, x∗ is uniformly distributed along the

Online Submodular Minimization for Combinatorial Structures

longest path, and then θ must be |Pmax|−1 to include
at least one of the edges in Pmax. Since f̃ is non-
decreasing like f and also positively homogeneous, it
holds that

f(Ĉ) ≤ f(Ci) = f̃(χCi
)

≤ f̃(θ−1x∗) ≤ θ−1f̃(x∗) ≤ θ−1f̃(χC∗) = θ−1f(C∗).

The first inequality follows from monotonicity of f and
the fact that Ĉ ⊆ Ci. Similarly, the relation between
f̃(χCi

) and f̃(θ−1x∗) holds because f̃ is nondecreas-
ing: by construction, x∗(e) ≥ θχCi(e) for all e ∈ E,
and hence χCi(e) ≤ θ−1x∗(e). Finally, we use the op-
timality of x∗ to relate the cost to f(C∗) (χC∗ is also
feasible, but x∗ optimal). The lemma follows since
θ−1 ≤ |Pmax|.

3. Detailed proof of Theorem 2

First, we re-state the theorem.

Theorem 2. For an approximation f̂ that satisfies
(C1) and (C2), M = maxt ft(E), and η = T−1/2,
Algorithm 2 achieves an expected α-regret E[Rα(T)] ≤
3αmM/

√
T = O(αm/

√
T).

Proof. Let

St = argmin
S∈S

∑t−1

τ=1
f̂τ (S) + αr(S);

Ŝt = argmin
S∈S

∑t−1

τ=1
f̂τ (S); S∗t = argmin

S∈S

∑t

τ=1
fτ (S).

First, we show a relation for
∑T
t=1 f̂t(St+1) and later

relate it to the actual cost
∑T
t=1 f̂t(St). The first in-

equality is∑T

t=1
f̂t(Ŝt+1) ≤

∑T

t=1
f̂t(ŜT+1). (3)

It holds trivially for T = 1. The case T + 1 follows by
induction and the optimality of ŜT+1:∑T+1

t=1
f̂t(Ŝt+1) ≤

∑T

t=1
f̂t(ŜT+1) + f̂T+1(ŜT+2)

≤
∑T

t=1
f̂t(ŜT+2) + f̂T+1(ŜT+2)

=
∑T+1

t=1
f̂t(ŜT+2).

We now replace f̂1 in Equation (3) by f̂1 + αr:∑T

t=1
f̂t(St+1) + αr(S1) ≤

∑T

t=1
f̂t(ST+1) + αr(ST+1)

≤
∑T

t=1
f̂t(ŜT+1) + αr(ŜT+1).

Rearranging the terms yields∑T

t=1
f̂t(St+1) ≤

∑T

t=1
f̂t(ŜT+1) + α(r(ŜT+1)− r(S1)).

(4)

To transfer this result to the series of St, we use that
f̂t(St) ≤ f̂t(St+1) + (f̂t(St)− f̂t(St+1)):

T∑
t=1

f̂t(St) ≤
T∑
t=1

f̂t(ŜT+1)

+
T∑
t=1

(f̂t(St)− f̂t(St+1)) + α(r(ŜT+1)− r(S1)).
(5)

Condition (C1) implies that∑T

t=1
f̂t(ŜT+1) ≤

∑T

t=1
f̂t(S∗T) ≤ α

∑T

t=1
ft(S∗T),

and that
∑T
t=1 ft(St) ≤

∑T
t=1 f̂t(St). Together with

Equation (5), this yields∑T

t=1
ft(St)− α

∑T

t=1
ft(S∗T)

≤
∑T

t=1
(f̂t(St)− f̂t(St+1)) + α(r(ŜT+1)− r(S1)).

(6)

It remains to bound the two terms on the right hand
side, and these bounds depend on r ∈ [0,M/η]E .

We first address the random perturbation r in
[0,M/η]E . The last term can be bounded as

αE[r(ŜT+1)− r(S1)] ≤ αmM/η. (7)

To bound the expected sum of differences of the func-
tion values, we use a technique by Hazan & Kale
(2009). For the analysis, one can assume that r is re-
sampled in each round. We first bound P (St 6= St+1).
A simple union bound holds:

P (St 6= St+1) ≤
∑m

i=1
P (ei ∈ St and ei /∈ St+1)

+
∑m

i=1
P (ei /∈ St and ei ∈ St+1).

(8)

To bound the right hand side, we fix i and look at
P (ei ∈ St and ei /∈ St+1). Denote the components of
r by rj and define r′ : 2E → R as r′(S) =

∑
ej∈S,j 6=i rj ,

so r′(ej) = r(ej) = rj for all j 6= i, but r′(ei) = 0; and
define Φ′t : 2E → R as Φ′t(S) =

∑t−1
τ=1 f̂τ + αr′(S).

Now let

S1 = argmin
S∈S,ei∈S

Φ′t(S); S2 = argmin
S∈S,ei /∈S

Φ′t(S).

