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Abstract— Inferring the causal structure of a set of random model is identifiable in the “generic case”. (In the remamde
variables from a finite sample of the joint distribution is an the article we will use “genericness” in the meaning of “thare
!mporttantlprloblim”in science. The C"E‘se %f_tFWO lr)and(?m vgriabis almost no exceptions”; for the precise statement we refehéo
is particularly challenging since no (conditional) indepadences . . Lo -
car? be expl)é)ited. Regceglt methods that are based %n additive C'te(.j I_|tera_ture.) They propose the foIonvmg inferencenpiple
noise models suggest the following principle: Whenever thipint (0 distinguish between cause and effect: Whenever such ai AN
distribution PY) admits such a model in one direction, e.g. €Xists in one direction but not in the other, one infers thenfer
Y = f(X)+N, N I X, but does not admit the reversed model to be the causal direction.

X =g(Y)+ N, N 1LY, one infers the former direction to be Janzing & Steudel (2010) give theoretical support for this-p
causal (i.e.X — Y). Up to now these approaches only deal with ciple using the concept of Kolmogorov complexity. Peterslet
continuous variables. In many situations, however, the vaables (2009) apply the concept of ANMs to ARMA time series in order

of interest are discrete or even have only finitely many stat —, yotact whether a sample of a time series has been reversed.
In this work we extend the notion of additive noise models to

these cases. We prove that it almost never occurs that addig Hoyer e_t al. (2009)_; Mooij et al. (2009) generaliz_e the metho
noise models can be fit in both directions. We further propose 0 non-linear functions/ and showed that generic models of
an efficient algorithm that is able to perform this way of causl this form generate joint distributions that do not admittsamn
inference on finite samples of discrete variables. We show & ANM from Y to X (here, genericness means that the triple
the algorithm works both on synthetic and real data sets. and the densities ok and noiseN do not satisfy a very specific
Index Terms— Causal Inference, Regression, Graphical Models differential equation). Zhang & Hyvarinen (2009) augmelne t
model by applying an invertible non-linear functian to the
right-hand side of equation (1) and still obtain identifidpiin
the generic case. Janzing et al. (2009) make first steps dewar
identifying hidden common causes. All these proposals,evew
Inferring causal relations between random variables frdm owere only designed for continuous variabl€sandY .
served data is a challenging task if no controlled randodhize For discrete variables, Sun et al. (2008) propose a method to
experiments are available. So-called constraint-baspdoaphes measure the complexity of causal models via a Hilbert spao@ n
to causal discovery (Pearl, 2000; Spirtes et al., 2000xsafeong of the logarithm of conditional densities and prefer modéakst
all directed acyclic graphs (DAGSs) those that satisfy thakda induce smaller norms. Sun et al. (2006) fit joint distriboficof
condition and the faithfulness assumption. These comtditiee- cause and effect with conditional densities whose logarith a
late the graph structure to the observed distribution: Rbug second order polynomial (up to the log-partition functicand
speaking, the graph ilarkov if all (conditional) independences show that this often makes causal directions identifiablerwh
imposed by the graph structure can be found in the distohutisome or all variables are discrete. For discrete varialsiegeral
and faithful if all (conditional) independences that can be foun8ayesian approaches (Heckerman et al., 1999) are alscaplelj
in the distribution are imposed by the graph structure. €hosut the construction of good priors are challenging andnofte
constraint-based approaches are unable to distinguism@amdatter are designed such that Markov equivalent DAGs stifiain
causal DAGs that impose the same independences (Markodistinguishable.
equivalence classes, Verma and Pearl (1991)). In partjctiles Here, we extend the model in equation (1) to the discrete case
impossible to distinguish betweexi — Y andY — X. in two different ways: 4) If X and Y take values inZ (the
More recently, several methods have been suggested thattdosupport may be finite, though) ANMs can be defined analogously
only use conditional independences, but also more sophist to the continuous caseBj If X andY take only finitely many
properties of the joint distribution. We explain these gldar values we can also define ANMs by interpreting theign as an
the two variable setting. Shimizu et al. (2006); Kano & Shimi addition in the finite rindZ/mZ. We propose to apply this method
(2003) use models to variables where the cyclic structure is appropriate. (el
Y=f(X)+N, (1) direction of the wind after discretization, day of the yesmason).
Remark 1 in section 1I-B describes how the second model cmn al
be applied to structureless sets; this may be helpful whesrite
random variables are categorical and when these categluriest

I. INTRODUCTION

where f is a linear function andV is additive noise that is
independent of the hypothetical caude This is an example

for an additive()?cl)/i)se model (ANM) fronX to Y. Apart from inperit any kind of ordering (e.g. different treatments afanisms
trivial cases,P'*-"’ can only admit such a model frof¥ to o phenotypes). In the following article we refer t)(by integer
Y and fromY to X in the bivariate Gaussian case. We say thg, qelsand to () by cyclic models
We adopt the causal inference method from above: If there
All authors are affiliated to MPI for Biological Cybernetjc3iibingen, 1S an ANM from X to v, pUt. not vice versa, we propose tha.t
Germany X is causingY (more details in section Il). Such a procedure is



