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Abstract— An automatic particle picking algorithm for pro-
cessing electron micrographs of a large molecular complex, the
26S proteasome, is described. The algorithm makes use of a
coherence enhancing diffusion filter to denoise the data, and
a random forest classifier for removing false positives. It does
not make use of a 3D reference model, but uses a training set
of manually picked particles instead. False positive and false
negative rates of around 25% to 30% are achieved on a testing
set. The algorithm was developed for a specific particle, but
contains steps that should be useful for developing automatic
picking algorithms for other particles.

I. INTRODUCTION

Single particle cryo-electron microscopy (cryo-EM) is
widely used in structural biology to elucidate three-
dimensional structure information of macro-molecular assem-
blies (see [1] for an introduction to the field). By superimpos-
ing tens of thousands to hundreds of thousands of individual
particle images, a reconstruction with sub-nanometer can be
achieved. Acquisition of these large data sets can done by
using automated routines while the extraction of the particles
from the electron micrographs is often carried out by a manual,
interactive procedure. There have been many attempts at
automating this step (see [2] for a comparison between several
different methods), but a general solution has yet to emerge.
Current manual or semi-automatic approaches are very time-
intensive, requiring several man-months for larger datasets,
and thus forming a bottle-neck to obtaining higher resolution
reconstructions.

In the comparative study in [2], 10 different algorithms for
automatic particle selection are described. They can be divided
into two general types of algorithms. In the first type, particles
in a micrograph are detected by matching them to a set of
templates. This is known as template matching. The templates
could be generated using a low-resolution 3D reference model,
or by averaging manually picked particles. An example of
a template matching algorithm is [3]. The second type of
algorithms are feature-based ones. Such algorithms compute
features of image patches with which the patch can be classi-
fied as containing a particle or not. An example of a feature-
based algorithm is [4]. Some algorithms can be considered as
combinations of these two types.

The wide variety of possible solutions (as for example in
[2]) reflects the large variability between the different datasets
obtained from different particles. A given approach usually

makes dataset-specific assumptions that do not generalize to
other datasets. For instance, the method might rely on the
signal-to-noise ratio (SNR) being above a certain threshold,
or it might assume that the particle is roughly rotationally
symmetric.

In this paper we take the view that to obtain the best
algorithm for a given dataset, it should be designed specifically
for that dataset. We describe such an algorithm that was
developed specifically for a dataset of the 26S proteasome
([5]).

The algorithm does not make use of an initial 3D reference
model. Instead, prior knowledge about the particle is intro-
duced via a training step, using a small set of manually picked
micrographs. According to the above classification, it could
be considered to be a feature-based algorithm, although the
features are learned, rather than explicitly described.

The algorithm consists of several different steps, some of
which have previously been used for particle picking (denois-
ing through diffusion, [6]), while others were first introduced
in other contexts (random forests, [7] and [8]). Even though
it was not tested on datasets of other particles, at least some
of the steps should be useful in constructing algorithms for
other, similar datasets.

II. METHOD

The algorithm operates on each raw micrograph, and pro-
ceeds through the following steps to produce the picks1 for
that micrograph:
• Segmentation
• Normalization
• Denoising
• Picking
• Alignment
• Classification
Each of these steps is described below in more detail.

A. Segmentation

The particles of interest lie inside a thin ice layer that is
suspended within a carbon grid. Most micrographs contain

1A note on terminology: by a ’pick’ we mean the (x, y)-coordinate of the
center of a particle on a micrograph. The procedure of ’picking a micrograph’
means generating picks for a given micrograph. This could be done either
manually or automatically, resulting in either ’manual picks’ or ’auto picks’.



Fig. 1. An example of a raw transmission electron micrograph with a
connected carbon region running diagonally and horizontally across the image.
The manually picked particles (surrounded by black squares) are all outside
the carbon strip. Note that the low signal-to-noise ratio makes it hard to see
the particles.

part of the carbon grid as well. See Figure 1 for an example.
There are also particles on top of the carbon grid, but they tend
to overlap, and are never manually picked. To ensure that no
auto picks are placed here either, a mask is created in this first
step to remove the carbon grid.

Figure 2 shows the steps used to generate such a mask.
The first step is to perform edge detection, for which the
approach introduced in [9] is used. The resulting edge map is
thresholded to produce a binary edge map (see Figure 2(b)).
The edges are then dilated with a disk to ensure that there are
no gaps (Figure 2(c)). Each connected component of the part
without edges is considered as a possible desired area (i.e. an
area where particles should be picked). For example, in Figure
2(c) there are 5 such connected components. But the one in
the center corresponds to a carbon strip, and should therefore
be removed. This is done by calculating the convexity ratio

η =
area(C)

area(C)
(1)

for each component C, where C denotes the convex hull of
C, that is, the smallest convex set containing C. Components
for which η is below a fixed threshold are removed, and the
final mask is formed using the remaining components (Figure
2(d)).

