
Supplementary material for “Online Submodular Minimization for
Combinatorial Structures”

1. Problems when applying the
algorithms in (Kakade et al., 2009)
to the submodular-cost setting

Kakade et al. (2009) show online approximation algo-
rithms that use an offline approximation algorithm as
a black box. Their method generalizes online gradi-
ent descent (Zinkevich, 2003) to use the approxima-
tion algorithm in an approximate projection. Their
cost function is of the form c : 2E × Rd → R,
c(S,w) = 〈φ(S), w〉 and must be linear in w. That
means, it is the dot product between some feature vec-
tor of S and a weight vector. (In the paper, they leave
nonlinear costs as an open problem.)

To use this framework, we must express any non-
decreasing submodular f via a cost vector wf as
c(S,wf ) = f(S). The set of non-decreasing submod-
ular functions on E is equivalent to a convex cone in
R2|E| . This set has a non-empty relative interior (e.g.,
f(S) = log(1 + |S|)). As a result, simple linear al-
gebra shows that a full basis is needed to represent
all such f meaning that w has an exponential dimen-
sion d. But then the regret bound in (Kakade et al.,
2009) is exponential in |E|, since it is linear in ‖w‖,
i.e., proportional to

√
d. Whilst the norm issue can

possibly be resolved, the algorithm also assumes that,
given any w ∈ Rd, we can project it onto the set of
those w for which c(·, w) is a nondecreasing submod-
ular function. Given the results in (?), this too seems
to be non-trivial.

2. Rounding scheme for cuts

We consider the problem

min f(S) s.t. S is an (s, t) cut.

The corresponding convex program uses the same con-
straints as the linear program for minimum (s, t) cut,
and introduces additional variables π for the nodes:

min f̃(x) (1)
s.t. x(e) ≥ π(v)− π(u) ∀(u, v) ∈ E
π(t)− π(s) ≥ 1

π ∈ [0, 1]V , x ∈ [0, 1]E .

The additional node variables π essentially indicate
the membership of a node in the s side (label 0) or t
side (label 1) of the cut. The constraints demand that
an edge e from a label-zero node to a label-one node
should be selected, that is, x(e) = 1. These edges will
eventually make up the cut.

Let x∗ be the optimal solution of Program (1). We
test the values of x∗(e) as rounding thresholds in de-
creasing order. If the set Ci of edges e with x∗(e)
greater than the threshold contains a cut, we stop and
prune Ci to a minimal cut. Pruning is one minimum
cut computation, where edges in E \ Ci have infinite
weight.

Algorithm 1 rounding procedure given x∗

order E such that x∗(e1) ≥ x∗(e2) ≥ . . . ≥ x∗(em)
for i = 1, . . . ,m do

let Ci = {ej | x∗(ej) ≥ x∗(ei)}
if Ci is a cut then

prune Ci to Ĉ and return Ĉ
end if

end for

Lemma 6. Let Ĉ be the rounded solution returned by
Algorithm 1, and C∗ the optimal cut. Then f(Ĉ) ≤
|Pmax|f(C) ≤ (n − 1)f(C), where Pmax is the longest
simple path in the graph.

Proof. Summing up the constraints on x(e) in Pro-
gram (1) over any (s, t) path shows that the sum of
x(e) along any path must be at least π(t)− π(s) ≥ 1.
That means, at least one edge from every path must
be included in the cut. (In the relaxation, the weight
x can be distributed along the path.) Thus, the above
program is equivalent to the following program:

min f̃(x) (2)

s.t.
∑

e∈P
x(e) ≥ 1 ∀(s, t)-paths P

x ∈ [0, 1]E .

Program (2) is a submodular covering program. Thus,
thresholded rounding is possible analogous to other
covering programs (Iwata & Nagano, 2009). Let θ be
the rounding threshold that implied the final Ci. In
the worst case, x∗ is uniformly distributed along the
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longest path, and then θ must be |Pmax|−1 to include
at least one of the edges in Pmax. Since f̃ is non-
decreasing like f and also positively homogeneous, it
holds that

f(Ĉ) ≤ f(Ci) = f̃(χCi
)

≤ f̃(θ−1x∗) ≤ θ−1f̃(x∗) ≤ θ−1f̃(χC∗) = θ−1f(C∗).

