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Causal Inference on Discrete Data using
Additive Noise Models

Jonas Peters, Dominik Janzing and Bernhard Schölkopf

Abstract— Inferring the causal structure of a set of random
variables from a finite sample of the joint distribution is an
important problem in science. The case of two random variables
is particularly challenging since no (conditional) independences
can be exploited. Recent methods that are based on additive
noise models suggest the following principle: Whenever thejoint
distribution P

(X,Y ) admits such a model in one direction, e.g.
Y = f(X)+N, N ⊥⊥ X, but does not admit the reversed model
X = g(Y ) + Ñ, Ñ ⊥⊥ Y , one infers the former direction to be
causal (i.e.X → Y ). Up to now these approaches only deal with
continuous variables. In many situations, however, the variables
of interest are discrete or even have only finitely many states.
In this work we extend the notion of additive noise models to
these cases. We prove that it almost never occurs that additive
noise models can be fit in both directions. We further propose
an efficient algorithm that is able to perform this way of causal
inference on finite samples of discrete variables. We show that
the algorithm works both on synthetic and real data sets.

Index Terms— Causal Inference, Regression, Graphical Models

I. I NTRODUCTION

Inferring causal relations between random variables from ob-
served data is a challenging task if no controlled randomized
experiments are available. So-called constraint-based approaches
to causal discovery (Pearl, 2000; Spirtes et al., 2000) select among
all directed acyclic graphs (DAGs) those that satisfy the Markov
condition and the faithfulness assumption. These conditions re-
late the graph structure to the observed distribution: Roughly
speaking, the graph isMarkov if all (conditional) independences
imposed by the graph structure can be found in the distribution
and faithful if all (conditional) independences that can be found
in the distribution are imposed by the graph structure. Those
constraint-based approaches are unable to distinguish among
causal DAGs that impose the same independences (Markov
equivalence classes, Verma and Pearl (1991)). In particular, it is
impossible to distinguish betweenX → Y andY → X.
More recently, several methods have been suggested that do not
only use conditional independences, but also more sophisticated
properties of the joint distribution. We explain these ideas for
the two variable setting. Shimizu et al. (2006); Kano & Shimizu
(2003) use models

Y = f(X) +N , (1)

where f is a linear function andN is additive noise that is
independent of the hypothetical causeX. This is an example
for an additive noise model (ANM) fromX to Y . Apart from
trivial cases,P(X,Y ) can only admit such a model fromX to
Y and fromY to X in the bivariate Gaussian case. We say the
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model is identifiable in the “generic case”. (In the remainder of
the article we will use “genericness” in the meaning of “there are
almost no exceptions”; for the precise statement we refer tothe
cited literature.) They propose the following inference principle
to distinguish between cause and effect: Whenever such an ANM
exists in one direction but not in the other, one infers the former
to be the causal direction.
Janzing & Steudel (2010) give theoretical support for this prin-
ciple using the concept of Kolmogorov complexity. Peters etal.
(2009) apply the concept of ANMs to ARMA time series in order
to detect whether a sample of a time series has been reversed.
Hoyer et al. (2009); Mooij et al. (2009) generalize the method
to non-linear functionsf and showed that generic models of
this form generate joint distributions that do not admit such an
ANM from Y to X (here, genericness means that the triplef

and the densities ofX and noiseN do not satisfy a very specific
differential equation). Zhang & Hyvarinen (2009) augment the
model by applying an invertible non-linear functiong to the
right-hand side of equation (1) and still obtain identifiability in
the generic case. Janzing et al. (2009) make first steps towards
identifying hidden common causes. All these proposals, however,
were only designed for continuous variablesX andY .

For discrete variables, Sun et al. (2008) propose a method to
measure the complexity of causal models via a Hilbert space norm
of the logarithm of conditional densities and prefer modelsthat
induce smaller norms. Sun et al. (2006) fit joint distributions of
cause and effect with conditional densities whose logarithm is a
second order polynomial (up to the log-partition function)and
show that this often makes causal directions identifiable when
some or all variables are discrete. For discrete variables,several
Bayesian approaches (Heckerman et al., 1999) are also applicable,
but the construction of good priors are challenging and often the
latter are designed such that Markov equivalent DAGs still remain
indistinguishable.

Here, we extend the model in equation (1) to the discrete case
in two different ways: (A) If X and Y take values inZ (the
support may be finite, though) ANMs can be defined analogously
to the continuous case. (B) If X andY take only finitely many
values we can also define ANMs by interpreting the+ sign as an
addition in the finite ringZ/mZ. We propose to apply this method
to variables where the cyclic structure is appropriate (e.g., the
direction of the wind after discretization, day of the year,season).
Remark 1 in section II-B describes how the second model can also
be applied to structureless sets; this may be helpful whenever the
random variables are categorical and when these categoriesdo not
inherit any kind of ordering (e.g. different treatments of organisms
or phenotypes). In the following article we refer to (A) by integer
modelsand to (B) by cyclic models.

We adopt the causal inference method from above: If there
is an ANM from X to Y , but not vice versa, we propose that
X is causingY (more details in section II). Such a procedure is
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sensible if there are only few instances, in which there are ANMs
in both directions. If, for example, all ANMs fromX to Y also
allow for an ANM from Y to X, we could not draw any causal
conclusions at all. In section III we show that thesereversible
cases are very rare and thereby answer this theoretical question.

For a practical causal inference method we have to test whether
the data admit an ANM. We propose an efficient procedure that
proved to work well in practice (section IV).

Note that a shortened version of this work has already been
published by Peters et al. (2010). In addition, here we coverthe
“cyclic case” (denoted above byB), provide proofs and more
experiments, investigate the binary case separately, analyze the
run-time of the algorithm empirically and give an outlook to
generalizations of discrete ANMs.

The paper is organized as follows: In section II we extend
the concept of ANMs to discrete random variables and show the
corresponding identifiability results in section III. In section IV
we introduce an efficient algorithm for causal inference on finite
data, for which we show experimental results in section V.
Section VI contains the proofs and section VII our conclusions.

II. A DDITIVE NOISE MODELS FORDISCRETEVARIABLES

As it has been proposed for the continuous case by Shimizu
et al. (2006); Hoyer et al. (2009); Zhang & Hyvarinen (2009)
we assume the following causal principle to hold throughoutthe
remainder of this article:

Causal Inference Principle (for discrete random variables)
WheneverY satisfies an additive noise model with respect toX

and not vice versa then we inferX to be the cause forY , and
we writeX → Y .

Note that whenever there is no additive noise model in any
direction (which may well happen) the method remains inconclu-
sive and other causal inference methods should be tried.

There are two reasons why we do not expect the true data
generating process to allow an ANMonly in the wrong causal
direction: (1) We hope that nature prefers “simple” mechanisms
(Occam’s Razor). (2) Janzing & Steudel (2010) use the concept of
Kolmogorov complexity to show that this can only be the case if
the cause distributionp(cause) and the mechanismp(effect|cause)
are matched in a precise way, whereas we rather expect input and
mechanism to be most often “independent” (although there might
exist cases, for which this assumption is violated).

Now we precisely explain what we mean by an additive noise
model in the case of discrete random variables. For simplicity we
denotep(x) = P(X = x), q(y) = P(Y = y), n(l) = P(N = l)

and ñ(k) = P(Ñ = k) and suppX is defined assuppX :=

{k | p(k) > 0}.

A. Integer Models

Assume thatX andY are two random variables taking values
in Z (their distributions may have finite support). We say that
there is an additive noise model (ANM) fromX to Y if there is
a functionf : Z → Z and a noise variableN such that the joint
distributionP

(X,Y ) allows to write

Y = f(X) +N andN ⊥⊥ X .

Furthermore we requiren(0) ≥ n(j) for all j 6= 0. This does
not restrict the model class, but is due to a freedom we have in
choosingf andN : If Y = f(X)+N, N ⊥⊥ X, then we can always

construct a new functionfj , such thatY = fj(X)+Nj , Nj ⊥⊥ X

by choosingfj(i) = f(i) + j andnj(i) = n(i+ j).
Such an ANM is calledreversibleif there is also an ANM from
Y to X, i.e. if it satisfies ANMs in both directions.

B. Cyclic Models

We can extend ANMs to random variables which inherit a
cyclic structure and therefore take values in a periodic domain.
Random variables are usually defined as measurable maps froma
probability space into the real numbers. Thus, we first make the
following definition

Definition 1: Let (Ω,F ,P) be a probability space. A function
X : Ω → Z/mZ is called anm-cyclic random variable if
X−1(k) ∈ F ∀k ∈ Z/mZ. All other concepts of probability
theory (like distributions and expectations) can be constructed
analogously to the well-known case, in whichX takes values in
{0, . . . ,m− 1}.

Let X and Y be m- and m̃-cyclic random variables, respec-
tively. We say thatY satisfies an ANM fromX to Y if there is a
function f : Z/mZ → Z/m̃Z and anm̃-cyclic noiseN such that

Y = f(X) +N andN ⊥⊥ X .

Again we requiren(0) ≥ n(j) for all j 6= 0 and call this model
reversible if there is a functiong : Z/m̃Z → Z/mZ and an
m-cyclic noiseÑ such thatX = g(Y ) + Ñ and Ñ ⊥⊥ Y.

