PAC-Bayesian Analysis of Contextual Bandits Supplementary Material

Yevgeny Seldin ${ }^{1,4}$ Peter Auer ${ }^{2}$ François Laviolette ${ }^{3}$ John Shawe-Taylor ${ }^{4}$ Ronald Ortner ${ }^{2}$
${ }^{1}$ Max Planck Institute for Intelligent Systems, Tübingen, Germany
${ }^{2}$ Chair for Information Technology, Montanuniversität Leoben, Austria
${ }^{3}$ Département d'informatique, Université Laval, Québec, Canada
${ }^{4}$ Department of Computer Science, University College London, UK
seldin@tuebingen.mpg.de, \{auer, ronald.ortner\}@unileoben.ac.at, francois.laviolette@ift.ulaval.ca, jst@cs.ucl.ac.uk

Abstract

This document provides supplementary material to the paper "PAC-Bayesian Analysis of Contextual Bandits". It contains proofs of Lemmas 1, 2, and 3 from the paper and some technical details on the experiment.

1 Proof of Lemma 1

Proof. We have

$$
\hat{\Delta}\left(\rho_{t}^{e x p}\right)=\sum_{s} p(s) \sum_{a} \rho_{t}^{e x p}(a \mid s) \hat{\Delta}_{t}(a, s)
$$

The inner sum accepts the form

$$
\sum_{a} \rho_{t}^{e x p}(a \mid s) \hat{\Delta}_{t}(a, s)=\frac{\sum_{a} \hat{\Delta}_{t}(a, s) \tilde{\rho}_{t}(a) e^{\gamma_{t} \hat{R}_{t}(a, s)}}{\sum_{a} \tilde{\rho}_{t}(a) e^{\gamma_{t} \hat{R}_{t}(a, s)}}=\frac{\sum_{a} \hat{\Delta}_{t}(a, s) \tilde{\rho}_{t}(a) e^{-\gamma_{t} \hat{\Delta}_{t}(a, s)}}{\sum_{a} \tilde{\rho}_{t}(a) e^{-\gamma_{t} \hat{\Delta}_{t}(a, s)}}
$$

where the second equality is by multiplication of nominator and denominator by $e^{-\gamma_{t} \hat{R}_{t}\left(a^{*}(s), s\right)}$.
The lemma follows from Lemma 6 below and the observation that $\hat{\Delta}_{t}\left(a^{*}(s), s\right)=0$ for all s.
Lemma 6. Let $x_{1}=0$ and x_{2}, \ldots, x_{n} be $(n-1)$ arbitrary numbers. Let $p\left(x_{i}\right)$ be a distribution over $x_{i}-s$, such that $p\left(x_{1}\right)=p>0$. For any $\alpha>0$ and $n \geq 2$:

$$
\frac{\sum_{i=1}^{n} p\left(x_{i}\right) x_{i} e^{-\alpha x_{i}}}{\sum_{i=1}^{n} p\left(x_{i}\right) e^{-\alpha x_{i}}} \leq \frac{1}{\alpha} \ln \frac{1}{p}
$$

Proof. By symmetry, the maximum is achieved when all x_{i}-s (except x_{1}) are equal. Let x be the common value of x_{i}-s. Then:

$$
\frac{\sum_{i=1}^{n} p\left(x_{i}\right) x_{i} e^{-\alpha x_{i}}}{\sum_{i=1}^{n} p\left(x_{i}\right) e^{-\alpha x_{i}}}=\frac{(1-p) x e^{-\alpha x}}{p+(1-p) e^{-\alpha x}} .
$$

The lemma then follows from Lemma 7.
Lemma 7. For any $x \geq 0,0<p \leq 1$, and $\alpha>0$:

$$
\frac{(1-p) x e^{-\alpha x}}{p+(1-p) e^{-\alpha x}} \leq \frac{1}{\alpha} \ln \frac{1}{p}
$$