sensible if there are only few instances, in which there a8 construct a new functioyf;, such that” = f;(X)+N;, N; 1L X
in both directions. If, for example, all ANMs fronX to Y also by choosingf;(i) = f(i) +j andn; (i) = n(i + j).
allow for an ANM fromY to X, we could not draw any causal Such an ANM is calledeversibleif there is also an ANM from
conclusions at all. In section Ill we show that thessersible Y to X, i.e. if it satisfies ANMs in both directions.
cases are very rare and thereby answer this theoreticaliques
For a practical causal inference method we have to test wheth,
the data admit an ANM. We propose an efficient procedure that ) S )
proved to work well in practice (section IV). We can extend ANMs to random varlables Wh!ch_ inherit a
Note that a shortened version of this work has already beEYCliC structure and therefore take values in a periodic alom
published by Peters et al. (2010). In addition, here we ctver Randor_n_ varlables_ are usually defined as measurabl_e mapsafrom
“cyclic case” (denoted above bjg), provide proofs and more proba_blllty space into the real numbers. Thus, we first make t
experiments, investigate the binary case separatelyyzmahe following definition 3 _
run-time of the algorithm empirically and give an outlook to Definition 1: Let (2, 7, P) be a probability space. A function
generalizations of discrete ANMs. X : Q — Z/mZ is called anm-cyclic random varlable__lf
The paper is organized as follows: In section Il we extend (k) € F Vk € Z/mZ. All other concepts of probability
the concept of ANMs to discrete random variables and show tH¥Ory (like distributions and expectations) can be coséd
corresponding identifiability results in section Ill. Incsien IV analogously to the well-known case, in whightakes values in
we introduce an efficient algorithm for causal inference oitdi {0,...,m —1}. ) i
data, for which we show experimental results in section Vv, Let X andY be m- andm-cyclic random variables, respec-

Section VI contains the proofs and section VII our conclosio tively: We say that” satisfies an ANM fromX to V" if there is a
function f : Z/mZ — Z/mZ and anm-cyclic noiseN such that

Cyclic Models

II. ADDITIVE NOISEMODELS FORDISCRETEVARIABLES Y=f(X)+N andN 1 X.

As it has been proposed for the continuous case by Shimi
et al. (2006); Hoyer et al. (2009); Zhang & Hyvarinen (2009
we assume the following causal principle to hold throughtbet
remainder of this article:

Causal Inference Principle (for discrete random variable$
Whenevery” satisfies an additive noise model with respectxto

azdv\;:i;\;civﬁrsa then we infef to be the cause fok’, and structureless sets. Considering functighs. 4 — B and models
_Note that whenever there is no additive noise model in a'gflr:r;rsvgs%;,_ izj |angeC(L:liZ;ll_c{ziIsfebjof_ grfazNal\r/]I?l (Iinpgs)t/e(n;ny 1c):yclic
direction (which may well happen) the method remains inkenc structure on the data and use the additive nder — 0) —
sive and other causal inference methods should be tried. P(N = 1) = (1—p)/(f— 1) for [ £ 0.
There are two reasons why we do not expect the true ddta
generating process to allow an ANbhly in the wrong causal
direction: (1) We hope that nature prefers “simple” mecharsi C. Relations
(Occam’s Razor). (2) Janzing & Steudel (2010) use the cdrafep  The following two remarks are essential in order to undeista
Kolmogorov complexity to show that this can only be the cdse the relationship between integer and cyclic models: (1) The
the cause distributiop(cause) and the mechanism(effect|cause)  difference between these two models manifests in the target
are matched in a precise way, whereas we rather expect indut domain. If we consider an ANM fronX to Y it is important
mechanism to be most often “independent” (although theghimi whether we put integer or cyclic constraints Bn(and thus on
exist cases, for which this assumption is violated). N). It does not make a difference, however, whether we conside
Now we precisely explain what we mean by an additive noigfe regressoi to be cyclic (with a cycle larger thagtsupp X)
model in the case of discrete random variables. For sintpieé or not. The independence constraint remains the same. (2) In
denotep(z) = P(X = z), q(y) = P(Y = y), n(l) = P(N =1) the finite case ANMs with cyclic constraints are more general

l(jain we requiren(0) > n(j) for all j # 0 and call this model
eversibleif there is a functiong : Z/mZ — Z/mZ and an
m-cyclic noise N such thatX = ¢(Y)+ N andN 1 Y.

Remark 1:Cyclic models are not restricted to random vari-
ables that take integers as values: Assume faand Y take
values inA := {a1,...,am} and B := {b1,..., b5}, which are

and ii(k) = P(N = k) and supp X is defined assupp X := than integer models: Assume there is an ANM= f(X) + N,

{k|p(k) > 0}. where all variables are taken to be non-cyclic antakes values
betweenk andi, say. Then we still have an ANM = f(X)+ N

A. Integer Models if we regardY” to bel — k + 1-cyclic becauseV mod (I —k+1)

remains independent of. It is possible, however, thaV ¥ X,

Assume thatX andY are two random variables taking value UN mod (I—k+1) I X (as shown in Example 2).

in Z (their distributions may have finite support). We say tha
there is an additive noise model (ANM) froid to Y if there is

a function f : Z — Z and a noise variabl&V such that the joint HI. TDENTIFIABILITY

distribution P(XY) allows to write Whether or not there is an ANM betweeX and Y

only depends on the form of the joint distributigR(*>Y"),

Let A be the set of all possible joint distributions ard

Furthermore we require(0) > n(j) for all j # 0. This does its subset that allows an additive noise model frafh to

not restrict the model class, but is due to a freedom we havelin in the “forward direction”, whereasB allows an ANM
choosingf andN: If Y = f(X)+N, N 1 X, then we can always in the backward direction fromY" to X (see Figure 1).

Y=fX)+N andN 1L X.



Some trivial examples like n(k) for k& = Npin, ..., Nmax and p(zg),k = 1,...,m that

p(0) =1,n(0) =1 and f(0) =0 is absolutely continuous to the Lebesgue measure. If furthe
immediately show that there o ming jeq1,..my:izg f(@i) = (%) < Nmax — Nmin We have the
are joint distributions allowing 6 following statement: Only a parameter set of meadumits
ANMs in both directions, A an ANM fromY to X.

meaning ' N B # (. But how

large is this intersection? The Fig- 1. How large isf" 1 57 Y

proposed method would not be useful if we find out thaand SY

B are almost the same sets. Then in most cases ANMs can bg a

fit either in both directions or in none. Both, for ANMs with 4 co

integer constraints and with cyclic constraints we idgntifie

intersectionF N B and show that it is indeed a very small set. be by by bs by bs bg br bs X
Imagine, we observe data from a natural process that allows a 2 46 8 aias azts asag a7 ag

ANM in the causal direction. If we are “unlucky” and the data
generating process happens to beim B, our method does not Fig. 2. This joint distri- Fig. 3.  Only carefully chosen parameters

give wrong results, but answers “I do not know the answer”. bution satisfies an ANM allow ANMs in both directions. (Radii corre-
’ only from X to Y. spond to probability values.)