This step requires a number of parameters to be set, such as
the threshold for the edge map, the radius of the dilation disk
and the convexity ratio. The final mask is not very sensitive
to these parameters, and therefore they were just set manually.
The same set of parameter values works for all micrographs.

(a) Original image (b) Edge detection

(c) Thicker edges (d) Final mask

Fig. 2. The steps involved in creating a mask. The original micrograph is
downsampled to increase the signal-to-noise ratio (2(a)). Edges are detected
using a pair of oriented energy filters (2(b)). The edges are thickened (2(c))
and connected components corresponding to carbon strips are detected and
removed (2(d)).

B. Normalization

The thickness of the ice layer varies across the micrograph,
and between micrographs. As a result, the local mean value of
the recorded intensity varies gradually across the image. For
example, in Figure 2(a) the image becomes lighter towards the
bottom-right corner. For the subsequent denoising algorithm it
is necessary that the image noise has roughly constant statisti-
cal properties across the image, and between different images.
The purpose of this step is to normalize the micrograph in such
a way that for any patch with size of the order of a particle,
the mean and variance of the intensity values will be roughly
0 and 1 respectively.

The micrograph I is normalised by using a low-pass filter
to estimate the local mean, and dividing by this mean field.
That is,

I ′ =
I

I ∗ fσ
(2)

where fσ is a Gaussian with standard deviation σ and ∗
denotes the convolution operator. The resulting image is then
shifted and scaled to have the desired mean and variance
values:

I ′′ =
I ′ −mean(I ′)

std(I ′)
. (3)

Note that for the raw image, the variation in mean value
across the image is much smaller than the mean value itself,
hence we are not introducing significant spatial correlations
between the new variance and the original mean value.

The latter method can easily be adapted to take the mask
into account. The resulting image is normalised in the desired
areas, and zero elsewhere. The denoising algorithm detailed
below doesn’t work if there are large areas with zero value.
Therefore we fill these regions with i.i.d. Gaussian noise.



C. Denoising

The micrographs are denoised using coherence enhancing
diffusion, as described in [10]. This is an extension of the
diffusion filter introduced in [11]. There, the image f(x) is
considered as the initial condition of a continuous sequence
of images u(x, t):

u(x, 0) = f(x). (4)

The evolution of u is governed by the differential equation

∂tu = div(g(|∇u|2)∇u) (5)

where one possible choice for g is given by

g(|∇u|2) =
1

1 + |∇u|2/λ2
. (6)

If g were just a constant function, the filter would be equivalent
to convolving with a Gaussian (see [10] for details). The effect
of g can be understood as decreasing the standard deviation
of this Gaussian kernel in the vicinity of strong edges, thereby
preserving such edges.

One shortcoming of the method is that the noise around
edges is not diffused. To address this, the scalar g is replaced
by a 2 × 2-matrix D called the diffusion tensor, making the
filter anisotropic:

∂tu = div(D · ∇u) (7)

The matrix D is chosen so that diffusion is enhanced parallel
to strong edges, but suppressed perpendicular to them. See
[10] for details.

Figure 3 shows the effect of applying the filter on a
micrograph and on an individual particle.

A very similar denoising algorithm was previously used for
denoising cryo-EM images in [6].

D. Picking

In the denoised images, the particles are clearly visible
(see Figure 3). A binary image is created by thresholding
the denoised image with a fixed threshold value of 0.25. The
connected components are then identified as being potential
particles. Those connected components lying near the edge of
the micrograph are removed. For each connected component,
the pick is placed at the centroid of the component. This turns
out to be very close to where the manual pick is placed in
most cases.

The above approach yields a large number of false posi-
tives. Most of these false positives have a round shape, and
correspond to proteasomes seen from the top, along their
main axis. Hence they are referred to as top-views. Some of
them are complete particles, but others are partially assembled
proteasomes, such as ones with either one or both caps
missing. They are usually not picked manually, and picking
results are greatly improved by identifying them and removing
them from the list of possible picks.