Online Submodular Minimization for Combinatorial Structures

The event ei ∈ St only happens if Φ′t(S
1) + αri <

Φ′t(S
2) and St = S1. On the other hand, to have

ei /∈ St+1, it must be that Φ′t(S
1)+αri ≥ Φ′t(S

2)−αM ,
since otherwise∑t+1

τ=1
f̂t(S1) + αr(S1) = Φ′t(S

1) + αri + f̂t(S1)

< Φ′t(S
2)

< Φ′t(B) + f̂t(B)

for all B ∈ S with ei /∈ B. Here, we used that f̂t(S) ≤
αft(S) ≤ αM for all S ⊆ E. Let v = α−1(Φ′(S2) −
Φ′(S1)), then ei ∈ St and ei /∈ St+1 only if ri ∈ [v −
M,v]. The number ri is in this range with probability
at most η since it is chosen uniformly at random from
[0,M/η], so P (ei ∈ St and ei /∈ St+1) ≤ η. The bound
on P (ei /∈ St and ei ∈ St+1) follows by an analogous
argumentation. Together, those results bound (8):

P (St 6= St+1) ≤
∑m

i=1
P (ei ∈ St and ei /∈ St+1)

+
∑m

i=1
P (ei /∈ St and ei ∈ St+1)

≤ 2mη. (9)

Equation 9 helps to bound the sum of function values,
using f̂(C) ≤ αM for all C:∑T

t=1
E
[
f̂t(St)− f̂t(St+1)

]
≤
∑T

t=1
P (St 6= St+1) max

B∈S
f̂(B)

≤ 2αmMTη. (10)

Combining Inequalities (6), (7) and (10) results in

E
[∑T

t=1
ft(St)

]
− α

∑T

t=1
ft(S∗T)

≤ αMm/η + 2αmMTη.

The final regret bound follows for η = T−1/2.

4. Proof of Lemma 3

Lemma 3. Let f̂ be either f̂h or f̂t, with equal prob-
abilities. Then f(S) ≤ E[f̂(S)] ≤ (|V |/2)f(S) for all
minimal (s, t)-cuts S.

Proof. First, we bound f̂h(S). Let ∆t(S) be the set of
head nodes of edges in S, i.e., at most all nodes on the
t side of the cut.

f̂h(S) =
∑

v∈∆t(S)
f(S ∩ Ehv)

≤ |∆t(S)|maxv∈∆t(S) f(S ∩ Ehv)
≤ |∆t(S)|f(S).

Analogously, it follows that f̂t(S) ≤ |∆s(S)|f(S),
|∆s(S)| being the number of tail nodes of edges in S.
We combine these bounds to

E[f̂(S)] = (f̂h(S) + f̂t(S))/2
≤ f(S)(|∆s(S)|+ |∆t(S)|)/2
≤ f(S)|V |/2.

5. Proof of Lemma 4

Let S∗ = argminS∈S
∑
t ft(S), and Ŝ∗ =

argminS∈S
∑
t f̂

2
t (S). We play St as prescribed by the

algorithm A.

Lemma 4. Let R̂A be the regret of an online algorithm
A for cost functions f̂2

t . Using A with f̂2
t when observ-

ing ft leads to an αg regret of Rαg (T) ≤ R̂Aαg/ν.

Proof. Since we use f̂2
t in A, the regret R̂A bounds∑

t(f̂
2
t (St) − f̂2

t (Ŝ∗)). Therefore, we relate the actual
regret,

∑
t(ft(St)− αgft(S∗)), to the regret of A. We

use that f̂2(S) ≤ f2(S) ≤ α2
g f̂

2(S). We have that

∑
t
(ft(St)− αgft(S∗)) =

∑
t

(f2
t (St)− α2

gf
2
t (S∗))

(ft(St) + αgft(S∗))

≤
∑

t
(f2
t (St)− α2

gf
2
t (S∗))/(αgν)

≤
∑

t
α2
g(f̂

2
t (St)− f̂2

t (S∗))/(αgν)

≤
∑

t
αg(f̂2

t (St)− f̂2
t (Ŝ∗))/(ν)

= αg
∑

t
R̂A/ν,

since Ŝ∗ = argminS∈S
∑
t f̂

2
t (S) is optimal for f̂2.

6. Multiple labels for label costs in
Algorithm 3

Here, we will outline how to simulate label costs when
one edge can have more than one label. This simula-
tion applies to the spanning tree example.

Let k be the maximum number of labels any edge can
have. We assign k “slots” to each edge. Each label
` ∈ π(e) occupies 1 ≤ γe(`) ≤ k slots, such that∑
`∈π(e) γe(`) = k. Define k copies Gi = (V,Ei) of

G. Edge e is contained in Ei(L) if i of its slots are
filled by labels in L. Then we use

g(L) =
∑k

i=1
r(Ei(L)).

This sum is still submodular, and maximum only if
E(L) contains a tree of full edges. The approximation
factor increases moderately to O(log(nk)).

Online Submodular Minimization for Combinatorial Structures

7. Lower bound for submodular
minimum (s, t) cut

We prove a lower bound for the special case of Problem
(1) in the main paper that S is the set of all (s, t)-cuts
for given nodes s, t in a given graph. The ground set
E is the set of edges.

min f(S) s.t. S is an (s, t) cut (11)

The lower bound is information theoretic and assumes
oracle access to the cost function.
Theorem 7. No polynomial-time algorithm can solve
Problem (11) with an approximation factor better than
o(
√
|E|/ log |E|).