A. Integer Models

1) Y or X has finite support:First we assume that either the ) ]
support of X or the support ofY” is finite. This already covers h Thgo;ery: 3.ConS|?e\;vandA![\llMX. _h> ;/ t\v,\:,here tbOIhX andy
most applications. Figure 2 (the dots indicate a probatiiieater ave infinite support. Ve distinguish between two cases
than 0) shows an example of a joint distribution that allows an & N has compact support: 3m,l € Z, s.t.supp N = [m, I].

2) X andY have infinite support:

ANM from X to Y, but not fromY to X. This can be seen Assume there is an ANM fronX to Y and f does not
easily at the “corners’X = 1 and X = 7: Whatever we choose have infinitely many infinite sets, on which it is constant.
for ¢g(0) andg(4), the distribution ofN' | Y = 0 is supported only Then we have the following equivalence: The model is
by one point, whereas/ | Y = 4 is supported by points. Thus reversible if and only if there exists a disjoint decomposit
N cannot be independent of. Figure 3 shows a (rather non- UiZo Ci = supp X that satisfies the same conditions as in
generic) example that allows an ANM in both directions if we  1heorem 1.
choosep(a;) = %,p(bi) _ % for i = 1,...,4 and p(a;) = b) N has entire Z as support: P(N =k) > 0Vk € Z.
% p(b;) = % fori—s5 8. We prove the following SupposeX andY are dependent and there is a reversible
, ey 8. . N
Theorem 1:Assume eitheX or Y has finite support. An ANM ANM X — Y. Fix anym € Z. If f, P andp(k) for all
X — Y is reversible<= there exists a disjoint decomposition k > m are known, then all other valuggk) for k < m
Ul- » C; = supp X, such that a) - c) are satisfied: are determined. That means even a small fraction of the
1= 1 "

parameters determine the remaining parameters.
Note that the first case is again a complete characterization
Vidd; >0 : C; = Co+d; all instances of a joint distribution, an ANM in both diremts is
conform with. The second case does not yield a complete char-

b ??]df 'S E'et?ﬁrwsg. iqgs?n]f: |Cizfég’i' hifted and acterization, but shows how restricted the choice of aibigion
) The probability distributions on ¢S are shited and px s (given f and PV) that yields a reversible ANM.

scaled versions of each other with the same shift constant as
above: Forx € C;, P(X = z) satisfies B. Cyclic Models

PX ey AssumeY = f(X) + N with N 1 X. We will show that
P(X € Co) in the generic case the model is still not reversible, meagnin
c) The sets; + supp N := {c; + h : n(h) > 0} are disjoint.  there is nog and N, such thatX = ¢(Y) + N with N 1L Y.

(Note that such a decomposition satisfying the same aitso However, as mentioned in section II-C, in finite domains this

exists forsupp Y by symmetry.) In the example of Figure 3 all model class is larger than the class of integer models. Weses!

belong toCy, all b; to C; andd; = 1. As for the other theorems that correspondingly also the number of reversible casgsases.

of this section the proof is provided in section VI. Its maiwirg Note that the modelY = f(X) + N is reversible if and only

is based on the asymmetric effects of the “corners” of thatjoiif there is a functiong, such that

distribution. In order to allow for an infinite support &f (or Y) .

we will thus generalize this concept of “corners”. p(z) n(y B f(x)) = a(y) - fe — g(y)) vy, )

Theorem 1 provides a full characterization of cases thatwall where ¢(y) = Y .p@E)n(y — f() and #(a) =

for an ANM in both directions. Each of the conditions is very(g(g) + a) - n(§ — f(9(§) +a))/q(F) V§ : q(§) # 0.

restrictive by itself, all conditions together describeeysmall

class of models: in almost all cases the direction of the hisde 1) Non-ldentifiable CasesFirst, we give three (characteristic)

a) The(C;s are shifted versions of each other

P(X=2)=P(X =z —d,)

identifiable. We have the following corollary: examples of ANMs that are not identifiable. This restricte th
Corollary 2: Consider a discrete ANM fronX, which takes class of situations in which identifiability can be expecteigjure
valuesz,...,zm (m > 1), to Y with a non-constant functiofi 4 shows instances of Examplésand 2.

(otherwiseX andY are independent). Let the noidetake values  Example 1:IndependenX andY always admit an ANM from
from Npyin t0 Nmax @and put any prior measure on the parameters to Y and fromY to X. We therefore have:



(i) Y =f(X)+ N and f(k) = const for all & : p(k) # 0, n we can only have an ANM in one direction.

then the model is reversible. Note further that{#supp X - #supp N) is the number of points
(i) If Y = f(X)+ N for a uniformly distributed noisev, then (z,y) that have probability greater than It must be possible
the model is reversible. to distribute these points equally to all points fre#supp Y in
Proof: In both cases itX and Y are independent. Thus, order to allow a backward ANM. Thus we have the necessary
X =g(Y)+ X with g =0 is a backward model. B condition #supp Y | (#supp X - #supp N). (Here,a|b denotes
Example 2:1f Y = f(X) + N for a bijective and affingf and “a divides b”, which we write if 32 € Z : b = 2z - a, and should
uniformly distributed X, then the model is reversible. not be confused with conditioning on a random variable.)