The first inequality follows from monotonicity of f and
the fact that Ĉ ⊆ Ci. Similarly, the relation between
f̃(χCi

) and f̃(θ−1x∗) holds because f̃ is nondecreas-
ing: by construction, x∗(e) ≥ θχCi(e) for all e ∈ E,
and hence χCi(e) ≤ θ−1x∗(e). Finally, we use the op-
timality of x∗ to relate the cost to f(C∗) (χC∗ is also
feasible, but x∗ optimal). The lemma follows since
θ−1 ≤ |Pmax|.

3. Detailed proof of Theorem 2

First, we re-state the theorem.

Theorem 2. For an approximation f̂ that satisfies
(C1) and (C2), M = maxt ft(E), and η = T−1/2,
Algorithm 2 achieves an expected α-regret E[Rα(T )] ≤
3αmM/

√
T = O(αm/

√
T ).

Proof. Let

St = argmin
S∈S

∑t−1

τ=1
f̂τ (S) + αr(S);

Ŝt = argmin
S∈S

∑t−1

τ=1
f̂τ (S); S∗t = argmin

S∈S

∑t

τ=1
fτ (S).

First, we show a relation for
∑T
t=1 f̂t(St+1) and later

relate it to the actual cost
∑T
t=1 f̂t(St). The first in-

equality is∑T

t=1
f̂t(Ŝt+1) ≤

∑T

t=1
f̂t(ŜT+1). (3)

It holds trivially for T = 1. The case T + 1 follows by
induction and the optimality of ŜT+1:∑T+1

t=1
f̂t(Ŝt+1) ≤

∑T

t=1
f̂t(ŜT+1) + f̂T+1(ŜT+2)

≤
∑T

t=1
f̂t(ŜT+2) + f̂T+1(ŜT+2)

=
∑T+1

t=1
f̂t(ŜT+2).

We now replace f̂1 in Equation (3) by f̂1 + αr:∑T

t=1
f̂t(St+1) + αr(S1) ≤

∑T

t=1
f̂t(ST+1) + αr(ST+1)

≤
∑T

t=1
f̂t(ŜT+1) + αr(ŜT+1).

Rearranging the terms yields∑T

t=1
f̂t(St+1) ≤

∑T

t=1
f̂t(ŜT+1) + α(r(ŜT+1)− r(S1)).

(4)

To transfer this result to the series of St, we use that
f̂t(St) ≤ f̂t(St+1) + (f̂t(St)− f̂t(St+1)):

T∑
t=1

f̂t(St) ≤
T∑
t=1

f̂t(ŜT+1)

+
T∑
t=1

(f̂t(St)− f̂t(St+1)) + α(r(ŜT+1)− r(S1)).
(5)

Condition (C1) implies that∑T

t=1
f̂t(ŜT+1) ≤

∑T

t=1
f̂t(S∗T ) ≤ α

∑T

t=1
ft(S∗T ),

and that
∑T
t=1 ft(St) ≤

∑T
t=1 f̂t(St). Together with

Equation (5), this yields∑T

t=1
ft(St)− α

∑T

t=1
ft(S∗T )

≤
∑T

t=1
(f̂t(St)− f̂t(St+1)) + α(r(ŜT+1)− r(S1)).

(6)

It remains to bound the two terms on the right hand
side, and these bounds depend on r ∈ [0,M/η]E .

We first address the random perturbation r in
[0,M/η]E . The last term can be bounded as

αE[r(ŜT+1)− r(S1)] ≤ αmM/η. (7)

To bound the expected sum of differences of the func-
tion values, we use a technique by Hazan & Kale
(2009). For the analysis, one can assume that r is re-
sampled in each round. We first bound P (St 6= St+1).
A simple union bound holds:

P (St 6= St+1) ≤
∑m

i=1
P (ei ∈ St and ei /∈ St+1)

+
∑m

i=1
P (ei /∈ St and ei ∈ St+1).

(8)

To bound the right hand side, we fix i and look at
P (ei ∈ St and ei /∈ St+1). Denote the components of
r by rj and define r′ : 2E → R as r′(S) =

∑
ej∈S,j 6=i rj ,

so r′(ej) = r(ej) = rj for all j 6= i, but r′(ei) = 0; and
define Φ′t : 2E → R as Φ′t(S) =

∑t−1
τ=1 f̂τ + αr′(S).