Remark 1:Cyclic models are not restricted to random vari-
ables that take integers as values: Assume thatX and Y take
values inA := {a1, . . . , am} andB := {b1, . . . , bm̃}, which are
structureless sets. Considering functionsf : A → B and models
with P(Y = bj |X = ai) = p if bj = f(ai) and (1− p)/(m̃− 1)

otherwise, is a special case of an ANM: Impose any cyclic
structure on the data and use the additive noiseP(N = 0) =

p,P(N = l) = (1− p)/(m̃− 1) for l 6= 0.

C. Relations

The following two remarks are essential in order to understand
the relationship between integer and cyclic models: (1) The
difference between these two models manifests in the target
domain. If we consider an ANM fromX to Y it is important
whether we put integer or cyclic constraints onY (and thus on
N). It does not make a difference, however, whether we consider
the regressorX to be cyclic (with a cycle larger than#suppX)
or not. The independence constraint remains the same. (2) In
the finite case ANMs with cyclic constraints are more general
than integer models: Assume there is an ANMY = f(X) +N ,
where all variables are taken to be non-cyclic andY takes values
betweenk andl, say. Then we still have an ANMY = f(X)+N

if we regardY to be l− k+1-cyclic becauseN mod (l− k+1)

remains independent ofX. It is possible, however, thatN 6⊥⊥ X,
but N mod (l − k + 1) ⊥⊥ X (as shown in Example 2).

III. I DENTIFIABILITY

Whether or not there is an ANM betweenX and Y

only depends on the form of the joint distributionP(X,Y ).
Let A be the set of all possible joint distributions andF
its subset that allows an additive noise model fromX to
Y in the “forward direction”, whereasB allows an ANM
in the backward direction fromY to X (see Figure 1).
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Fig. 1. How large isF ∩ B?

Some trivial examples like
p(0) = 1, n(0) = 1 andf(0) = 0

immediately show that there
are joint distributions allowing
ANMs in both directions,
meaningF ∩ B 6= ∅. But how
large is this intersection? The
proposed method would not be useful if we find out thatF and
B are almost the same sets. Then in most cases ANMs can be
fit either in both directions or in none. Both, for ANMs with
integer constraints and with cyclic constraints we identify the
intersectionF ∩ B and show that it is indeed a very small set.
Imagine, we observe data from a natural process that allows an
ANM in the causal direction. If we are “unlucky” and the data
generating process happens to be inF ∩B, our method does not
give wrong results, but answers “I do not know the answer”.

A. Integer Models

1) Y or X has finite support:First we assume that either the
support ofX or the support ofY is finite. This already covers
most applications. Figure 2 (the dots indicate a probability greater
than 0) shows an example of a joint distribution that allows an
ANM from X to Y , but not fromY to X. This can be seen
easily at the “corners”X = 1 andX = 7: Whatever we choose
for g(0) andg(4), the distribution ofÑ |Y = 0 is supported only
by one point, whereas̃N |Y = 4 is supported by3 points. Thus
Ñ cannot be independent ofY . Figure 3 shows a (rather non-
generic) example that allows an ANM in both directions if we
choosep(ai) = 1

36 , p(bi) = 2
36 for i = 1, . . . , 4 and p(ai) =

2
36 , p(bi) =

4
36 for i = 5, . . . , 8. We prove the following

Theorem 1:Assume eitherX or Y has finite support. An ANM
X → Y is reversible⇐⇒ there exists a disjoint decomposition
⋃l

i=0 Ci = suppX, such that a) - c) are satisfied:

a) TheCis are shifted versions of each other

∀i∃di ≥ 0 : Ci = C0 + di

andf is piecewise constant:f |Ci
≡ ci ∀i.

b) The probability distributions on theCis are shifted and
scaled versions of each other with the same shift constant as
above: Forx ∈ Ci, P(X = x) satisfies

P(X = x) = P(X = x− di) ·
P(X ∈ Ci)

P(X ∈ C0)
.

c) The setsci + suppN := {ci + h : n(h) > 0} are disjoint.
(Note that such a decomposition satisfying the same criteria also
exists forsuppY by symmetry.) In the example of Figure 3 allai
belong toC0, all bj to C1 andd1 = 1. As for the other theorems
of this section the proof is provided in section VI. Its main point
is based on the asymmetric effects of the “corners” of the joint
distribution. In order to allow for an infinite support ofX (or Y )
we will thus generalize this concept of “corners”.
Theorem 1 provides a full characterization of cases that allow
for an ANM in both directions. Each of the conditions is very
restrictive by itself, all conditions together describe a very small
class of models: in almost all cases the direction of the model is
identifiable. We have the following corollary:

Corollary 2: Consider a discrete ANM fromX, which takes
valuesx1, . . . , xm (m > 1), to Y with a non-constant functionf
(otherwiseX andY are independent). Let the noiseN take values
from Nmin to Nmax and put any prior measure on the parameters

n(k) for k = Nmin, . . . , Nmax and p(xk), k = 1, . . . ,m that
is absolutely continuous to the Lebesgue measure. If further
mini,j∈{1,...,m} : i6=j f(xi)− f(xj) ≤ Nmax −Nmin we have the
following statement: Only a parameter set of measure0 admits
an ANM from Y to X.

X

Y

2 4 6 8

2

4

6

8

Fig. 2. This joint distri-
bution satisfies an ANM
only from X to Y .

X

Y

a1 a2 a3 a4 a5 a6 a7 a8
b1 b2 b3 b4 b5 b6 b7 b8

c0

c1

Fig. 3. Only carefully chosen parameters
allow ANMs in both directions. (Radii corre-
spond to probability values.)

2) X and Y have infinite support:
Theorem 3:Consider an ANMX → Y where bothX andY

have infinite support. We distinguish between two cases
a) N has compact support: ∃m, l ∈ Z, s.t. suppN = [m, l].

Assume there is an ANM fromX to Y and f does not
have infinitely many infinite sets, on which it is constant.
Then we have the following equivalence: The model is
reversible if and only if there exists a disjoint decomposition
⋃∞

i=0 Ci = suppX that satisfies the same conditions as in
Theorem 1.

b) N has entire Z as support: P(N = k) > 0∀ k ∈ Z.
SupposeX andY are dependent and there is a reversible
ANM X → Y . Fix anym ∈ Z. If f , PN and p(k) for all
k ≥ m are known, then all other valuesp(k) for k < m

are determined. That means even a small fraction of the
parameters determine the remaining parameters.

Note that the first case is again a complete characterizationof
all instances of a joint distribution, an ANM in both directions is
conform with. The second case does not yield a complete char-
acterization, but shows how restricted the choice of a distribution
P

X is (givenf andP
N ) that yields a reversible ANM.

B. Cyclic Models

AssumeY = f(X) + N with N ⊥⊥ X. We will show that
in the generic case the model is still not reversible, meaning
there is nog and Ñ , such thatX = g(Y ) + Ñ with Ñ ⊥⊥ Y .
However, as mentioned in section II-C, in finite domains this
model class is larger than the class of integer models. We will see
that correspondingly also the number of reversible cases increases.

Note that the modelY = f(X) +N is reversible if and only
if there is a functiong, such that

p(x) · n
(

y − f(x)
)

= q(y) · ñ
(

x− g(y)
)

∀x, y , (2)

where q(y) =
∑

x̃ p(x̃)n(y − f(x̃)) and ñ(a) =

p(g(ỹ) + a) · n(ỹ − f(g(ỹ) + a))/q(ỹ) ∀ỹ : q(ỹ) 6= 0.

1) Non-Identifiable Cases:First, we give three (characteristic)
examples of ANMs that are not identifiable. This restricts the
class of situations in which identifiability can be expected. Figure
4 shows instances of Examples1 and2.

Example 1: IndependentX andY always admit an ANM from
X to Y and fromY to X. We therefore have:
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(i) If Y = f(X) + N and f(k) = const for all k : p(k) 6= 0,
then the model is reversible.

(ii) If Y = f(X) +N for a uniformly distributed noiseN , then
the model is reversible.
Proof: In both cases itX and Y are independent. Thus,

X = g(Y ) +X with g ≡ 0 is a backward model.
Example 2: If Y = f(X) +N for a bijective and affinef and

uniformly distributedX, then the model is reversible.
Proof: SinceX is uniform andf(x) = ax+ b is bijective,

Y is uniform, too. Forg(y) = f−1(y) and ñ(k) = n(b− f(k)) =

n(y − f(g(y) + k)) equation (2) is satisfied.
Example 3:We give two more examples of non-identifiable

cases that show why an if-and-only-if characterization as in
Theorem 1 is hard to obtain:
(i) Figure 5 (left) shows an example, where the sets on which

f is constant neither satisfy condition c) nor are they shifted
versions of each other.

(ii) The same holds for Figure 5 (right), this time even satisfying
the additional constraint thatP(N = 0) > P(N = k)∀k 6=

0. Here,X is not uniformly distributed, either.

X

Y

42 6

2

4

X

Y

2 4

2

4

6

X

Y

42 6

2

4

6

Fig. 4. These joint distributions allow ANMs in both directions. They are
instances of Examples1(i), 1(ii) and2 (from left to right).

X

Y

42 6 8

2

4

X

Y

2

2

Fig. 5. These joint distributions allow ANMs in both directions. They are
instances of Examples 3 (i) (left) and (ii) (right).

2) Identifiability Results:The counter examples from above
already show that cyclic models are in some aspect more difficult
than integer models and we thus do not provide a full characteri-
zation of all reversible cases as we have done in the integer case.
Nevertheless, we provide necessary conditions for reversibility,
which is sufficient for our purpose.