To decrease the number of false positives, a template-
matching approach is used to identify the top-views in the

(a) Original micrograph (b) Original particle

(c) Denoised micrograph (d) Denoised particle

(e) Thresholded micrograph (f) Thresholded particle

Fig. 3. Example of entire micrograph (on the left) and individual particle
(on the right) during different steps of the algorithm. The first row shows the
original micrograph and particle. The second row shows the effect of applying
coherence enhancing diffusion to the images in the first row. The final row
shows the result of thresholding the images from the second row.

denoised image so that they can be removed from the con-
nected components afterwards. In particular, the top-views
from a single denoised micrograph were picked (in an au-
tomatic fashion) and averaged to form a single template. This
template is never changed. For subsequent denoised images,
the template is cross-correlated with the image, and all peaks
above a fixed threshold are annotated as top-views. Figure 4
shows an example of a micrograph and the top-views that were
identified in this way.

The purpose of this step is to generate a set of picks that
includes almost all the particles, but perhaps several non-
particles as well. The undesired particles can then be removed
in subsequent steps. In our experiments, around 90% of all
true particles were usually included among the particles picked
in this step. This means that 10% of the true particles will
certainly not be part of the final set of picks. On the other



Fig. 4. Picking and removing top views. The components inside red squares
were identified as top-views, while the blue squares indicate the positions
of manually picked particles. The components that are left after removing
the top-views will be picked automaticallly. Note that the auto picks include
almost all the manual picks, and that many top-views are removed, none of
which were manually picked.

hand, the number of false positives was typically about 2 to 3
times higher than the number of true particles. Most of them
are removed in the later classification step.

E. Alignment

1) Motivation: After the picking step, we have a list of
picks that contain many false positives. In the next step we
train a classifier to get rid of them. The classifier is trained
on a small set of picks from micrographs for which we have
manual picks available.

A classifier requires some way of comparing picks, for
instance by defining a way of computing distances between
them. A simple way to do this, is to cut out a patch cor-
responding to the size of a particle around each pick, and
computing the Euclidean norm between such patches.

In our case, the patches should not be cut out from the
denoised images, but rather from the original micrographs.
This is because some information is lost during denoising: a
true particle and a false particle might look the same after
being denoised, and thus be indistinguishable to a classifier.

The patches that are cut out from the original micrographs
are normalised to account for variations in the mean and vari-
ance that are due to noise. After normalization, the distances
between given pairs of patches are rather similar. Only when
one patch has been shifted and rotated so that its particle is
aligned to the particle contained in the other patch, does the
Euclidean distance decrease measurably. Therefore there is an
alignment step needed before classification to simplify the job
of the classifier.

2) Alignment procedure: The alignment step also makes
use of a training set. This would typically be the same (or a
subset of the) set used for training the classifier. The picked
particles from this set that correspond to manually picked
particles are then aligned using a reference-based alignment
procedure. During each step, each particle is aligned to the
reference, and at the end of the step the reference is replaced
by the average of all the aligned particles. Repeating this a few
times yields a single template representing a typical particle.

This template is then used to align the training set. Each
particle in the training set is aligned individually to the
template, and the template is not changed in the process.

F. Classification

In this step a classifier is trained using a small number of
training samples, and then applied to the aligned particles in
order to remove as many false positives as possible.

A random forest with the binary features introduced in [7]
is used as a classifier. Each such binary feature is described
by an ordered pair of rectangles inside the image patch, R1

and R2, where each rectangle

Ri = {cx1, cy1, cx2, cy2} (8)

requires 4 integers to determine its upper-left and lower-right
corners. The feature is evaluated on an image patch

s = {x1, x2, . . . , xn} (9)

by comparing the average intensity under the two rectangles:

f(s,R1, R2) = Θ

(∑
i|xi∈R1

xi∑
i|xi∈R1

1
−
∑
i|xi∈R2

xi∑
i|xi∈R2

1

)
(10)

where Θ(·) is true for positive values, and false otherwise. In
other words, the binary feature returns true (or positive) if the
average intensity under the first rectangle is greater than that
in the second rectangle, and false (negative) otherwise.

A binary random forest classifier consists of a collection of
decision trees, each of which is a binary classifier in its own
right. Each decision tree has a binary feature as described
above at each internal node, and a class assignment (positive
or negative) attached to each leaf. A new patch is classified by
starting at the root node, and recursively applying the binary
feature at the current node to decide which branch to follow.
When a leaf is reached, the class assignment of that leaf is the
output of the given decision tree on the patch. The decisions
of all the trees are combined using a majority vote.

