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2Chair for Information Technology, Montanuniversität Leoben, Austria
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Abstract

This document provides supplementary material to the paper “PAC-Bayesian
Analysis of Contextual Bandits”. It contains proofs of Lemmas 1, 2, and 3 from
the paper and some technical details on the experiment.

1 Proof of Lemma 1

Proof. We have
∆̂(ρexpt ) =

∑
s

p(s)
∑
a

ρexpt (a|s)∆̂t(a, s).

The inner sum accepts the form∑
a

ρexpt (a|s)∆̂t(a, s) =

∑
a ∆̂t(a, s)ρ̃t(a)eγtR̂t(a,s)∑

a ρ̃t(a)eγtR̂t(a,s)
=

∑
a ∆̂t(a, s)ρ̃t(a)e−γt∆̂t(a,s)∑

a ρ̃t(a)e−γt∆̂t(a,s)
,

where the second equality is by multiplication of nominator and denominator by e−γtR̂t(a
∗(s),s).

The lemma follows from Lemma 6 below and the observation that ∆̂t(a
∗(s), s) = 0 for all s.

Lemma 6. Let x1 = 0 and x2, . . . , xn be (n − 1) arbitrary numbers. Let p(xi) be a distribution
over xi-s, such that p(x1) = p > 0. For any α > 0 and n ≥ 2:∑n

i=1 p(xi)xie
−αxi∑n

i=1 p(xi)e
−αxi

≤ 1

α
ln

1

p
.

Proof. By symmetry, the maximum is achieved when all xi-s (except x1) are equal. Let x be the
common value of xi-s. Then:∑n

i=1 p(xi)xie
−αxi∑n

i=1 p(xi)e
−αxi

=
(1− p)xe−αx

p+ (1− p)e−αx
.

The lemma then follows from Lemma 7.

Lemma 7. For any x ≥ 0, 0 < p ≤ 1, and α > 0:

(1− p)xe−αx

p+ (1− p)e−αx
≤ 1

α
ln

1

p
.
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Proof. We apply change of variables y = e−αx. Then x = 1
α ln 1

y . By substitution:

(1− p)xe−αx

p+ (1− p)e−αx
=

1

α
·

(1− p)y ln 1
y

p+ (1− p)y
≤ 1

α
ln

1

p
,

where the last inequality is by Lemma 8.

Lemma 8. For any positive y and 0 < p ≤ 1:

(1− p)y ln 1
y

p+ (1− p)y
≤ ln

1

p

Proof. By taking Taylor’s expansion of ln z around z = 1
p we have:

ln z ≤ ln
1

p
+ p(z − 1

p
) = ln

1

p
+ pz − 1.

Thus:

(1− p)y ln 1
y

p+ (1− p)y
=

1−p
p y ln 1

y

1 + 1−p
p y

≤
1−p
p y(ln 1

p + p
y − 1)

1 + 1−p
p y

≤
1−p
p y ln 1

p + (1− p)
1 + 1−p

p y

≤
( 1−p
p y + 1) ln 1

p
1−p
p y + 1

= ln
1

p
,

where the last inequality follows from the fact that 1− p ≤ ln 1
p .

2 Proof of Lemma 2

Proof.

R(ρ)−R(ρ̃) =
∑
s

p(s)
∑
a

(ρ(a|s)− ρ̃(a|s))R(a, s)

≤ 1

2

∑
s

p(s)
∑
a

|ρ(a|s)− ρ̃(a|s)| (1)

=
1

2

∑
s

p(s)
∑
a

|ρ(a|s)− (1−Kε)ρ(a|s)− ε|

=
1

2

∑
s

p(s)
∑
a

|Kερ(a|s)− ε|

≤ 1

2
Kε
∑
s

p(s)
∑
a

ρ(a|s) +
1

2
Kε

= Kε.

In (1) we used the fact that 0 ≤ R(a, s) ≤ 1 and ρ and ρ̃ are probability distributions.
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3 Proof of Lemma 3

Proof.

Vt(a) =

t∑
τ=1

E[([Rh
∗(Sτ ),Sτ
τ −Rh(Sτ ),Sτ

τ ]− [R(h∗)−R(h)])2|Tτ−1]

=

(
t∑

τ=1

E[(Rh
∗(Sτ ),Sτ
τ −Rh(Sτ ),Sτ

τ )2|Tτ−1]

)
− t∆(h)2 (2)

≤

(
t∑

τ=1

(
πτ (h(Sτ )|Sτ )

πτ (h(Sτ )|Sτ )2
+

πτ (h∗(Sτ )|Sτ )

πτ (h∗(Sτ )|Sτ )2

))
(3)

=

(
t∑

τ=1

(
1

πτ (h(Sτ )|Sτ )
+

1

πτ (h∗(Sτ )|Sτ )

))

≤ 2t

εt
, (4)

where (2) is due to the fact that E[R
h(Sτ ),Sτ
τ |Tτ−1] = R(h(Sτ ), Sτ ), (3) is due to the fact that

Rt ≤ 1, and (4) is due to the fact that 1
πτ (a|St) ≤

1
εt

for all a and 1 ≤ τ ≤ t.

4 Experiment Details

We note that precise calculation of the mutual information Iρexpt
(S;A) requires calculation of the

marginal distribution over actions corresponding to ρexpt , which would require iteration through
all the states and take O(NK) computation time per round. The reason is that the learning rate γt
changes at each iteration and, hence, ρexpt (a, s) changes at each iteration for all a and s. However, for
the prediction we only need to know ρexpt (a|St) for the observed state St. This allows us to reduce
the computation time of the algorithm to O(K) operations per round. For the mutual information
Iρexpt

(S;A) we used the running average approximation:

Iρexpt
(S;A) =

N − 1

N
Iρexpt−1

(S;A) +
1

N
KL(ρexpt (a|St)‖ρ̃expt (a)),

where KL is calculated only for the observed state St and, therefore, the computation time is O(K)
operations per round. We note that since ρ̃expt (a) is not a precise marginal distribution of 1

N ρ̃
exp

t (a|s),
the above estimate on average upper bounds the true mutual information, but, of course, is not
completely precise.

Regarding the parameters of the algorithm: we took εt = (Kt)−1/3, as suggested by our analysis.

In order to make the contribution of the second term in the regret decomposition comparable to the
first term we should have taken

γt =
ln 1

εt+1

1 + ct

√
tεt

2(e− 2)(NIρexpt−1
(S;A) +K(lnN + lnK) + 2 ln(t+ 1) + ln 2mt

δ )

≤
ln 1

εt+1

1 + ct

√
tεt

2(e− 2)(K(lnN + lnK) + 2 ln(t+ 1) + ln 2mt
δ )

.

However, empirically we found that it is better to set

γt =
ln 1

εt+1

1 + ct

√
t

2(e− 2)(K(lnN + lnK) + 2 ln(t+ 1) + ln 2mt
δ )

,

which was inspired by the tighter bound on the cumulative variance, Vt(ρexpt ) ≤ 2Kt, which we
believe to be true, but did not prove yet.
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