Usually the distributionn(l) (similar for p(k)) is determined
by m̃ − 1 free parameters. As long as the sum remains smaller
than 1, there are no (equality) constraints for the values of
n(0), . . . , n(m̃−2). Onlyn(m̃−1) is determined by

∑m̃−1
l=0 n(l) =

1. We show that in the case of a reversible ANM the number
of free parameters of the marginaln(l) is heavily reduced. The
exact number of constraints depends on the possible backward
functionsg, but can be bounded from below by 2. Furthermore
the proof shows that a “dependence” between values ofp andn

is introduced. Both of these constraints are considered to lead to
non-generic models. That means for anygenericchoice ofp and

n we can only have an ANM in one direction.
Note further that(#suppX ·#suppN) is the number of points
(x, y) that have probability greater than0. It must be possible
to distribute these points equally to all points from#suppY in
order to allow a backward ANM. Thus we have the necessary
condition #suppY | (#suppX · #suppN). (Here,a | b denotes
“a divides b”, which we write if ∃z ∈ Z : b = z · a, and should
not be confused with conditioning on a random variable.)

Theorem 4:AssumeY = f(X) + N, N ⊥⊥ X with non-
uniform X (m-cyclic), Y (m̃-cyclic) andN (m̃-cyclic) and non-
constantf .
(i) There can only be an ANM from Y to X if

#suppY | (#suppX ·#suppN).
(ii) Assume that#suppX = m,#suppN = m̃. If there is an

ANM from Y toX, at least one additional equality constraint
is introduced to the choice of eitherp or n.

Again, the proof can be found in section VI.

C. Special Case:X and Y binary

We now investigate a special case, whereX and Y are
constrained to take binary values with probabilitiesa := P(X =

0, Y = 0), b := P(X = 1, Y = 0), c := P(X = 0, Y = 1) and
d := P(X = 1, Y = 1). For this case we can compute a full
characterization of reversible and irreversible ANMs. Therefore
we assume the variables to be non-degenerate (i.e.0 < P(X =

0) = a + c < 1 and0 < P(Y = 0) = a+ b < 1) and we use the
following Lemma:

Lemma 5:Let N and X be non-degenerate binary variables.
ThenN ⊥⊥ X ⇔ P(N = 1 |X = 0) = P(N = 1 |X = 1).
The integer model is not very informative. The only two pos-
sibilities to form an ANM with integer constraints is to choose
deterministic noise or a constant functionf . Clearly, both cases
lead to reversible ANMs. More interestingly, the results for the
cyclic case are non-trivial:

1) f is constant.
Here, X and Y are independent and the ANM is thus
reversible (see Example 1(i)). Lemma 5 implies thatX ⊥⊥

N if and only if c
a+c = d

b+d . And this holds if and only if

ad = bc

(Here, neither of the parameters can be zero.)
2) f is non-constant.

Without loss of generality letf be the identity function
(we can always add an additive shift). This time we have
X ⊥⊥ N if and only if c

a+c = b
b+d , which is equivalent to

ab = cd

still assuminga+ c 6= 0 6= b+ d.

Using symmetry it follows that there is an ANM fromY to X if
and only if we have eitherac = bd or ad = bc.
We thus summarize (recall that onlyb and c or a and d can be
zero at the same time):

• ab = cd or ad = bc leads to an ANM fromX to Y .
• ac = bd or ad = bc leads to an ANM fromY to X.
• a = d andb = c (this implies uniformX andY ) or a = d =

0 or b = c = 0 or ad = bc leads to a reversible ANM.

This also fits with the theoretical result of Proposition 6 in
section VI: for bijectivef andg (which is the only case that does
not lead to independentX andY ) only uniformly distributedX
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andY lead to reversible ANMs. Usingd = 1− a− b− c one can
plot these conditions as surfaces (see Figures 6 and 7).
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Fig. 6. ForX 6⊥⊥ Y (both binary) these plots visualize the constraints of
the joint distributionP(X,Y ) in order to allow for an ANM: either fromX
to Y (ab = cd, left) or from Y to X (ac = bd, right). Note that the both
surface are rotated versions of each other: thec-axis on the left corresponds
to theb-axis on the right.
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Fig. 7. These pictures characterize the joint distributions P
(X,Y ) that allow

an ANM in both directions. This is fulfilled if both variablesare independent
(ad = bc, left) or (right) if P(X,Y ) lies on the intersection of the ANMX→Y -
surface (black) and the ANMY →X -surface (red) from Figure 6:b = c = 0
corresponds to thea-axis, a = d = 0 and thusc = 1 − b to the straight
line between(0, 0, 1) and (0, 1, 0) anda = d, b = c (ergo c = 0.5− a) is
represented by the intersection line between(0.5, 0, 0) and (0, 0.5, 0.5).

D. Mixed Models

With the results developed in the last two sections we can cover
even models with mixed constraints if both variables have finite
support. For the precise conditions of “usually” see Theorem 4
in section III-B.

Y = f(X) +N, N ⊥⊥ X; X cyclic, Y,N non-cyclic
II−C
⇒ Y = f(X) +N, N ⊥⊥ X; X cyclic, Y,N m̃-cyclic

Thm4
⇒ Usually there is no ANMX = g(Y ) + Ñ, Ñ ⊥⊥ Y,

X, Ñ cyclic, Y m̃-cyclic
II−C
⇒ Usually there is no ANMX = g(Y ) + Ñ, Ñ ⊥⊥ Y,

X, Ñ cyclic, Y non-cyclic

And, conversely:

Y = f(X) +N, N ⊥⊥ X; Y,N cyclic, X non-cyclic
II−C
⇒ Y = f(X) +N, N ⊥⊥ X; Y,N cyclic, X m-cyclic

Thm4
⇒ Usually there is no ANMX = g(Y ) + Ñ, Ñ ⊥⊥ Y,

Y cyclic, X, Ñ m-cyclic
II−C
⇒ Usually there is no ANMX = g(Y ) + Ñ, Ñ ⊥⊥ Y,

Y cyclic, X, Ñ non-cyclic

IV. PRACTICAL METHOD FORCAUSAL INFERENCE

Based on our theoretical findings in section III we propose the
following method for causal inference (see Hoyer et al. (2009)
for the continuous case):

1) Given: iid data of the joint distributionP(X,Y ).
2) Regression ofY = f(X) +N leads to residualŝN ,

regression ofX = g(Y ) + Ñ leads to residualŝ̃N .
3) If N̂ ⊥⊥ X and ˆ̃N 6⊥⊥ Y, infer “ X is causingY ” ,

if N̂ 6⊥⊥ X and ˆ̃N ⊥⊥ Y, infer “ Y is causingX” ,
if N̂ 6⊥⊥ X and ˆ̃N 6⊥⊥ Y, infer “I don’t know (bad model)”,
if N̂ ⊥⊥ X and ˆ̃N ⊥⊥ Y, infer “I don’t know (both directions
possible)”.

(The identifiability results show that the last case will almost never
occur.) This procedure requires discrete methods for regression
and independence testing and we now discuss our choices. Code
is available on the first author’s homepage.

A. Regression Method

Given a finite number of iid samples of the joint distribution
P

(X,Y ) we denote the sample distribution bŷP(X,Y ). In contin-
uous regression we usually minimize a sum consisting of a loss
function (like anℓ2-error) and a regularization term that prevents
us from overfitting.

Regularizationof the regression function is not necessary in
the discrete case for large sampling. Since we may observe many
different values ofY for one specificX value there is no risk
in overfitting. This introduces further difficulties compared to
continuous regression since in principle we now should try all
possible functions fromX to Y and compare the corresponding
values of the loss function.

Minimizing a loss functionlike an ℓp error is not fully appro-
priate for our purpose, either: after regression we evaluate the
proposed function by checking the independence of the residuals.
Thus we should choose the function that makes the residuals as
independent as possible (see also Mooij et al., 2009). Therefore
we consider a dependence measure (DM) between residuals and
regressor as loss function, which we denote byDM(N̂ ,X).

Two problems remain:
(1) Assume the differentX valuesx1 < . . . < xn occur in the
sample distributionP̂(X,Y ). Then one only has to evaluate the
regression function on these values. More problematic is the range
of the function. Since we can only deal with finite numbers, we
have to restrict the range to a finite set. No matter how large we
choose this set, it is always possible that the resulting function
class does not contain the true function. But since we used the
freedom of choosing an additive constant to requiren(0) > n(k)

and ñ(0) > ñ(k) for all k 6= 0, we will always find a sample
(Xi, Yi) with Yi = f(Xi) if the sample size is large enough. Thus
it would be reasonable to consider allY values that occur together
with X = x as a potential value forf(x). To even further reduce
the impact of this problem we regardall values betweenminY

and max Y as possible values forf . And if there are too few
samples withX = xj and the true valuef(xj) is not included in
{min Y,min Y +1, . . . ,maxY } we may not find the true function
f , but the few “wrong” residuals do not have an impact on the
independence. In practice the following second deliberation is
more relevant than the first one:
(2) Even if all values of the true functionf are one of them :=

#{min Y,min Y +1, . . . ,max Y } considered values, the problem
of checking all possible functions is not tractable: Ifn = 20 and
m = 16 there are1620 = 280 possible functions. We thus propose
the following heuristic but efficient procedure:
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Start with an initial functionf (0) that maps every valuex to
they which occurred (together with thisx) most often under ally.
Iteratively we then update each function value separately.Keeping
all other function valuesf(x̃) with x̃ 6= x fixed we choosef(x)
to be the value that results in the “most independent” residuals.
This is done for allx and repeated up toJ times as shown in
Algorithm 1. Recall that we requiredn(0) ≥ n(k) for all k.