Proof: Since X is uniform andf(z) = az + b is bijective, Theorem 4:AssumeY = f(X) + N, N 1 X with non-
Y is uniform, too. Forg(y) = f~'(y) and#i(k) = n(b— f(k)) = uniform X (m-cyclic), Y (rm-cyclic) and N (sn-cyclic) and non-

n(y — f(g(y) + k)) equation (2) is satisfied. H constantf.

Example 3:We give two more examples of non-identifiable () There can only be an ANM fromY to X if
cases that show why an if-and-only-if characterization s i #supp Y | (#supp X - #supp N).
Theorem 1 is hard to obtain: (i) Assume that#supp X = m, #supp N = m. If there is an

(i) Figure 5 (left) shows an example, where the sets on which ANM from Y to X, at least one additional equality constraint
f is constant neither satisfy condition c) nor are they stifte is introduced to the choice of eithgror n.
versions of each other. Again, the proof can be found in section VI.

(i) The same holds for Figure 5 (right), this time even Jgiig
the additional constraint th@(N = 0) > P(N = k)Vk # C. Special CaseX and Y binary

0. Here, X is not uniformly distributed, either. We now investigate a special case, wheXe and Y are

constrained to take binary values with probabilities= P(X =

0,Y =0),b:=P(X =1Y =0),c:=P(X =0,Y =1) and

d .= P(X = 1,Y = 1). For this case we can compute a full

6.H7 o1 | 6_7A7HH, characterization of reversible and irreversible ANMs. rEtfere

4 we assume the variables to be non-degenerate((ke P(X =

0)=a+c<1land0<P(Y =0)=a+b< 1) and we use the

X X X following Lemma:

2 4 6 2 4 2 4 6 Lemma 5:Let N and X be non-degenerate binary variables.

ThenN L X & P(N=1|X=0=P(N=1|X=1).

Fig. 4. These joint distributions allow ANMs in both diremtis. They are The integer model is not very informative. The only two pos-

instances of Examples(i), 1(i7) and2 (from left to right). sibilities to form an ANM with integer constraints is to clee
deterministic noise or a constant functign Clearly, both cases
lead to reversible ANMs. More interestingly, the results fioe

Y cyclic case are non-trivial:

Y 1) f is constant.

Here, X and Y are independent and the ANM is thus

2 reversible (see Examplgd). Lemma 5 implies thaf 1L

X N if and only if ;5 = #‘id. And this holds if and only if

ad = be

Y Y

X
2 4 6 8 2

Fig. 5. These joint distributions allow ANMs in both diremts. They are

instances of Examples 3 (i) (ieft) and (i) (right. (Here, neither of the parameters can be zero.)

2) f is non-constant.
Without loss of generality letf be the identity function
(we can always add an additive shift). This time we have

X 1L N if and only if -4 = -, which is equivalent to

2) ldentifiability Results:The counter examples from above
already show that cyclic models are in some aspect moreudiffic
than integer models and we thus do not provide a full chariacte
zation of all reversible cases as we have done in the intexgs. c ab=cd
Nevertheless, we provide necessary conditions for reviétg; . .
which is sufficient ?or our purpose. / » ) still assumnjga tez0Fb+d ) )

Usually the distributiona(l) (similar for p(k)) is determined USINg symmetry it follows that there is an ANM from to X if
by 7 — 1 free parameters. As long as the sum remains smal@fd only if we have eithesic = bd or ad = be.
than 1, there are no (equality) constraints for the values M€ thus summarize (recall that onbyandc or a andd can be
n(0), ..., n(m—2). Onlyn(m—1) is determined by~ ! n(l) = 2610 at the same time):

1. We show that in the case of a reversible ANM the number ¢ ab = cd oOr ad = bc leads to an ANM fromX to Y.

of free parameters of the marginall) is heavily reduced. The e ac=bd or ad = bc leads to an ANM fromy” to X.

exact number of constraints depends on the possible bagkware a = d andb = c (this implies uniformX andY) ora =d =
functions g, but can be bounded from below by 2. Furthermore 0 0rb=c=0 or ad = bc leads to a reversible ANM.

the proof shows that a “dependence” between valugsafdn This also fits with the theoretical result of Proposition 6 in
is introduced. Both of these constraints are consideredad to section VI: for bijectivef andg (which is the only case that does
non-generic models. That means for ajgnericchoice ofp and not lead to independent andY) only uniformly distributedX



1) Given: iid data of the joint distributio®(X:¥).

2) Regression o = f(X) + N leads to residuaIg,\Af,
regression ofX = g(Y) + N leads to residualsv.

3) If N 1L X andN [ Y, infer “ X is causingy”,
if N ¥ X andN LY, infer*Y is causingX”,
if N X andN J Y, infer “I don’'t know (bad model)’
if N I X andN 1LY, infer “l don’t know (both directions
possible)”.

andY lead to reversible ANMs. Using =1—a —b—c one can
plot these conditions as surfaces (see Figures 6 and 7).

(The identifiability results show that the last case will ashnever
occur.) This procedure requires discrete methods for ssgre

Fig. 6. ForX Jt Y (both binary) these plots visualize the constraints ofnq independence testing and we now discuss our choices. Cod
the joint distributionP(X>Y) in order to allow for an ANM: either fromx . . . )
is available on the first author's homepage.

to Y (ab = cd, left) or fromY to X (ac = bd, right). Note that the both
surface are rotated versions of each other:dtais on the left corresponds
to the b-axis on the right.