The main idea of the proof is to construct two sub-
modular cost functions f , h with different minima that
are almost indistinguishable. In fact, with high prob-
ability they cannot be discriminated with a polyno-
mial number of function queries. If the optima of h
and f differ by a factor larger than α, then any so-
lution for f within a factor α of the optimum would
be enough evidence to discriminate f and h. As a re-
sult, a polynomial-time algorithm that guarantees an
approximation factor α would lead to a contradiction.
The proof technique is similar to that in (Goemans
et al., 2009).

One of the functions, f , depends on a hidden random
set R ⊆ E that will be its optimal cut. We will use
the following Lemma that assumes f to depend on a
random set R.
Lemma 8 ((?), Lemma 2.1). If for any set Q ⊆
E, chosen without knowledge of R, the probability of
f(Q) 6= h(Q) over the random R is m−ω(1), then any
algorithm that makes a polynomial number of oracle
queries has probability at most m−ω(1) of distinguish-
ing f and h.

The Lemma holds by a union bound and computation
path argument.

Proof. Construct a graph G = (V,E) with ` parallel
disjoint paths from s to t; each path has k edges. Let
the random set R ⊂ E be a cut consisting of |R| =
` edges. The cut contains one edge from each path
uniformly at random. We define β = 8`/k < ` (for
k > 8), and, for any Q ⊆ E,

h(Q) = min{|Q|, `} (12)
f(Q) = min{|Q \R|+ min{|Q ∩R|, β}, `}. (13)

The functions differ only for the relatively few sets Q
with |Q ∩ R| > β and |Q \ R| < ` − β. Define ε such
that ε2 = ω(logm), and set k = 8

√
m/ε and ` = ε

√
m.

s t

k

`

Figure 1. Graph for the proof of Theorem 7.

We compute the probability that f and h differ for
a given query set Q. Probabilities are over the un-
known R. Since f ≤ h, the probability of difference is
P (f(Q) < h(Q)). If |Q| ≤ `, then f(Q) < h(Q) only
if β < |Q∩R|, and the probability P (f(Q) < h(Q)) =
P (|Q ∩R| > β) increases as Q grows. If, on the other
hand, |Q| ≥ `, then the probability

P (f(Q) < h(Q)) = P (|Q \R|+ min{|Q ∩R|, β} < `)

decreases as Q grows. Hence, the probability of differ-
ence is largest when |Q| = `.

So let |Q| = `. If Q spreads over b ≤ k edges of a
path P , then the probability that Q includes the edge
in P ∩ R is b/k. The expected overlap is the sum of
hits on all paths, E[|Q ∩ R|] = |Q|/k = `/k. Since
the edges in R are independent across different paths,
we bound the probability of a large intersection by a
Chernoff bound, and Lemma 8 holds:

P
(
f(C) 6= h(C)

)
≤ P

(
|C ∩R| ≥ 8`/k

)
≤ 2−8`/k = 2−ε

2
= 2−ω(logm) = m−ω(1).

With this result, Lemma 8 applies. No polynomial-
time algorithm can guarantee to distinguish f and h
with high probability. A polynomial algorithm with
approximation factor better than the ratio of optima
h(R)/f(R) would discriminate the two functions and
thus lead to a contradiction. As a result, the lower
bound will be the ratio of optima of h and f . The
optimum of f is f(R) = β, and h has uniform cost `
for all minimal cuts. Hence, the ratio is h(R)/f(R) =
`/β =

√
m/ε = o(

√
m/ logm).

For contradiction, assume there was an algorithm
with approximation factor α = o(

√
m/ logm). Set

ε =
√
m/(2α), so ε2 = ω(logm) is satisfied. Given f

for this ε, the algorithm would return a solution with
cost at most αf(R) = αε2 ≤ ε

√
m/2 < ε

√
m. For h,

it can only return a solution with strictly larger cost
` = ε

√
m and could thus distinguish f and h, contra-

dicting Lemma 8.

References

Goemans, M. X., Harvey, N. J. A., Iwata, A., and Mir-
rokni, V. S. Approximating submodular functions

Online Submodular Minimization for Combinatorial Structures

everywhere. In Proc. of the ACM-SIAM Symp. on
Discrete Algorithms (SODA), 2009.

Hazan, E. and Kale, S. Online submodular minimiza-
tion. In Proc. of the Ann. Conf. on Neural Info.
Processing Systems (NIPS), 2009.

Iwata, S. and Nagano, K. Submodular function min-
imization under covering constraints. In Proc. of
the Ann. Symp. on Foundations of Comp. Science
(FOCS), 2009.

Kakade, S., Kalai, A. T., and Ligett, K. Playing games
with approximation algorithms. SIAM Journal on
Computing, 39(3):1088–1106, 2009.

Zinkevich, M. Online convex programming and in-
finitesimal gradient ascent. In Proc. of the Int. Conf.
on Machine Learning (ICML), 2003.