Algorithm 1 Discrete Regression with Dependence Minimization

1: Input: P̂(X,Y )

2: Output: f

3: f (0)(xi) := argmax yP̂(X = xi, Y = y)

4: repeat
5: j = j + 1

6: for i in a random orderingdo
7: f (j)(xi) := argmin yDM

(

X, Y − f
(j−1)
xi 7→y (X)

)

8: end for
9: until residualsY − f (j)(X) =: N̂ ⊥⊥ X or f (j) does not

change anymoreor j = J .

In the algorithm,f (j−1)
xi 7→y (X) means that we use the current

version off (j−1) but change the function valuef(xi) to be y.
If the argmax in the initialization step is not unique we take the
largest possibley. We can even accelerate the iteration step if we
do not consider all possible values{min Y, . . . ,maxY }, but only
the five that give the highest values ofP̂(X = xi, Y = y) instead.

Note that the regression method performs coordinate descent
in a discrete space andDM

(

X,Y − f (j)(X)
)

is monotonically
decreasing (and bounded from below). Sincef (j) is changed
only if the dependence measure can be strictly decreased and
furthermore the search space is finite, the algorithm converges
towards a local optimum. Although it is not obvious whyf (j)

should converge towards theglobal minimum, the experimental
results will show that the method works very reliably in practice.

B. Independence Test and Dependence Measure

Assume we are given joint iid samples(Wi, Zi) of the discrete
variablesW and Z and we want to test whetherW and Z are
independent. In our implementation we use Pearson’sχ2 test
(e.g. Agresti (2002)), which is most commonly used. It com-
putes the difference between observed frequencies and expected
frequencies in the contingency table. The test statistic isknown
to converge towards aχ2 distribution, which is taken as an
approximation even in the finite sample case. In the case of very
few samples Cochran (1954) suggests to use this approximation
only if more than80% of the expected counts are larger than
5 (“Cochran’s condition”). Otherwise, Fisher’s exact test(e.g.
Agresti (2002)) could be used. In the remainder of the article
we denote the significance level of the test byα.

For a dependence measureDM we use thep-value (times−1)
of the independence test. If thep-value is smaller than10−16,
however, it is regarded as0 and we take the test statistic instead.

V. EXPERIMENTS

Simulated Data
We first investigate the performance of our method on synthetic
data sets. Therefore we simulate data from ANMs and check
whether the method is able to rediscover the true model. We

showed in section III that only very few examples allow a
reversible ANM. Data sets A1 and B1 support these theoretical
results. We simulate data from many randomly chosen models.
All models that allow an ANM in both directions are instances
of our examples from above (without exception). Data sets A2
and B2 show how well our method performs for small data
size and models that are close to non-identifiability. Data set
A3 empirically investigates the run-time performance of our
regression method and compares it with a brute-force search. Data
set A4 show that two consecutive ANMsZ = g(f(X)+N1)+N2

do not necessarily follow a single ANM. Data set B3 shows that
the method does not favor one direction if the supports ofX and
Y are of different size. All experiments are available with the
code.

A. Integer Models

Data set A1 (identifiability).
With equal probability we sample from a model with

(1) suppX ⊂ {1, . . . , 4}

(2) suppX ⊂ {1, . . . , 6}
(3) X binomial with parameters(n, p)
(4) X geometric with parameterp
(5) X hypergeometric with parameters(M,K,N)

(6) X Poisson with parameterλ or
(7) X negative binomial with parameters(n, p).

For each model the parameters of these distributions are chosen
randomly (n,M,K,N uniformly between1 and 40, 40,M,K,
respectively, p uniformly between 0.1 and 0.9 and λ uni-
formly between1 and 10), the functions are random (f(x) ∼

U({−7,−6, . . . , 7}) is uniform for eachx ∈ suppX) and the
noise distribution is random, too (S ∼ U({1, 2, 3, 4, 5}) deter-
mines the supportsuppN = {−S, . . . , S} andP

N is chosen by
drawing#suppN − 1 numbers in[0, 1] and taking differences).
This way we also constructPX in cases (1) and (2).

We then consider1000 different models. For each model
we sample1000 data points and apply our algorithm with a
signficance level ofα = 0.05 for the independence test. The
results given in Table I show that the method works well on
almost all simulated data sets. The algorithm outputs “bad fit in
both directions” in roughly5% of all cases, which corresponds to
the chosen test level. The model is non-identifiable only in5.3%

of the cases, all of which are instances either with a constant
function f (2.3%) and thus independentX andY or with “non-
overlapping noise” (3.0%), that is:f(x)+ suppN are disjoint for
x ∈ X, which means#Ci = 1 (see Theorem 1). This empirically
supports Corollary 2 and therefore our proposition that themodel
is identifiable in the generic case.

TABLE I

DATA SET A1. THE TRUE DIRECTION IS ALMOST ALWAYS IDENTIFIED.

correct dir.: 89.9% both dir. poss.: 5.3%
wrong dir.: 0% bad fit in both dir.: 4.8%

Data set A2 (close to non-identifiable).
For this data set we sample from the modelY = f(X) +N with
n(−2) = 0.2, n(0) = 0.5, n(2) = 0.3, and f(−3) = f(1) = 1,
f(−1) = f(3) = 2. Depending on the parameterr we sampleX
from p(−3) = 0.1 + r/2, p(−1) = 0.3 − r/2, p(1) = 0.15 − r/2,
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p(3) = 0.45 + r/2. For each value of the parameterr ranging
between−0.2 ≤ r ≤ 0.2 we use 100 different data sets, each
of which has the size 400. Theorem 1 shows that the ANM is
reversible if and only ifr = 0. Thus, our algorithm does not
decide whenr ≈ 0. Figure 8 shows that the algorithm identifies
the correct direction forr 6= 0. Again, the test level ofα = 5%

introduces indecisiveness of roughly the same size, which can
be seen for|r| ≥ 0.15.
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Fig. 8. Data set A2. Proportion of correct and false results of the algorithm
depending on the distribution ofN . The model is not identifiable forr = 0.
If r differs significantly from0 almost all decisions are correct.

Data set A3 (fast regression).
The space of all functions from the domain ofX to the domain
of Y is growing rapidly in their sizes: If#suppX = m and
#suppY = m̃ then the spaceF := {f : suppX → suppY } has
m̃m elements. If one of the variables has infinite support the setis
even infinitely large (although this does not happen for any finite
data set). It is clear that it is infeasible to optimize the regression
criterion by trying every single function. As mentioned before one
can argue that with high probability it is enough to only check the
functions that correspond to an empirical mass that is greater than
0 (again assumingn(0) > 0): E.g. it is likely thatP̂(X = −2, Y =

f(−2)) > 0. We call these functions “empirically supported”.
But even this approach is often infeasible. In this experiment we
compare the number of possible functions (with values between
min Y andmaxY ), the number of empirically supported functions
and the number of functions that were checked by the algorithm
we proposed in section IV-A in order to find the true function
(which it always did).

We simulate from the modelY = round(0.5 ·X2)+N for two
different noise distributions:n1(−2) = n1(2) = 0.05, n1(k) = 0.3

for |k| ≤ 1 andn2(−3) = n2(3) = 0.05, n2(k) = 0.18 for |k| ≤ 2.
Each time we simulate a uniformly distributedX with i values
between− i−1

2 and i−1
2 for i = 3, 5, . . . , 19. For each noise-

regressor distribution we simulated 100 data sets. ForN1 and
i = 9, for example, there are(11− (−2))9 ≈ 1.1 · 1010 possible
functions in total and59 ≈ 2.0 · 106 functions with positive
empirical support. Our method only checked107 ± 25 functions
before termination. The highest number of functions checked by
the algorithm is645 ± 220. The full results are shown in Figure
9.

Data set A4 (limitation of ANMs).
One can imagine that (for a non-linearg) two consecutive ANMs
Z = g(f(X)+N1)+N2 (which could come from a causal chain
X → Y → Z with unobservedY ) do not necessarily allow an
ANM from X to Z. This means that if a relevant intermediate
variable is missing, our method would output “I do not know (bad
model fit)” and therefore does not propose a causal direction. We
hope, however, that even in this situation the joint distribution is
often reasonably “closer” to ANM in the correct direction than to
an ANM in the wrong direction. We demonstrate this effect on
simulated data: We use300 samples,suppX ⊂ {1, . . . , 8} and
suppN ⊂ {−3, . . . , 3} (the distributions are chosen as in Data
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Fig. 9. Data set A3. The size of the whole function space, the number of
all functions with empirical support and the number of functions checked by
our algorithm (including standard deviation) is shown forN1 (left) andN2

(right). An extensive search would be intractable in these cases. The proposed
algorithm is very efficient and still finds the correct function for all data sets.

set A1), simulated100 data sets and obtained the results in Table
II. Clearly, the effect vanishes if one either increase the sample
size (to2000, say) or one includes even more ANMs betweenX

andZ (results not shown).