Figure 5 shows an example of a binary feature. The feature
is determined by the red and blue rectangles. It will tend to
return true for horizontally aligned particles, since the expected
average intensity within the first (red) rectangle is positive due
to the presence of the particle, while the expected average
intensity within the second (blue) rectangle is zero (due to
normalisation). For non-particles, it might return true only half
the time. This means that it has some ability to discriminate
between true particles and non-particles. A decision tree might
have such a feature at its root, with subsequent features



Fig. 5. An example of a binary feature applied to a particle. The feature is
described by the two rectangles. It returns true if the mean value inside the
red rectangle is higher than the mean value inside the blue rectangle. For this
specific particle it returns true, because particles tend to have higher intensity
values than their surroundings.

TABLE I
NUMBER OF PICKS IN TRAINING AND TESTING SETS.

Manual
picks

Auto picks before
classification

Auto picks after
classification

Training set 968 2242 -
Testing set 9863 25728 9276

focusing on smaller differences between particles and non-
particles.

A decision tree is trained by randomly generating 1000
possible features at each node, and then selecting the one that
is most able to discriminate between true and false particles.
For more details, see [7].

III. RESULTS

Cryo-electron micrographs of the 26S proteasome recorded
at the Department of Molecular Structural Biology, MPI of
Biochemistry, Martinsried ([5]) were used to test the algo-
rithm. A set of 220 micrographs was used. The first 20
micrographs were used for training the classifier, and the last
200 for testing. Table I shows the number of particles in the
training and testing set. The number of auto picks before
classification refers to the number of picks obtained by the
algorithm after the picking step and after the top views have
been removed, but before the particles have been aligned. The
number of auto picks after classification is the final number
of picks produced by the algorithm. From Table I it can be
seen that before classification there are many more auto picks
(25728) than true (manual) picks, but that the final number of
picks (9276) is only slightly less than the number of particles
picked manually (9863).

TABLE II
FALSE POSITIVE AND FALSE NEGATIVE RATES BEFORE AND AFTER

CLASSIFICATION.

Before classification After classification
FPR 65.8% 26.0%
FNR 10.8% 30.4%

Table II summarizes the accuracy of the algorithm. If pm
and pa denote the number of particles picked manually and
automatically respectively, and pma is the number of particles
picked both manually and automatically, then the false positive
rate (FPR) and false negative rate (FNR) are defined as

FPR =
pa − pma

pa
(11)

and
FNR =

pm − pma
pm

. (12)

The overall performance of the algorithm is described by the
final column. This shows that roughly one out of every four
picks produced by the algorithm was not picked manually,
and that about one third of all manual picks are missed by
the algorithm. Note that a smaller false positive rate should
result in a more accurate reconstruction, while a smaller
false negative rate means that more micrographs need to be
processed.

IV. DISCUSSION AND CONCLUSIONS

We described an algorithm for automatically picking parti-
cles of the 26S proteasome from cryo-electron micrographs.
The algorithm achieves false positive and false negative rates
of 26.0% and 30.4% respectively on the test set. It’s difficult
to put these results into perspective, and to decide what is
good enough. One criterion could be to compare the picking
results of different human pickers on the same dataset to each
other. This was done in [2], yielding false positive and negative
rates of 11.7% and 2.3% respectively. However, in [2] it is
noted that the KLH dataset used in that comparative study
represents a relatively easy dataset in particle selection. A
similar comparison for the particle considered in this paper
suggests that false positive/negative rates in the range 20% to
30% would be reasonable (results not shown).

One possible advantage of the proposed algorithm is that the
picking step produces a set of all possibly interesting particles.
Among these are incompletely assembled proteasomes. Such
incomplete particles are not manually picked, and therefore
discarded by the subsequent classification step. But should
reconstruction algorithms improve to the point where they can
make use of such incomplete particles as well, then they could
make use of this intermediate output of the algorithm.

Several steps of the algorithm require a few thresholds to
be set. They were all set manually, but then fixed for all the
data. The parameters were not optimised to achieve the best
results, as the results are not very sensitive to any of them.
For applying the same algorithm to micrographs of the same
particle generated by another electron microscope, it is likely
that some thresholds would need adjustment.

For creating an autopicking algorithm for another particle,
especially the denoising and classification steps of this al-
gorithm might prove useful. Many other denoising methods
were tested and found not to perform very well due to the
low signal-to-noise ratio. Non-linear diffusion, and coherence
enhancing diffusion in particular appear to be one of the few
approaches that yielded good results.



The random forest classifier is also well-suited to this
application. Its features involve the sum of intensities over
(usually large) rectangles, canceling out the noise, and thereby
making the features more insensitive to noise. The proper
normalisation of particles is a complicated matter (see [12]
or [13]), but this classifier is insensitive to normalisation as
long as the scaling factor is positive. It is also fast and easy
to train, and very fast to evaluate.
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