Proof. We apply change of variables $y=e^{-\alpha x}$. Then $x=\frac{1}{\alpha} \ln \frac{1}{y}$. By substitution:

$$
\frac{(1-p) x e^{-\alpha x}}{p+(1-p) e^{-\alpha x}}=\frac{1}{\alpha} \cdot \frac{(1-p) y \ln \frac{1}{y}}{p+(1-p) y} \leq \frac{1}{\alpha} \ln \frac{1}{p}
$$

where the last inequality is by Lemma 8 .
Lemma 8. For any positive y and $0<p \leq 1$:

$$
\frac{(1-p) y \ln \frac{1}{y}}{p+(1-p) y} \leq \ln \frac{1}{p}
$$

Proof. By taking Taylor's expansion of $\ln z$ around $z=\frac{1}{p}$ we have:

$$
\ln z \leq \ln \frac{1}{p}+p\left(z-\frac{1}{p}\right)=\ln \frac{1}{p}+p z-1
$$

Thus:

$$
\begin{aligned}
\frac{(1-p) y \ln \frac{1}{y}}{p+(1-p) y} & =\frac{\frac{1-p}{p} y \ln \frac{1}{y}}{1+\frac{1-p}{p} y} \\
& \leq \frac{\frac{1-p}{p} y\left(\ln \frac{1}{p}+\frac{p}{y}-1\right)}{1+\frac{1-p}{p} y} \\
& \leq \frac{\frac{1-p}{p} y \ln \frac{1}{p}+(1-p)}{1+\frac{1-p}{p} y} \\
& \leq \frac{\left(\frac{1-p}{p} y+1\right) \ln \frac{1}{p}}{\frac{1-p}{p} y+1} \\
& =\ln \frac{1}{p}
\end{aligned}
$$

where the last inequality follows from the fact that $1-p \leq \ln \frac{1}{p}$.

2 Proof of Lemma 2

Proof.

$$
\begin{aligned}
R(\rho)-R(\tilde{\rho}) & =\sum_{s} p(s) \sum_{a}(\rho(a \mid s)-\tilde{\rho}(a \mid s)) R(a, s) \\
& \leq \frac{1}{2} \sum_{s} p(s) \sum_{a}|\rho(a \mid s)-\tilde{\rho}(a \mid s)| \\
& =\frac{1}{2} \sum_{s} p(s) \sum_{a}|\rho(a \mid s)-(1-K \varepsilon) \rho(a \mid s)-\varepsilon| \\
& =\frac{1}{2} \sum_{s} p(s) \sum_{a}|K \varepsilon \rho(a \mid s)-\varepsilon| \\
& \leq \frac{1}{2} K \varepsilon \sum_{s} p(s) \sum_{a} \rho(a \mid s)+\frac{1}{2} K \varepsilon \\
& =K \varepsilon
\end{aligned}
$$

In (1) we used the fact that $0 \leq R(a, s) \leq 1$ and ρ and $\tilde{\rho}$ are probability distributions.

3 Proof of Lemma 3

Proof.

$$
\begin{align*}
V_{t}(a) & =\sum_{\tau=1}^{t} \mathbb{E}\left[\left(\left[R_{\tau}^{h^{*}\left(S_{\tau}\right), S_{\tau}}-R_{\tau}^{h\left(S_{\tau}\right), S_{\tau}}\right]-\left[R\left(h^{*}\right)-R(h)\right]\right)^{2} \mid \mathcal{T}_{\tau-1}\right] \\
& =\left(\sum _ { \tau = 1 } ^ { t } \mathbb { E } \left[\left(R_{\tau}^{h^{*}\left(S_{\tau}\right), S_{\tau}}-R_{\tau}^{\left.\left.\left.h\left(S_{\tau}\right), S_{\tau}\right)^{2} \mid \mathcal{T}_{\tau-1}\right]\right)-t \Delta(h)^{2}}\right.\right.\right. \tag{2}\\
& \leq\left(\sum_{\tau=1}^{t}\left(\frac{\pi_{\tau}\left(h\left(S_{\tau}\right) \mid S_{\tau}\right)}{\pi_{\tau}\left(h\left(S_{\tau}\right) \mid S_{\tau}\right)^{2}}+\frac{\pi_{\tau}\left(h^{*}\left(S_{\tau}\right) \mid S_{\tau}\right)}{\pi_{\tau}\left(h^{*}\left(S_{\tau}\right) \mid S_{\tau}\right)^{2}}\right)\right) \tag{3}\\
& =\left(\sum_{\tau=1}^{t}\left(\frac{1}{\pi_{\tau}\left(h\left(S_{\tau}\right) \mid S_{\tau}\right)}+\frac{1}{\pi_{\tau}\left(h^{*}\left(S_{\tau}\right) \mid S_{\tau}\right)}\right)\right) \\
& \leq \frac{2 t}{\varepsilon_{t}} \tag{4}
\end{align*}
$$