TABLE II

DATA SET A4. SINCE THE DISTRIBUTION DOES NOT ALLOW ANANM,

THE METHOD DOES NOT DECIDE IN MOST CASES. STILL , THE METHOD

SEEMS TO PREFER ANANM IN THE CORRECT DIRECTION.

p-value 5 · 10−2 1 · 10−2 1 · 10−3 1 · 10−4

correct dir.: 18% 24% 34% 35%
wrong dir.: 5% 4% 2% 5%

both dir. poss.: 2% 18% 27% 36%
bad fit in both dir.: 75% 54% 37% 24%

B. Cyclic Models

Data set B1 (identifiability).
For the three combinations(m,m̃) ∈ {(3, 3), (3, 5), (5, 3)} we
consider 1000 different models each: As in Data Set A1 we
randomly choose a functionf 6= const, PX andP

N . For each
model we sample 2000 data points and apply our algorithm with
a significance threshold ofα = 0.05. The results given in Table
III show that the method works well on almost all simulated
data sets. The algorithm outputs “bad fit in both directions”in
roughly 5% of all cases, which corresponds to the chosen test
level. The model is non-identifiable only in very few cases. All
of these cases are instances of the counter examples 1(i), 1(ii)
and 2 from above. Due to space limitations we only show6

(out of 11) in Table IV. This experiment further supports our
theoretical result that the model is identifiable in the generic case.

TABLE III

DATA SET B1. THE ALGORITHM IDENTIFIES THE TRUE CAUSAL

DIRECTION IN ALMOST ALL CASES. ONLY IN FEW CASESANM S CAN BE

FIT IN BOTH DIRECTIONS, WHICH SUPPORTS THE RESULTS OF SECTIONIII.

(m, m̃) (3, 3) (3, 5) (5, 3)

correct dir.: 95.3% 94.8% 95.5%
wrong dir.: 0.0% 0.0% 0.0%

both dir. poss.: 0.8% 0.0% 0.3%
bad fit in both dir.: 3.9% 5.2% 4.2%



8

TABLE IV

DATA SET B1. THIS TABLE SHOWS ONLY SOME CASES, WHERE ANM S IN BOTH DIRECTIONS WERE POSSIBLE. ALL CASES (INCLUDING THE ONES NOT

SHOWN) ARE INSTANCES OF THE EXAMPLES GIVEN IN SECTIONIII.

Functionf p(1), . . . , p(m) n(1), . . . , n(m̃) Instance of Example

0 7→ 0, 1 7→ 2, 2 7→ 0 0.83, 0.00, 0.17 0.15, 0.26, 0.58 1(i)

0 7→ 2, 1 7→ 0, 2 7→ 2 0.34, 0.53, 0.14 0.33, 0.34, 0.33 1(ii)

0 7→ 2, 1 7→ 1, 2 7→ 0 0.33, 0.33, 0.34 0.85, 0.14, 0.02 2

0 7→ 1, 1 7→ 0, 2 7→ 1, 3 7→ 0, 4 7→ 0 0.20, 0.47, 0.14, 0.08, 0.12 0.33, 0.33, 0.34 1(ii)

0 7→ 1, 1 7→ 0, 2 7→ 1, 3 7→ 1, 4 7→ 1 0.55, 0.01, 0.03, 0.26, 0.14 0.37, 0.32, 0.31 1(i)

0 7→ 0, 1 7→ 1, 2 7→ 0, 3 7→ 1, 4 7→ 2 0.03, 0.71, 0.06, 0.10, 0.32 0.32, 0.34, 0.34 1(ii)

Data set B2 (close to non-identifiable).
For this data set letm = m̃ = 4 and f = id. The distribution
of p is given by:p(0) = 0.6, p(1) = 0.1, p(2) = 0.1, p(3) = 0.2.
Depending on the parameter12 ≤ r ≤ 4

5 we sample the noise
N from the distributionn(0) = n(1) = r/2, n(2) = n(3) =

1/2− r/2. That meansN is uniformly distributed if and only if
r = 1

2 . Thus, the model is not identifiable if and only if the noise
distribution is uniform, i.e. if and only ifr = 1

2 .
(This can be seen as follows: SinceP(X = 0, Y = 0) > P(X =

k, Y = 0) and P(X = 0, Y = 1) > P(X = k, Y = 1)

for all k 6= 0 we have thatg(0) = 0 = g(1), still assuming
P(Ñ = 0) > P(Ñ = k) for all k 6= 0. Thus g is not injective.
The special form off leads to one cycle of length4, which
implies that uniformly distributedN is a necessary condition for
a reversible ANM, see Proposition 7 in section VI. Example1(ii)

shows that it is also sufficient.)
The further r is away from 1

2 , the easier it should be for
our method to detect the true direction. For each value of the
parameterr we use100 different samples, each of which has size
200. This time we choose a significance level of0.01, which still
leads to no wrong decisions (see Figure 10).

For r = 0.58 and r = 0.68 (indicated by the arrows in
Figure 10) we further investigate the dependence on the datasize.
Clearly, r = 0.58 results in a model that is still very close to
non-identifiability and thus we need more data to perform well,
whereas forr = 0.68 the performance increase quickly with the
sample size (see Figure 11). Note that non-identifiable models
lead to very few, but not to wrong decisions.
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Fig. 10. Data set B2. Proportion
of correct results of the algorithm
depending on the distribution ofN .
The model is not identifiable forr =
0.5. If r differs significantly from0.5
the algorithm makes a decisions in
almost all cases.
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Fig. 11. Data Set B2. Forr = 0.58
(top) and r = 0.68 (bottom) the
performance depending on the data
size is shown. More data is needed
if the true model is close to non-
identifiable (top). In both cases the
performance clearly increases with
the sample size.

Data set B3 (no direction is favored a priori).
Here, we consider two random variables, which supports are very

unequal in size. If we choosem := #X := #suppX = 2 and
m̃ := #Y := #suppY = 10, there are210 = 1024 function from
Y to X , but only 102 = 100 functions fromX to Y; one could
expect the method to favor models fromY to X. We show that
this is not the case.

For m 6= m̃ ∈ {2, 10} and m 6= m̃ ∈ {3, 20} we randomly
choose distributions forX and N and a functionf (as before)
and sampled 500 data points from this forward ANM. Table V
shows that the algorithm detects the true direction in almost all
cases (except if the model is non-identifiable).

TABLE V

DATA SET B3. THE ALGORITHM IDENTIFIES THE TRUE CAUSAL

DIRECTION IN ALMOST ALL CASES. THERE IS NO EVIDENCE THAT THE

ALGORITHM ALWAYS FAVORS ONE DIRECTION.

m m̃ cor. dir. wrong dir. both dir. poss. both dir. bad fit

2 10 97.4% 0% 2.5% 0.1%
10 2 85.2% 0% 14.8% 0.0%
3 20 96.8% 0% 1.6% 1.6%

20 3 95.5% 0% 4.4% 0.1%

Real Data.

Data set 5 (abalone).
We also applied our method to theabalone data set (Nash et al.,
1994) from the UCI Machine Learning Repository (Asuncion
& Newman, 2007). We tested the sexX of the abalone (male
(1), female (2) or infant (0)) against lengthY1, diameterY2 and
heightY3, which are all measured in mm, and have70, 57 and28
different values, respectively. Compared to the number of samples
(up to 4177) we treat this data as being discrete. Because we do
not have information about the underlying continuous length we
have to assume that the data structure has not been destroyedby
the user-specific discretization. We regardX → Y1, X → Y2 and
X → Y3 as being the ground truth, since the sex is probably
causing the size of the abalone, but not vice versa.

Clearly, theY variables do not have a cyclic structure. For
the sex variable, however, the most natural model would be a
structureless set which is contained in the cyclic constraints; for
comparison we try both models forX. Our method is able to
identify 2 out of 3 directions correctly and does not make a
decision in one case. Except for this one exception all of the
backward models are rejected (see Table VI and Figure 12). We
used the test levelα = 5% and the first1000 samples of the data
set.

For this data set the method proposed by (Sun et al., 2006)
returns a slightly higher likelihood for the true causal directions
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TABLE VI

DATA SET 5. THE ALGORITHM IDENTIFIES THE TRUE CAUSAL DIRECTION

IN 2 CASES. ALSO FORY1 THE p-VALUE IS HIGHER FOR THE CORRECT

DIRECTION, BUT FORMALLY THE METHOD DOES NOT MAKE A DECISION.

HERE, WE ASSUMED A NON-CYCLIC STRUCTURE ONY AND TRIED BOTH

CYCLIC AND NON-CYCLIC FORX .

Y1 Y2 Y3

p-valueX→Y 0.17 0.19 0.05
p-valueY →X (non-cyclic) 6 · 10−12 2 · 10−14 < 10−16

p-valueY →X (cyclic) 0.06 4 · 10−3 1 · 10−8

0

0.05

0.1

0.15

X−>Y

X=0                       X=1                      X=2

d
is

tr
ib

u
ti
o
n

o
f 
N

 g
iv

e
n
 X

0

0.5

1

Y=1  Y=3 ...

d
is

tr
ib

u
ti
o
n

o
f 
N

~
 g

iv
e
n
 Y

Fig. 12. Data set 5. ForY3 regressing onX (left) and vice versa (right) the
plot shows the conditional distribution of the fitted noise given the regressor. If
the noise is independent, then the distribution must not depend on the regressor
state. Clearly, this is only the case forX → Y3 (left), which corresponds to
the ground truth.

than for the false directions, but this difference is so small, that
their algorithm does not consider it to be significant.