A. Regression Method

Given a finite number of iid samples of the joint distribution
PXY) we denote the sample distribution BfXY). In contin-
uous regression we usually minimize a sum consisting of & los
function (like an¢y-error) and a regularization term that prevents
us from overfitting.
=1 Regularizationof the regression function is not necessary in
the discrete case for large sampling. Since we may obsermg ma
different values ofY” for one specificX value there is no risk
Fig. 7. These pictures characterize the joint distribstiBdX:¥) that allow N overfitting. This introduces further difficulties compar to
an ANM in both di_rectiqns.()T(hliVS) ils fulfillt:g it thth vatriablefiiﬁ irmpendent continuous regression since in principle we now should tty a
(S‘lﬁfac :c(gﬁif?k?r;;'gqgéfENM_)X'_23;’;‘66 e(r'g d‘irfsrifn'ogi;ure% :Bg—:’o possible functions from to ¥ and compare the corresponding
corresponds to the-axis,a = d = 0 and thusc = 1 — b to the straight values of the loss function.
line between(0,0,1) and (0,1,0) anda = d,b = c (ergoc = 0.5 — a) is Minimizing aloss functionlike an ¢, error is not fully appro-
represented by the intersection line betwéers, 0,0) and (0, 0.5, 0.5). priate for our purpose, either: after regression we evalihe

proposed function by checking the independence of theuakid
Thus we should choose the function that makes the residsals a
D. Mixed Models independent as possible (see also Mooij et al., 2009). Torere

With the results developed in the last two sections we carrcowe consider a dependence measure (DM) between residuals and
even models with mixed constraints if both variables havitefin regressor as loss function, which we denoteliyV(N, X).
support. For the precise conditions of “usually” see Theore Two problems remain:
in section III-B. (1) Assume the differenX valuesz; < ... < zn occur in the
sample distributionP(X-Y). Then one only has to evaluate the

Y = f(X)+ N, N 1L X; X cyclic,Y, N non-cyclic

=~ Y=f(X)+N, N L X; X cyclic,Y, N m-cyclic

™04 Usually there is no ANMX = g(Y) + N, N 1LY,
X, N cyclic,Y m-cyclic

M5 Usually there is no ANMX = g(Y) + N, N 1Y,

X, N cyclic, Y non-cyclic

And, conversely:

Y =f(X)+N, N L X;Y,N cyclic,X non-cyclic

EC 'y — f(X)+ N, N L X; Y, N cyclic, X m-cyclic

™04 Usually there is no ANMX = g(Y) + N, N LY,
Y cyclic, X, N m-cyclic

TZC Usually there is no ANMX = g(Y) + N, N LY,

Y cyclic, X, N non-cyclic

IV. PRACTICAL METHOD FORCAUSAL INFERENCE

regression function on these values. More problematiceisahge

of the function. Since we can only deal with finite numbers, we
have to restrict the range to a finite set. No matter how large w
choose this set, it is always possible that the resultingtfan
class does not contain the true function. But since we used th
freedom of choosing an additive constant to requife) > n(k)
and n(0) > n(k) for all & # 0, we will always find a sample
(X;,Y;) with Y; = f(X;) if the sample size is large enough. Thus
it would be reasonable to consider Ellvalues that occur together
with X = z as a potential value fof (z). To even further reduce
the impact of this problem we regaedl values betweemin Y
and max Y as possible values fof. And if there are too few
samples withX = z; and the true valug (z;) is not included in
{minY,minY +1,..., max Y} we may not find the true function
f, but the few “wrong” residuals do not have an impact on the
independence. In practice the following second delibenais
more relevant than the first one:

(2) Even if all values of the true functiofi are one of then :=
#{minY,minY +1,..., max Y} considered values, the problem

Based on our theoretical findings in section Il we propoge tlof checking all possible functions is not tractablenlt 20 and
following method for causal inference (see Hoyer et al. @00m = 16 there arel62° = 230 possible functions. We thus propose

for the continuous case):

the following heuristic but efficient procedure:



Start with an initial functionf(®) that maps every value to showed in section Ill that only very few examples allow a
they which occurred (together with this) most often under alj.  reversible ANM. Data sets Al and B1 support these theotetica
Iteratively we then update each function value separat@gping results. We simulate data from many randomly chosen models.
all other function values'(z) with # # « fixed we choosef(z) All models that allow an ANM in both directions are instances
to be the value that results in the “most independent” redgdu of our examples from above (without exception). Data sets A2
This is done for allz and repeated up td times as shown in and B2 show how well our method performs for small data
Algorithm 1. Recall that we required(0) > n(k) for all k. size and models that are close to non-identifiability. Daga s

A3 empirically investigates the run-time performance ofr ou
Algorithm 1 Discrete Regression with Dependence Minimizationregression method and compares it with a brute-force seBath

1: Input: P(X,Y) set A4 show that two consecutive ANMS= g(f(X)+ N1)+ Na

2 Output: f ’ do not necessarily follow a single ANM. Data set B3 shows that
. +(0) o B(X — 50V — the method does not favor one direction if the supportX aind

3 (i) = argmax , P(X =z, Y =) Y are of different size. All experiments are available witke th

4: repeat code.

5. j=j+1

6. for El)n a random F)rderlngjo G A. Integer Models

7 fY9(xy) = argmlnyDM(X,Y — fai—y (X)) i o

8 end for Data set Al (identifiability).

o: until residualsy — f@(X) =N 1L X or f@ does not With equal probability we sample from a model with

change anymoreor j = J. (1) supp X C {1,...,4}

(2) supp X C {1,...,6}

(3) X binomial with parametersgn, p)

(4) X geometric with parameter

(5) X hypergeometric with paramete(a/, K, N)
(6) X Poisson with parametex or

(7) X negative binomial with paramete(s, p).

In the algorithm, ;J:}y) (X) means that we use the current
version of =1 but change the function valug(z;) to be y.