Now let

S1 = argmin
S∈S,ei∈S

Φ′t(S); S2 = argmin
S∈S,ei /∈S

Φ′t(S).
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The event ei ∈ St only happens if Φ′t(S
1) + αri <

Φ′t(S
2) and St = S1. On the other hand, to have

ei /∈ St+1, it must be that Φ′t(S
1)+αri ≥ Φ′t(S

2)−αM ,
since otherwise∑t+1

τ=1
f̂t(S1) + αr(S1) = Φ′t(S

1) + αri + f̂t(S1)

< Φ′t(S
2)

< Φ′t(B) + f̂t(B)

for all B ∈ S with ei /∈ B. Here, we used that f̂t(S) ≤
αft(S) ≤ αM for all S ⊆ E. Let v = α−1(Φ′(S2) −
Φ′(S1)), then ei ∈ St and ei /∈ St+1 only if ri ∈ [v −
M,v]. The number ri is in this range with probability
at most η since it is chosen uniformly at random from
[0,M/η], so P (ei ∈ St and ei /∈ St+1) ≤ η. The bound
on P (ei /∈ St and ei ∈ St+1) follows by an analogous
argumentation. Together, those results bound (8):

P (St 6= St+1) ≤
∑m

i=1
P (ei ∈ St and ei /∈ St+1)

+
∑m

i=1
P (ei /∈ St and ei ∈ St+1)

≤ 2mη. (9)

Equation 9 helps to bound the sum of function values,
using f̂(C) ≤ αM for all C:∑T

t=1
E
[
f̂t(St)− f̂t(St+1)

]
≤
∑T

t=1
P (St 6= St+1) max

B∈S
f̂(B)

≤ 2αmMTη. (10)

Combining Inequalities (6), (7) and (10) results in

E
[∑T

t=1
ft(St)

]
− α

∑T

t=1
ft(S∗T )

≤ αMm/η + 2αmMTη.

The final regret bound follows for η = T−1/2.

4. Proof of Lemma 3

Lemma 3. Let f̂ be either f̂h or f̂t, with equal prob-
abilities. Then f(S) ≤ E[f̂(S)] ≤ (|V |/2)f(S) for all
minimal (s, t)-cuts S.

Proof. First, we bound f̂h(S). Let ∆t(S) be the set of
head nodes of edges in S, i.e., at most all nodes on the
t side of the cut.

f̂h(S) =
∑

v∈∆t(S)
f(S ∩ Ehv )

≤ |∆t(S)|maxv∈∆t(S) f(S ∩ Ehv )
≤ |∆t(S)|f(S).

Analogously, it follows that f̂t(S) ≤ |∆s(S)|f(S),
|∆s(S)| being the number of tail nodes of edges in S.
We combine these bounds to

E[f̂(S)] = (f̂h(S) + f̂t(S))/2
≤ f(S)(|∆s(S)|+ |∆t(S)|)/2
≤ f(S)|V |/2.

5. Proof of Lemma 4

Let S∗ = argminS∈S
∑
t ft(S), and Ŝ∗ =

argminS∈S
∑
t f̂

2
t (S). We play St as prescribed by the

algorithm A.

Lemma 4. Let R̂A be the regret of an online algorithm
A for cost functions f̂2

t . Using A with f̂2
t when observ-

ing ft leads to an αg regret of Rαg (T ) ≤ R̂Aαg/ν.

Proof. Since we use f̂2
t in A, the regret R̂A bounds∑

t(f̂
2
t (St) − f̂2

t (Ŝ∗)). Therefore, we relate the actual
regret,

∑
t(ft(St)− αgft(S∗)), to the regret of A. We

use that f̂2(S) ≤ f2(S) ≤ α2
g f̂

2(S). We have that

∑
t
(ft(St)− αgft(S∗)) =

∑
t

(f2
t (St)− α2

gf
2
t (S∗))

(ft(St) + αgft(S∗))

≤
∑

t
(f2
t (St)− α2

gf
2
t (S∗))/(αgν)

≤
∑

t
α2
g(f̂

2
t (St)− f̂2

t (S∗))/(αgν)

≤
∑

t
αg(f̂2

t (St)− f̂2
t (Ŝ∗))/(ν)

= αg
∑

t
R̂A/ν,

since Ŝ∗ = argminS∈S
∑
t f̂

2
t (S) is optimal for f̂2.

6. Multiple labels for label costs in
Algorithm 3

Here, we will outline how to simulate label costs when
one edge can have more than one label. This simula-
tion applies to the spanning tree example.

Let k be the maximum number of labels any edge can
have. We assign k “slots” to each edge. Each label
` ∈ π(e) occupies 1 ≤ γe(`) ≤ k slots, such that∑
`∈π(e) γe(`) = k. Define k copies Gi = (V,Ei) of

G. Edge e is contained in Ei(L) if i of its slots are
filled by labels in L. Then we use

g(L) =
∑k

i=1
r(Ei(L)).