The abalone data set also shows that working withp-values
requires some care. For synthetic data sets that we simulate
from one fixed model thep-values do not depend on the data
size. In real world data, however, this often is the case. If
the data generating process does not exactly follow the model
we assume, but is reasonable close to it, we get good fits for
moderate data sizes. Only including more and more data reveals
the small difference between process and model, which therefore
leads to smallp-values. Figure 13 shows how thep-values vary
if we include the firstn data points of the abalone data set
(in total: 4177). One can see that although thep-values for
the correct direction decrease they are clearly preferableto the
p-values of the wrong direction. This is a well-known problemin
applied statistics that also has to be considered using our method.
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Fig. 13. Data set 5. The plots showp-values of forward and backward
direction depending on the number of samples we included (nodata point
meansp < 10−16). Thep-value in the correct direction is eventually lower
than any reasonable threshold. Nevertheless we prefer thisdirection since it
is decreasing much more slowly thanp-backward.

Data set 6 (acute inflammations).
The data setacute inflammations (Czerniak & Zarzycki,
2003) from the UCI ML Repository (Asuncion & Newman, 2007)
consists of 120 patients. For each patient we have an indicator
that tells us whether a specific symptom is present or absent,
the temperature and the diagnosis of a medical expert, whether
the patient suffers from acute inflammations of urinary bladder
and/or whether he suffers from acute nephritises. In particular,
we have binary indicators (yes or no)Y1: occurrence of nausea,

Y2: lumbar pain,Y3: urine pushing,Y4: micturition pains andY5:
burning of urethra, itch, swelling of urethra outlet. Furthermore,
the temperatureT is measured in◦C with 0.1◦C accuracy. We
denote the diagnosis byX1 (inflammation of urinary bladder) and
X2 (nephritis of renal pelvis origin).

Since the medical expert’s diagnosis is based only on the
symptoms we expectY → Xi andT → Xi for i = 1, 2 (precisely,
we expect allY ’s andT to becommoncauses forXi, but here,
we only consider the bivariate case and hope that the method
still works). It is crucial that the variablesXi only indicate the
diagnosisand not necessarily the truth. If theXi corresponded to
the true state,Xi would be regarded as the cause andY as the
effect. But in this data set we model the diagnosis behavior of
doctors and not the disease process in the patients.

Note further that except forT all variables are binary and
should be modeled as being cyclic. The results are presentedin
Table VII. SinceT takes44 different values and the sample size
is only 120 we also introduceT∗ := round(T ) that only takes
7 values. This is necessary in order to meet Cochran’s condition
and get reliable results from the independence test. (We areaware
that on the other hand, this may introduce small changes in the
data generating model, but we hope that this has no effect on
the causal reasoning.) The method correctly identifies the causal

TABLE VII

DATA SET 6. THE ALGORITHM IDENTIFIES THE TRUE CAUSAL DIRECTION

IN FOUR CASES(BOLD FONT). IN ALL OTHER CASES THE METHOD DOES

NOT DECIDE. THE ASTERISKS INDICATE, WHERE ONEp-VALUE IS AT

LEAST 10 TIMES LARGER THAN THE OTHER.

p-valX1→Y p-valY →X1
p-valX2→Y p-valY →X2

Y1 0.043 ∗0.368 ∗ 2 · 10−9 ∗0.004 ∗

Y2 0.043 ∗0.368 ∗ 3 · 10−5 3 · 10−5

Y3 7 · 10−7 ∗4 · 10−4 ∗ 0.009 0.009
Y4 0.935 0.935 0.925 0.102
Y5 0.102 ∗0.925 ∗ 0.190 0.190
T 0.556 ∗1.000 ∗ 0.080 ∗0.997 ∗

T∗ 0.013 ∗0.435 ∗ 0.005 ∗0.142 ∗

links Y1 → X1, Y2 → X1, T∗ → X1 andT∗ → X2. In six more
cases the method does not decide. This is relatively often and
may be explained by the small data size, for which it is difficult
to reject a null hypothesis. We therefore assign an asterisks to all
further directions for which the correspondingp-value is at least
10 times larger than the one for the other direction. Furthermore,
we checked that the method does not find any causal link between
the symptom variablesY , as expected.

Here, the method from (Sun et al., 2006) does not find a
significant result in 12 cases (8 cases: exactly the same likelihood
for both directions, 3 cases: small favor of the wrong direction, 1
case: small favor for the correct direction) and it wrongly infers
X2 → T andX2 → T∗ as being significant.

Data set 7 (temperature).
We further applied our method to a data set consisting of9162

daily values of temperature measured in Furtwangen (Germany)1

using the variables temperature (T , in ◦C) and month (M).
ClearlyM inherits a cyclic structure, whereasT does not. Since
the month indicates the position of the earth relatively to the sun,

1B. Janzing contributed this data set. It is one pair onhttps://webdav.
tuebingen.mpg.de/cause-effect/
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which is causing the temperature on earth, we takeM → T as the
ground truth. Here, we aggregate states and use months instead
of days. Again, this is done in order to meet Cochran’s condition;
it is not a scaling problem of our method (if we do not aggregate
the method returnspdays→T = 0.9327 andpT→days = 1.0000).

For 1000 data points both directions are rejected
(p-valueM→T = 3e − 4, p-valueT→M = 1e − 13). Figure
14 shows, however, that again thep-valuesM→T are decreasing
much more slowly thanp-valuesT→M . Using other criteria than
simplep-values we still may prefer this direction and propose it
as the true one.

Fig. 14. Data set 7 and Data set 8. Left: The plot showp-values of forward
and backward direction depending on the number of samples weincluded (no
data point meansp < 10−16). Again we prefer the correct direction since
the p-values are decreasing much more slowly thanp-backward. Right: The
data set does not allow an ANM in any of the two directions. Therefore the
method does not propose an answer.

The method proposed in (Sun et al., 2006) finds a larger
likelihood for the correct direction, but does not considerthis
difference as being significant.

Data set 8 (faces).
This data set (Armann & Bülthoff, 2010) (4499 instances) shows
the limitations of ANMs. Here,X represents a parameter used
to create pictures of artificial faces.X takes values between0
and 14, where 0 corresponds to a female face,14 corresponds
to a face that is rather masculine. All other parameter values
are interpolated. These faces were shown to some subjects who
had to indicate whether they believe this is a male (Y = 1) or
a female (Y = 0) face. In this example we regardX as being
the cause ofY . However, the data do not admit an ANM in any
direction (pX→Y = 0 and pY→X = 0). Thus, the method does
not make a mistake, but does not find the correct answer, either.
On this data set the method in (Sun et al., 2006) again detects
an insignificantly larger likelihood for the correct direction.

It is possible, however, to include generalizations of ANMs
that are capable of modeling this data set. One possibility is to
consider models of the form

Y = f(X +N), N ⊥⊥ X and X = g(Y + Ñ), Ñ ⊥⊥ Y (3)

with some possibly non-invertible functionsf and g (for con-
tinuous data, a similar model has been proposed by Zhang &
Hyvarinen (2009)). In this model the functionf does not only act
on the support ofX, but on an enlarged space. Using a method
that is based on the same ideas described in section IV one is able
to fit this data set quite well (pX→Y = 1.000 and pY→X = 0).
However, we do not have any theoretical identifiability results and
the method has one further drawback: Simulations show that it
often prefers the variable with the smaller support as the effect.

In particular, we can indicate why the model class at the right
hand side of equation (3) gets too large ifX is a binary variable
andY is the discretization of a continuous variable: If one setsg

to be the Heaviside step function defined byg(w) = 1 if w ≥ 0

and g(w) = 0 otherwise, equation (3) leads to (withm(t) the
probability mass function ofM := −Ñ)

P(X = 1|Y = y) = P(y + Ñ ≥ 0) = P(M ≤ y) =

y
∑

t=−∞

m(t).

Hence, every conditional for whichP(X = 1|Y = y) is
monotonously increasing can be described by an ANM. But even
some models that we regard as a natural examples forX → Y

lead to such a monotonously increasing conditional: E.g.P
Y |X=0

andPY |X=1 being discretized Gaussians with equal variance and
different means.

VI. PROOFS

A. Proof of Theorem 1

Proof:

⇒: First we assumesupp Y = {y0, . . . , ym} with y0 < y1 <

. . . < ym. This implies thatNmax := min{n ∈ N |P(N =

n) > 0} is finite. Define the non-empty sets̃Ci :=

suppX|Y = yi, for i = 0, . . . ,m. That means̃C0, . . . , C̃m ⊂

suppX are the smallest sets satisfyingP(X ∈ C̃i | Y =

yi) = 1. For all i, j it follows that

C̃i = C̃j or C̃i ∩ C̃j = ∅ andf |
C̃i

= c̃i = const. (4)

This is proved by an induction argument.
Base step: Consider̃Cm corresponding to the largest
value ym = max{f(x) |x ∈ X} + Nmax of supp Y .
Assuming f(x1) < f(x2) for x1, x2 ∈ C̃m leads to
ym = f(x1) + Nmax < f(x2) + Nmax = ym and
therefore to a contradiction. Induction step: ConsiderC̃k

and assume properties (4) are satisfied for allC̃
k̃

with
k < k̃ ≤ m. If x ∈ C̃k ∩ C̃

k̃
for somek̃

⇒P(N = yk − f(x̃)) = P(N = yk − f(x)) > 0 ∀x̃ ∈ C̃
k̃

⇒ C̃
k̃
⊂ C̃k ⇒ C̃

k̃
= C̃k ⇒ f |

C̃k

= f |
C̃

k̃

= const

Furthermore, if C̃k ∩ C̃
k̃

= ∅ ∀k < k̃ ≤ m, then
f |

C̃k

= const using the same argument as forCm.