If the argmax in the initialization step is not unique we take the
largest possiblg. We can even accelerate the iteration step if we
do not consider all possible valu¢sinY, ..., max Y}, but only
the five that give the highest values®fX = z;,Y = y) instead. For each model the parameters of these distributions areeaho

Note that the regression method performs coordinate desceandomly @, M, K, N uniformly between1 and 40, 40, M, K,
in a discrete space aridM(X,Y - f(j)(X)) is monotonically respectively, p uniformly between0.1 and 0.9 and X\ uni-
decreasing (and bounded from below). Sinté) is changed formly betweenl and 10), the functions are randomf(z) ~
only if the dependence measure can be strictly decreased &{d—7,—6,...,7}) is uniform for eachz € supp X) and the
furthermore the search space is finite, the algorithm cgreger noise distribution is random, tooS(~ U({1,2,3,4,5}) deter-
towards a local optimum. Although it is not obvious wi{¥) ~mines the supporupp N = {—S,..., S} andP" is chosen by
should converge towards trgtobal minimum, the experimental drawing #supp N — 1 numbers in[0, 1] and taking differences).
results will show that the method works very reliably in giee.  This way we also construd@~ in cases (1) and (2).

We then consider1000 different models. For each model
we sample1000 data points and apply our algorithm with a
signficance level of« = 0.05 for the independence test. The
) results given in Table | show that the method works well on
variablesW and Z and we want to test whethé¥” and Z are  4most all simulated data sets. The algorithm outputs “biaih fi
independent. In our implementation we use Pearsari'stest ot directions” in roughlys% of all cases, which corresponds to
(e.9. Agresti (2002)), which is most commonly used. It COMpe chosen test level. The model is non-identifiable onlg. it
putes the difference between observed frequencies andtexbe ot the cases, all of which are instances either with a cohstan
frequencies in the contir;ger_lcy_ taple. The_ test_ statistkn®vN  ¢nction f (2.3%) and thus independert andY or with “non-
to converge towards &~ distribution, which is taken as an,yerjapping noise”3.0%), that is: f(x) +supp N are disjoint for
approximation even in the finite sample case. In the caseryf ve, - X, which meansiC; = 1 (see Theorem 1). This empirically

few samples Cochran (1954) suggests to use this appromimaty,,,orts Corollary 2 and therefore our proposition thatrtioelel
only if more than80% of the expected counts are larger thar ijentifiable in the generic case.

5 (“Cochran’s condition”). Otherwise, Fisher's exact téstg.

B. Independence Test and Dependence Measure
Assume we are given joint iid samplég/;, Z;) of the discrete

Agresti (2002)) could be used. In the remainder of the articl TABLE |
we denote the significance level of the testdy DATA SET AL. THE TRUE DIRECTION IS ALMOST ALWAYS IDENTIFIED.
For a dependence measw@! we use thep-value (times—1)
of the independence test. If thevalue is smaller tharto='6, correct dir:  89.9% |  both dir. poss.: 5.3%
however, it is regarded asand we take the test statistic instead. wrong dir.. 0% [ bad fitin both dir.:  4.8%
V. EXPERIMENTS Data set A2 (close to non-identifiable).
Simulated Data For this data set we sample from the motfel= f(X)+ N with

We first investigate the performance of our method on syitthet(—2) = 0.2, n(0) = 0.5, n(2) = 0.3, and f(-3) = f(1) = 1,
data sets. Therefore we simulate data from ANMs and che¢k—1) = f(3) = 2. Depending on the parametewe sampleX
whether the method is able to rediscover the true model. Wem p(—3) = 0.1 +r/2, p(—1) =0.3 — /2, p(1) = 0.15 — r/2,



40

10%, 10

p(3) = 0.45 + r/2. For each value of the parameterranging oin total O intotal

between—0.2 < r < 0.2 we use 100 different data sets, eac , | |* b e 0| yugol | crackedy stortn o

of which has the size 400. Theorem 1 shows that the ANM £ o g o

reversible if and only ifr = 0. Thus, our algorithm does not%mzo o 51020 °

decide when- ~ 0. Figure 8 shows that the algorithm identifie: 2 ° 2 ° "
. . . = =1 X

the correct direction for # 0. Again, the test level ofr = 5% = o . ° ox % o ° X

. . .. . . X

introduces indecisiveness of roughly the same size, whash « o x X ) Q %

be seen foir| > 0.15. o e n I

10 5 10 15 20 10 5 10 15 20
number of X values number of X values

o
13,]

il
Fig. 9. Data set A3. The size of the whole function space, thaber of
R R all functions with empirical support and the number of fimes checked by
r ’ ’ our algorithm (including standard deviation) is shown fgg (left) and N2
(right). An extensive search would be intractable in thesses. The proposed
algorithm is very efficient and still finds the correct fuinctifor all data sets.

proportion of
identified models

K=

Fig. 8. Data set A2. Proportion of correct and false resuithe algorithm
depending on the distribution @¥. The model is not identifiable for = 0.
If r differs significantly from0 almost all decisions are correct.

set Al), simulated 00 data sets and obtained the results in Table
Il. Clearly, the effect vanishes if one either increase thmpgle
Data set A3 (fast regression). size (t02000, say) or one includes even more ANMs between
The space of all functions from the domain &fto the domain and Z (results not shown).
of Y is growing rapidly in their sizes: I#supp X = m and
#suppY = m then the spacé := {f : supp X — supp Y} has TABLE Il
m™ elements. If one of the variables has infinite support thésset DATA SETA4. SINCE THE DISTRIBUTION DOES NOT ALLOW ANANM,
even infinitely large (although this does not happen for anigefi ~ THE METHOD DOES NOT DECIDE IN MOST CASESSTILL, THE METHOD

data set). It is clear that it is infeasible to optimize thgression SEEMS TO PREFER ANANM IN THE CORRECT DIRECTION
criterion by trying every single fqr)ctipn. As mentioned dref one pvalue | 5-1072 | 11072 | 1-10~3 | 1. 10~
can argue that with high probability it is enough to only dhéwe Corectdr | 18% 7% 3397 5%
functions that correspond to an empirical mass that is grelaan wrong dir.; 5% 1% 2% 5%

0 (again assuming(0) > 0): E.g. itis likely thatP(X = —2,Y = both dir. poss..| 2% 18% 27% 36%
f(=2)) > 0. We call these functions “empirically supported”. bad fitin both dir.: |~ 75% 54% 37% 24%

But even this approach is often infeasible. In this expeninvee

compare the number of possible functions (with values betwe

min Y andmax Y’), the number of empirically supported functions

and the number of functions that were checked by the algorithg, Cyclic Models
we proposed in section IV-A in order to find the true function
(which it always did).