This sum is still submodular, and maximum only if
E(L) contains a tree of full edges. The approximation
factor increases moderately to O(log(nk)).
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7. Lower bound for submodular
minimum (s, t) cut

We prove a lower bound for the special case of Problem
(1) in the main paper that S is the set of all (s, t)-cuts
for given nodes s, t in a given graph. The ground set
E is the set of edges.

min f(S) s.t. S is an (s, t) cut (11)

The lower bound is information theoretic and assumes
oracle access to the cost function.
Theorem 7. No polynomial-time algorithm can solve
Problem (11) with an approximation factor better than
o(
√
|E|/ log |E|).

The main idea of the proof is to construct two sub-
modular cost functions f , h with different minima that
are almost indistinguishable. In fact, with high prob-
ability they cannot be discriminated with a polyno-
mial number of function queries. If the optima of h
and f differ by a factor larger than α, then any so-
lution for f within a factor α of the optimum would
be enough evidence to discriminate f and h. As a re-
sult, a polynomial-time algorithm that guarantees an
approximation factor α would lead to a contradiction.
The proof technique is similar to that in (Goemans
et al., 2009).

One of the functions, f , depends on a hidden random
set R ⊆ E that will be its optimal cut. We will use
the following Lemma that assumes f to depend on a
random set R.
Lemma 8 ((?), Lemma 2.1). If for any set Q ⊆
E, chosen without knowledge of R, the probability of
f(Q) 6= h(Q) over the random R is m−ω(1), then any
algorithm that makes a polynomial number of oracle
queries has probability at most m−ω(1) of distinguish-
ing f and h.

The Lemma holds by a union bound and computation
path argument.

Proof. Construct a graph G = (V,E) with ` parallel
disjoint paths from s to t; each path has k edges. Let
the random set R ⊂ E be a cut consisting of |R| =
` edges. The cut contains one edge from each path
uniformly at random. We define β = 8`/k < ` (for
k > 8), and, for any Q ⊆ E,

h(Q) = min{|Q|, `} (12)
f(Q) = min{|Q \R|+ min{|Q ∩R|, β}, `}. (13)

The functions differ only for the relatively few sets Q
with |Q ∩ R| > β and |Q \ R| < ` − β. Define ε such
that ε2 = ω(logm), and set k = 8

√
m/ε and ` = ε

√
m.

s t

k

`

Figure 1. Graph for the proof of Theorem 7.

We compute the probability that f and h differ for
a given query set Q. Probabilities are over the un-
known R. Since f ≤ h, the probability of difference is
P (f(Q) < h(Q)). If |Q| ≤ `, then f(Q) < h(Q) only
if β < |Q∩R|, and the probability P (f(Q) < h(Q)) =
P (|Q ∩R| > β) increases as Q grows. If, on the other
hand, |Q| ≥ `, then the probability

P (f(Q) < h(Q)) = P (|Q \R|+ min{|Q ∩R|, β} < `)

decreases as Q grows. Hence, the probability of differ-
ence is largest when |Q| = `.

So let |Q| = `. If Q spreads over b ≤ k edges of a
path P , then the probability that Q includes the edge
in P ∩ R is b/k. The expected overlap is the sum of
hits on all paths, E[ |Q ∩ R| ] = |Q|/k = `/k. Since
the edges in R are independent across different paths,
we bound the probability of a large intersection by a
Chernoff bound, and Lemma 8 holds:

P
(
f(C) 6= h(C)

)
≤ P

(
|C ∩R| ≥ 8`/k

)
≤ 2−8`/k = 2−ε

2
= 2−ω(logm) = m−ω(1).

With this result, Lemma 8 applies. No polynomial-
time algorithm can guarantee to distinguish f and h
with high probability. A polynomial algorithm with
approximation factor better than the ratio of optima
h(R)/f(R) would discriminate the two functions and
thus lead to a contradiction. As a result, the lower
bound will be the ratio of optima of h and f . The
optimum of f is f(R) = β, and h has uniform cost `
for all minimal cuts. Hence, the ratio is h(R)/f(R) =
`/β =

√
m/ε = o(

√
m/ logm).

For contradiction, assume there was an algorithm
with approximation factor α = o(

√
m/ logm). Set

ε =
√
m/(2α), so ε2 = ω(logm) is satisfied. Given f

for this ε, the algorithm would return a solution with
cost at most αf(R) = αε2 ≤ ε

√
m/2 < ε

√
m. For h,

it can only return a solution with strictly larger cost
` = ε

√
m and could thus distinguish f and h, contra-

dicting Lemma 8.
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