Thus we can choose some setsC0, . . . , Cl from C̃0, . . . , C̃m,
where l ≤ m, such thatC0, . . . , Cl are disjoint, and
ck := f(Ck) are pairwise different values. Without loss of
generality assumeC0 = C̃0. Further, even the sets

ck + suppN := {ck + h : P(N = h) > 0}

are pairwise different: Ifyi = ck + h1 = cl + h2 thenCk ⊂

supp (X|Y = yi) = C̃i andCl ⊂ C̃i, which impliesk = l.
Now consider the case whereY has infinite andX finite
support:suppX = {x0, . . . , xp}. Then we defineC0, . . . , Cl

to be disjoint sets, such thatf is constant on each of them:
ci := f(Ci). This time, it does not matter which of these sets
is calledC0. Again, we will deduce that the setsck+suppN

are disjoint:
The setsD̃i := suppY |X = xi fulfill

D̃i = D̃j or D̃i ∩ D̃j = ∅ andg |
D̃i

= d̃i = const.

Thus we haveck + suppN and ck + suppN are either
equal or disjoint. But ifck + suppN = cl + suppN for
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k 6= l it follows for xa ∈ Ck, xb ∈ Cl and ally ∈ ck +

suppN (since there is a backward modelX = g(Y )+Ñ)

P(X = xa, Y = y)

P(X = xb, Y = y)
= const

⇒
P(X = xa) ·P(N = y − f(xa))

P(X = xb) ·P(N = y − f(xb))
= const

⇒
P(N = y − f(xa))

P(N = y − f(xb))
= const

and thusP(N = 0)/P(N = r) = const,∀r ∈ suppN .
This is only possible for a uniformly distributedN ,
which leads to a contradiction sinceY has been assumed
to have infinite support.

Thus we have proved condition c). For a) it remains to show
that the setsCi are shifted versions of each other. This part
of the proof is valid for both cases (eitherX or Y has finite
support): ConsiderCi for anyi. According to the assumption
that an ANMY → X holds we have

Ñ |Y = c0
d
= Ñ |Y = ci

⇔ X − g(c0)|Y = c0
d
= X − g(ci)|Y = ci

⇒ X + di|Y = c0
d
= X|Y = ci (∗)

with di = g(ci) − g(c0). Thus Ci = C0 + di (including
d0 = 0), which completes conditions a).
To prove b) observe that we have for allx ∈ Ci

P(X = x)

P(X ∈ Ci)
=

P(X = x)P(N = ci − f(x))
∑

x̃∈Ci
P(X = x̃)P(N = ci − f(x̃))

=
P(X = x,N = ci − f(x))

P(Y = ci)
= P(X = x | Y = ci)

(∗)
= P(X = x− di |Y = c0)

=
P(X = x− di, N = c0 − f(x− di))

P(Y = c0)

=
P(X = x− di)

P(X ∈ C0)

⇐: In order to show that we have a reversible ANM, we have
to construct ag, such thatX = g(Y ) + Ñ . Therefore define
the functiong as follows:g(y) = 0,∀y ∈ c0 + suppN and
g(y) = di,∀y ∈ ci + suppN, i > 0. (This is well-defined
because of a) and c).) The noisẽN is determined by the joint
distributionP

(X,Y ), of course. It remains to check, whether
the distribution ofÑ |Y = y is independent ofy. Consider
a fixed y and choosei such thaty ∈ ci + suppN . Since
Ci = C0 + di the conditiong(y) + h ∈ Ci is satisfied for
all h ∈ C0 and therefore independently ofy andci. Now, if
g(y) + h ∈ Ci we have

P(Ñ = h |Y = y) =
P(X = g(y) + h, Y = y)

P(Y = y)

=
P(X = g(y) + h,N = y − f(g(y) + h))

P(Y = y)

=
P(X = g(y) + h)P(N = y − ci)

∑

x̃∈Ci
P(X = x̃)P(N = y − f(x̃))

=
P(X = g(y) + h)

P(X ∈ Ci)
=

P(X = g(y) + h− di)

P(X ∈ C0)

=
P(X = h)

P(X ∈ C0)

which does not depend ony. And if g(y) + h /∈ Ci then
P(Ñ = h |Y = y) = 0, which does not depend ony either.

B. Proof of Theorem 3

Proof: We distinguish between two different cases:

a) P(N = k) > 0∀m ≤ k ≤ l and P(N = k) = 0 for all
otherk.

X

Y

x1 x2x̂1 x̂2

w1

f(x1)

f(x2)

w2

Fig. 15. Visualization of the path from equation (5). Here,w2 = f(x2) +
Nmax andw1 = f(x1) +Nmax.

⇒: Assume that there is an ANM in both directions
X → Y and Y → X. As mentioned above we have
a freedom of choosing an additive constant for the
regression function. In the remainder of this proof we
require P(N = k) = P(Ñ = k) = 0∀k < 0 and
P(Ñ = 0),P(N = 0) > 0. The largestk, such that
P(N = k) > 0 will be calledNmax. In analogy to the
proof above we defineCy := suppX|Y = y for all
y ∈ suppY .
At first we note that allCy are shifted versions of
each other (since there is a backward ANM) and
additionally, they are finite sets (otherwise it follows
from the compact support ofN that there are infinitely
many infinite setsf−1(f(x)) on which f is constant,
which contradicts the assumptions.) Start with anyx1
that satisfiesx1 = min{f−1(f(x1))} and define

x̂1 := min
{

x ∈ Cf(x1)+Nmax
\ f−1(f(x1))

}

This impliesf(x̂1) > f(x1) andx1 ∈ Cf(x̂1).
If such an x̂1 does not exist because the set
on the right hand side is empty, then it can-
not exist for any choice ofx1: It is clear that
Cf(x1)+Nmax

= f−1(f(x1)) and then we consider
the first Cf(x1)+Nmax+i that is not empty. Then
this set must bef−1(f(x̂1)) for some x̂1. This
leads to an iterative procedure and to the required
decomposition ofsuppX.

We have that either

max{f−1(f(x̂1))} > max{f−1(f(x1))} or

min{f−1(f(x̂1))} < min{f−1(f(x1))} :

Otherwise Cf(x̂1) and Cf(x̂1)−1 satisfy
maxCf(x̂1)−1 ≥ maxCf(x̂1) and minCf(x̂1)−1 ≤

minCf(x̂1). Because of̂x1 ∈ Cf(x̂1), x̂1 /∈ Cf(x̂1)−1

this contradicts the existence of an backward ANM.
We therefore assume without loss of generality
max{f−1(f(x̂1))} > max{f−1(f(x1))}. Then we
even havex̂1 > x1, x1 = min{Cf(x1)+Nmax

} and
x̂1 = min{Cf(x1)+Nmax+1}. (Otherwise we use the
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same argument as above withCf(x1)+Nmax
and

Cf(x1)+Nmax+1.) Define further

x2 := min f−1(f(x1) +Nmax + 1)

Sincef−1(f(x1)) ⊂ Cf(x1)+Nmax
, but f−1(f(x1)) ∩

Cf(x1)+Nmax+1 = ∅, such a value must exist. Again,
we can definêx2 in the same way as above.
Set y1 := f(x1) + Nmax and z1 := f(x1) + 2 · Nmax

and consider the finite box from(minCy1
, y1) to

(maxCz1 , z1). This box contains all the support from
X | Y = f(x1) + Nmax + i, where i = 0, . . . , Nmax.
Assume we know the positions in this box, where
P

(X,Y ) is larger than zero. Then this box determines
the support ofX |Y = f(x1) + 2 · Nmax + 1 (the
line above the box) just using the support ofN and
Ñ . Iterating gives us the whole support ofP(X,Y ) in
the box above (fromy2 = f(x2) + Nmax to z2 =

f(x2) + 2 · Nmax). Since the width of the boxes are
bounded by3 ·maxCf(x1) −minCf(x1), for example,
at some point the box ofxn must have the same support
as the one ofx1. Figure 15 shows an example, in which
n = 2. Using only the distributions ofN andÑ we can
now determine a factorα for which P(X = x1, Y =

f(x1) +Nmax) = α ·P(X = xn, Y = f(xn) +Nmax)

This is done by following a sequence between(x1, y1)

and (xn, yn) using only horizontal and vertical steps:

(x1, y1), (x̂1, y1), (x̂1, f(x2)), (x2, f(x2)),

(x2, y2), (x̂2, y2), . . . , (xn, yn) (5)

(cf Figure 15). Since this factor only depends on the
distributions ofN andÑ , the sameα satisfiesP(X =

xn, Y = f(xn) + Nmax) = α · P(X = x2n−1, Y =

f(x2n−1) +Nmax) and therefore

P(X = x1, Y = f(x1) +Nmax) = αk·

P(X = x(k+1)n−k, Y = f(x(k+1)n−k) +Nmax)

Note that a corresponding equation with the same
constantα holds for the direction to the left ofx1. This
leads to a contradiction, since there is no probability
distribution forX with infinite support that can fulfill
this condition (no matter ifα is greater, equal or smaller
than1).

⇐: This direction is proved in exactly the same way as in
Theorem 1.

b) P(N = k) > 0 ∀ k ∈ Z.
SinceX and Y are dependent there arey1 and y2, such
that g(y1) 6= g(y2) with g being the “backward func-
tion”. Comparing {P(X = k, Y = y1), k ≥ m} and
{P(X = k, Y = y2), k ≥ m} we can identify the
differenced := g(y2) − g(y1). Wlog considerd > 0. We
use P(X=m−1,Y=y1)

P(X=m,Y=y1)
=

P(X=m+d−1,Y=y2)
P(X=m+d,Y=y2)

in order to
determineP(X = m− 1, Y = y1) and thenP(X = m− 1)

(usingf andP
N ). Iterations lead to allP(X = x).