We simulate from the modét = round(0.5- X2)+ N for two
different noise distributionsi; (—2) = n1(2) = 0.05,n; (k) = 0.3
for |k| <1 andng(—3) = na2(3) = 0.05, na(k) = 0.18 for |k| < 2.
Each time we simulate a uniformly distributed with ; values
between—“71 and 51 for i = 3,5,...,19. For each noise-
regressor distribution we simulated 100 data sets. Fprand
i =9, for example, there argl1 — (—2))? ~ 1.1 - 10'° possible
functions in total ands® ~ 2.0 - 10° functions with positive
empirical support. Our method only checke@lr + 25 functions
before termination. The highest number of functions chedke
the algorithm is645 + 220. The full results are shown in Figure
9.

Data set A4 (limitation of ANMSs).

One can imagine that (for a non-lineg@rtwo consecutive ANMs
Z = g(f(X)+ N1)+ N2 (which could come from a causal chain TABLE IlI

X — Y — Z with unobservedy’) do not necessarily allow an DATA SET B1. THE ALGORITHM IDENTIFIES THE TRUE CAUSAL
ANM from X to Z. This means that if a relevant intermediatep recrion IN ALMOST ALL CASES. ONLY IN FEW CASESANM'S CAN BE
variable is missing, our method would output “I do not kno®db g1 iy BoTH DIRECTIONS, WHICH SUPPORTS THE RESULTS OF SECTIONI.
model fit)” and therefore does not propose a causal directhn

Data set B1 (identifiability).

For the three combinationgn,m) € {(3,3),(3,5),(5,3)} we
consider 1000 different models each: As in Data Set Al we
randomly choose a functiofi # const, PX and PY. For each
model we sample 2000 data points and apply our algorithm with
a significance threshold af = 0.05. The results given in Table

[l show that the method works well on almost all simulated
data sets. The algorithm outputs “bad fit in both directioirs”
roughly 5% of all cases, which corresponds to the chosen test
level. The model is non-identifiable only in very few cased. A
of these cases are instances of the counter examples 1i)), 1(
and 2 from above. Due to space limitations we only shew
(out of 11) in Table IV. This experiment further supports our
theoretical result that the model is identifiable in the gienease.

hope, however, that even in this situation the joint distiim is (m,m) | (33) (35) (5,3)
often reasonably “closer” to ANM in the correct directiorathto correct dir.: | 95.3% 94.8%  95.5%
: - : : wrong dir.: | 0.0% 0.0% 0.0%

an ANM in the wrong direction. We demonstrate this effect on Both dir. poss=| 0.8% — 0.0% 0.3%
. . . . 0 . 0 . 0
simulated data: We us&0 samplessupp X C {1,...,8} and bad fitinboth dir- | 3.9%  5.2%  4.0%

suppN C {-3,...,3} (the distributions are chosen as in Data



TABLE IV
DATA SETB1. THIS TABLE SHOWS ONLY SOME CASESWHEREANM S IN BOTH DIRECTIONS WERE POSSIBLEALL CASES (INCLUDING THE ONES NOT
SHOWN) ARE INSTANCES OF THE EXAMPLES GIVEN IN SECTIONII.

Function f | p(1),...,p(m) | n(1),...,n(m) | Instance of Example
0—0,1—22—0 0.83, 0.00, 0.17 0.15,0.26, 0.58 1(3)

0—2,1—0,2—2 0.34, 0.53, 0.14 0.33,0.34,0.33 1(31)

0—21—1,2—0 0.33,0.33, 0.34 0.85,0.14, 0.02 2
0—1,1—0,2—1,3~0,4— 0 | 0.20, 0.47, 0.14, 0.08, 0.1 0.33,0.33,0.34 1(44)
0—1,1—~0,2+1,3— 1,41 | 0.55, 0.01, 0.03, 0.26, 0.14 0.37,0.32,0.31 1(7)
0—0,1—1,2—0,3—~1,4— 2 | 0.03, 0.71, 0.06, 0.10, 0.3 0.32,0.34,0.34 1(44)

Data set B2 (close to non-identifiable). unequal in size. If we choose := #X := #supp X = 2 and

For this data set leth = 7 = 4 and f = id. The distribution 7 := #Y := #supp Y = 10, there are2!® = 1024 function from

of p is given by:p(0) = 0.6,p(1) = 0.1,p(2) = 0.1,p(3) = 0.2. Y to X, but only 10> = 100 functions fromX to Y’; one could
Depending on the paramet%r <r< % we sample the noise expect the method to favor models frorhto X. We show that
N from the distributionn(0) = n(1) = r/2,n(2) = n(3) = this is not the case.