where (2) is due to the fact that $\mathbb{E}\left[R_{\tau}^{h\left(S_{\tau}\right), S_{\tau}} \mid \mathcal{T}_{\tau-1}\right]=R\left(h\left(S_{\tau}\right), S_{\tau}\right)$, (3) is due to the fact that $R_{t} \leq 1$, and (4) is due to the fact that $\frac{1}{\pi_{\tau}\left(a \mid S_{t}\right)} \leq \frac{1}{\varepsilon_{t}}$ for all a and $1 \leq \tau \leq t$.

4 Experiment Details

We note that precise calculation of the mutual information $I_{\rho_{t} \exp }(S ; A)$ requires calculation of the marginal distribution over actions corresponding to $\rho_{t}^{e x p}$, which would require iteration through all the states and take $O(N K)$ computation time per round. The reason is that the learning rate γ_{t} changes at each iteration and, hence, $\rho_{t}^{\text {exp }}(a, s)$ changes at each iteration for all a and s. However, for the prediction we only need to know $\rho_{t}^{\text {exp }}\left(a \mid S_{t}\right)$ for the observed state S_{t}. This allows us to reduce the computation time of the algorithm to $O(K)$ operations per round. For the mutual information $I_{\rho_{t}^{e x p}}(S ; A)$ we used the running average approximation:

$$
I_{\rho_{t}^{e x p}}^{\exp }(S ; A)=\frac{N-1}{N} I_{\rho_{t-1}^{e x p}}(S ; A)+\frac{1}{N} K L\left(\rho_{t}^{e x p}\left(a \mid S_{t}\right) \| \tilde{\rho}_{t}^{e x p}(a)\right),
$$

where KL is calculated only for the observed state S_{t} and, therefore, the computation time is $O(K)$ operations per round. We note that since $\tilde{\rho}_{t}^{\text {exp }}(a)$ is not a precise marginal distribution of $\frac{1}{N} \tilde{\rho}_{t}^{\text {exp }}(a \mid s)$, the above estimate on average upper bounds the true mutual information, but, of course, is not completely precise.
Regarding the parameters of the algorithm: we took $\varepsilon_{t}=(K t)^{-1 / 3}$, as suggested by our analysis.
In order to make the contribution of the second term in the regret decomposition comparable to the first term we should have taken

$$
\begin{aligned}
\gamma_{t} & =\frac{\ln \frac{1}{\epsilon_{t+1}}}{1+c_{t}} \sqrt{\frac{t \varepsilon_{t}}{2(e-2)\left(N I_{\rho_{t-1} \text { exp }}(S ; A)+K(\ln N+\ln K)+2 \ln (t+1)+\ln \frac{2 m_{t}}{\delta}\right)}} \\
& \leq \frac{\ln \frac{1}{\epsilon_{t+1}}}{1+c_{t}} \sqrt{\frac{t \varepsilon_{t}}{2(e-2)\left(K(\ln N+\ln K)+2 \ln (t+1)+\ln \frac{2 m_{t}}{\delta}\right)}} .
\end{aligned}
$$

However, empirically we found that it is better to set

$$
\gamma_{t}=\frac{\ln \frac{1}{\epsilon_{t+1}}}{1+c_{t}} \sqrt{\frac{t}{2(e-2)\left(K(\ln N+\ln K)+2 \ln (t+1)+\ln \frac{2 m_{t}}{\delta}\right)}}
$$

which was inspired by the tighter bound on the cumulative variance, $V_{t}\left(\rho_{t}^{e x p}\right) \leq 2 K t$, which we believe to be true, but did not prove yet.