C. Proof of Theorem 4

Each distributionY |X = xj has to have the same support (up
to an additive shift) and thus the same number of elements with

probability larger than0: #suppX · #suppN = k · #suppY .
This proofs (i). For (ii) we now consider 3 different cases: 1. f
andg are bijective, 2.g is not injective and 3.f is not injective.
These three cases are sufficient sincef and g injective implies
n = m and f and g bijective. For each of those cases we show
that a necessary condition for reversibility includes at least one
additional equality constraint forPX or PN .

1st case:f andg are bijective.
Proposition 6: Assume Y = f(X) + N, N ⊥⊥ X for
bijective f and n(l) 6= 0, p(k) 6= 0 ∀k, l. If the model is
reversible with a bijectiveg, thenX andY are uniformly
distributed.

Proof: Since g is bijective we have that∀y∃ty :

g(ty) = g(y)− 1. From (2) we can deduce

n
(

y − f(x+ 1)
)

p(x+ 1)

n
(

ty − f(x)
)

p(x)
=

ñ
(

x+ 1− g(y)
)

q(y)

ñ
(

x+ 1− g(y)
)

q(ty)

which implies

p(x+ 1)

p(x)
=

n
(

ty − f(x)
)

q(y)

n
(

y − f(x+ 1)
)

q(ty)
and

1 =
p(x+m)

p(x)
=

∏m−1
k=0 n

(

ty − f(x+ k)
)

q(y)m

∏m−1
k=0 n

(

y − f(x+ k + 1)
)

q(ty)m

Sincef is bijective it follows thatq(y) = q(ty). This holds
for all y and thusY andX are uniformly distributed.

2nd case:g is not injective.
Assume g(y0) = g(y1). From (2) it follows that
n
(

y0−f(x)
)

n
(

y1−f(x)
) =

q(y0)
q(y1)

∀x and thus
n
(

y0−f(x)
)

n
(

y1−f(x)
) =

n
(

y0−f(x̃)
)

n
(

y1−f(x̃)
) ∀x, x̃, which imply equality constraints onn.

To determine the number of constraints we define a function
that maps the arguments of the numerator to those of the
denominator

hy0,y1,f :
Im(y0 − f) → Z/m̃Z

y0 − f(x) 7→ y1 − f(x)
.

We sayh has a cycle if there is az ∈ N, s.t. hk(a) =

(h ◦ . . . ◦ h)(a) ∈ Im(y0 − f) ∀k ≤ z and hz(a) = a. For

example:2 h
7→ 4

h
7→ 6

h
7→ 0

h
7→ 2.

Proposition 7: AssumeY = f(X) + N, N ⊥⊥ X and
n(l) 6= 0, p(k) 6= 0 ∀k, l. Assume further that the model
is reversible with a non-injectiveg.

• If h has at least one cycle,#Imf − #cycles+ 1

parameters ofn are determined by the others.
• If h has no cycles,#Imf parameters ofn are deter-

mined by the others.
Proof: Assume h has a cycle of length

r: n1
h
7→ n2

h
7→ . . .

h
7→ nr

h
7→ n1 (here,

y0 − n1, . . . , y0 − nr ∈ Imf), then q(y0)
q(y1)

= 1 because
q(y0)

r

q(y1)r
=

n(n1)
n(n2)

· n(n2)
n(n3)

. . .
n(nr)
n(n1)

=
n(n1)
n(n1)

= 1

and n
(

y0 − f(x)
)

= n
(

y1 − f(x)
)

∀x, that is
n(n1) = n(n2) = . . . = n(nr). Thus we getr − 1 equality
constraints for each cycle of lengthr. For any (additional)
non-cyclic structure of lengthr: n1 7→ n2 7→ . . . 7→ nr and
nr /∈ Im(y0 − f) (here,y0 − n1, . . . , y0 − nr−1 ∈ Imf),
we haven(n1) = . . . = n(nr) and thusr − 1 equality
constraints. Together with the normalization these are
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#Imf −#cycles+ 1 constraints.

If h has no cycle, we have#Imf−1 independent equations
plus the sum constraint. E.g.:n(2)

n(4)
=

n(4)
n(6)

=
n(3)
n(5)

implies

n(4) = n(6)
n(3)
n(5)

and n(2) =
n(4)2

n(6)
. Further,

n
(

y0 − f(x)
)

n
(

y1 − f(x)
) =

q(y0)

q(y1)
=

∑

x̃ p(x̃)n(y0 − f(x̃)
∑

x̃ p(x̃)n(y1 − f(x̃))

introduces a functional relationship betweenp andn.
Note that if m̃ does not have any divisors, there are no
cycles and thus#Imf parameters ofn are determined. We
have the following corollary
Corollary 8: In all cases the number of fixed parameters is
lower bounded by⌈1/2 ·#Imf⌉ + 1 ≥ 2 .

3rd case:f is not injective.
Assumef(x0) = f(x1). In a slight abuse of notation we
write

g − g :
Z/m̃Z× Z/m̃Z → Z/mZ

(y, ỹ) 7→ g(y)− g(ỹ)
.

Similar as above, we define

hx0,x1,g :
Im

(

x0 − (g − g)
)

→ Z/mZ

x0 − g(y) + g(ỹ) 7→ x1 − g(y) + g(ỹ)
.

We say thath has a cycle if there is az ∈ N, s.t.hk(a) =
(h ◦ . . . ◦ h)(a) ∈ Im

(

x0 − (g − g)
)

∀k ≤ z andhz(a) = a.
Proposition 9: AssumeY = f(X) +N, N ⊥⊥ X, f is not
injective andn(l) 6= 0, p(k) 6= 0 ∀k, l. Assume further that
the model is reversible for a functiong.

• If h has at least one cycle,#Im(g − g)−#cycles+ 1

parameters ofp are determined by the others.
• If h has no cycles,#Im(g − g) parameters ofp are

determined by the others.

Proof: From (2) it follows thatp(x0)
p(x1)

=
ñ
(

x0−g(y)
)

ñ
(

x1−g(y)
) =

p
(

x0−g(y)+g(ỹ)
)

·n

(

ỹ−f
(

x0−g(y)+g(ỹ)
)

)

p
(

x1−g(y)+g(ỹ)
)

·n

(

ỹ−f
(

x1−g(y)+g(ỹ)
)

) ∀y, ỹ. The rest

follows analogously to the proof of Proposition 7.
If (x1−x0) does not dividem, there are no cycles and thus
#Im(g − g) parameters ofp are determined.
Corollary 10: In all cases the number of fixed parameters
is lower bounded by⌈1/2 ·#Im(g − g)⌉+ 1 ≥ 2 .

Remark 2:Note that some of the constraints described above
depend on the backward functiong. This introduces no problems
because of the following reason: If we put any (prior) measure
on the set of all possible parametersp(0), p(1), . . . , p(n− 1) (or
on n(0), . . . , n(m− 1)) that is absolutely continuous with respect
to the Lebesgue measure, a single equality constraint reduces the
set of possible parameters to a set of measure zero. There are
only finitely many possibilities to choose the functiong and thus
even the union of all those parameter sets has measure zero.

VII. C ONCLUSIONS ANDFUTURE WORK

We proposed a method that tries to infer the cause-effect rela-
tionship between two discrete random variables using the concept
of ANMs. We proved that for generic choices the direction of
a discrete ANM is identifiable in the population case and we
developed an efficient algorithm that is able to apply the proposed

inference principle to a finite amount of data from two variables;
we also mentioned the limitations ofp-values on real world data
sets with changing data size.

Since it is known thatχ2 fails for small data sizes, changing
the independence test for those cases may lead to an even
higher performance of the algorithm. Further, our method can
be generalized in different directions: (1) handling more than
two variables is straightforward from a practical point of view,
although one may have to introduce regularization to make the
regression computationally feasible. Therefor, the work by Mooij
et al. (2009) and the practical approach of combining constraint-
based methods and ANMs by Tillman et al. (2009) may be
helpful. (2) One should work on practically feasible extensions
of ANMs and (3) it should be investigated how our procedure
can be applied to the case, where one variable is discrete andthe
other continuous. Corresponding identifiability results remain to
be shown. (4) We further believe that it is valuable to test the
following principle for causal inference: One decides forX → Y

not only if one finds an ANM in this direction and not the other,
but also if the observed empirical distribution isreasonably closer
to the set of distributions that allow for an ANM fromX to Y

than to the set of distributions that allow for an ANM fromY
to X (e.g. the KL divergence to the subset ANMX→Y is smaller
than to the subset ANMY →X , see section III-C). Clearly, the
challenges of computing the distances to those sets of distributions
and quantifying whatreasonablycloser means have to be solved.

We answered the theoretical question of identifiability, but in
future work the concept of ANMs (like any proposed concept
of causal inference) has to be addressed empirically: It should
be tested on a large number of real world data sets, for which
the ground truth is known. Our small collection of experiments,
for example, only give a hint that ANMs may help for causal
inference. It is still possible that exhaustive experiments show that
the assumptions current methods for causal inference are based
on are most often not met in nature. Nevertheless we regard our
work as promising and hope that more fundamental and general
principles for identifying causal relationships will be developed
that cover ANMs as a special case.
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