1/2 — r/2. That meansV is uniformly distributed if and only if  Form # m € {2,10} andm # m € {3,20} we randomly
r= % Thus, the model is not identifiable if and only if the noisehoose distributions foX and N and a functionf (as before)
distribution is uniform, i.e. if and only it = % and sampled 500 data points from this forward ANM. Table V
(This can be seen as follows: SinB¢X =0,Y = 0) > P(X = shows that the algorithm detects the true direction in atratls
kLY = 0) and P(X = 0,Y = 1) > P(X = kY = 1) cases (except if the model is non-identifiable).

for all & # 0 we have thatg(0) = 0 = g(1), still assuming
P(N = 0) > P(N = k) for all k£ # 0. Thusg is not injective.
The special form off leads to one cycle of length, which
implies that uniformly distributedV is a necessary condition for
a reversible ANM, see Proposition 7 in section VI. Examp(&)

TABLE V
DATA SET B3. THE ALGORITHM IDENTIFIES THE TRUE CAUSAL
DIRECTION IN ALMOST ALL CASES. THERE IS NO EVIDENCE THAT THE
ALGORITHM ALWAYS FAVORS ONE DIRECTION.

shows that it is also sufficient.) m | 7 || cor. dir. | wrong dir. | both dir. poss.| both dir. bad fit
The further r is away from &, the easier it should be for —2 [ 10 || 97.4% 0% 2.5% 0.1%
our method to detect the true direction. For each value of thelO | 2 85.2% 0% 14.8% 0.0%
parameter we usel00 different samples, each of which has size 20 ]| 96.8% 0% 1.6% 1.6%

3 95.5% 0% 4.2% 0.1%

200. This time we choose a significance leveltof1, which still
leads to no wrong decisions (see Figure 10).
For » = 0.58 and » = 0.68 (indicated by the arrows in Real Data.

Figure 10) we further investigate the dependence on thesilsga

Clearly, » = 0.58 results in a model that is still very close to Data set 5 (abalone).

non-identifiability and thus we need more data to performl,weMe also applied our method to tadal one data set (Nash et al.,

whereas for- = 0.68 the performance increase quickly with thel994) from the UCI Machine Learning Repository (Asuncion

sample size (see Figure 11). Note that non-identifiable tsod& Newman, 2007). We tested the seék of the abalone (male

lead to very few, but not to wrong decisions. (1), female (2) or infant (0)) against length, diameterY, and
heightYs, which are all measured in mm, and hawg 57 and 28

! | different values, respectively. Compared to the numberof@es

05 (up to 41?7) we treat this data as belng dlscret_e. Becauseowe d

9% mmmmmmml - not have information about the underlying continuous lenge

! H have to assume that the data structure has not been desbyyed

MIHH Ejjg:;;;ycf‘azf;f';“ the user-specific discretization. We regad— Y;, X — Y> and

AN

-

Il correctly classified
0.8 |[Jwrongly classified

o
>

proportion of
identified models

o
i

o
[Ny

proportion of identified models

X — Y3 as being the ground truth, since the sex is probably
% 0 e 2o causing the size of the abalone, but not vice versa.

Clearly, theY variables do not have a cyclic structure. For
Fig. 10. Data set B2. ProportionFig. 11. Data Set B2. Far = 0.58 the sex variable, ho.we\{er’ the .mOSt. natural "?Ode' Wou.ld be a
of correct results of the algorithm (top) and r = 0.68 (bottom) the StrUCtur.eless set which is contained in the cyclic CQ”Wa'fOf
depending on the distribution of. performance depending on the datacomparison we try both models foX. Our method is able to
The model is not identifiable far = size is shown. More data is needed,dennfy 2 out of 3 directions Correct|y and does not make a

0.5. If r differs significantly from0.5 if the true model is close to non-
the algorithm makes a decisions indentifiable (top). In both cases the decision in one case. Except for this one exception all of the

proportion of
identified models

oo

/‘ 0.6 . /‘ 0.7

almost all cases. performance clearly increases with Packward models are rejected (see Table VI and Figure 12). We
the sample size. used the test level = 5% and the firstt000 samples of the data
set.
Data set B3 (no direction is favored a priori). For this data set the method proposed by (Sun et al., 2006)

Here, we consider two random variables, which supports ang v returns a slightly higher likelihood for the true causalediions



TABLE VI
DATA SET5. THE ALGORITHM IDENTIFIES THE TRUE CAUSAL DIRECTION
IN 2 CASES ALSO FORY7] THE p-VALUE IS HIGHER FOR THE CORRECT
DIRECTION, BUT FORMALLY THE METHOD DOES NOT MAKE A DECISION
HERE, WE ASSUMED A NON-CYCLIC STRUCTURE ONY AND TRIED BOTH
CYCLIC AND NON-CYCLIC FORX .

Y>: lumbar pain,Ys: urine pushingYy: micturition pains and’s:
burning of urethra, itch, swelling of urethra outlet. Fentmore,
the temperaturd” is measured i C with 0.1°C accuracy. We
denote the diagnosis by; (inflammation of urinary bladder) and
X5 (nephritis of renal pelvis origin).

Since the medical expert's diagnosis is based only on the

| W | Yo | Y3 symptoms we exped — X; andT — X, for i = 1,2 (precisely,
p-valuex _,y 0.17 0.19 0.05 we expect ally’s and T to be commoncauses forX;, but here,
p-valuey , x (non-cyclic) || 6-10-"2 | 2-10~ ™ | <10~ 1° we only consider the bivariate case and hope that the method
p-valuey _, x (cyclic) 0.06 4-100° | 1-10°8 still works). It is crucial that the variableX; only indicate the

diagnosisand not necessarily the truth. If tH€; corresponded to
the true stateX; would be regarded as the cause ands the
effect. But in this data set we model the diagnosis behavior o
(TN
[ doctors and not the disease process in the patients.

Note further that except foff" all variables are binary and
Fig. 12. Data set 5. Fdr regressing onX (left) and vice versa (right) the Should be modeled as being cyclic. The results are presémted
plot shows the conditional distribution of the fitted noiseeg the regressor. If Table VII. SinceT takes44 different values and the sample size
the noise is independent, then the distribution must noti@pn the regressor ; i —
state. Clearly, this is only the case f&f — Y3 (left), which corresponds to is only 120 V.Ve. also Ierduqu* = roundT) that onl)'/ takes. .
the ground truth. 7 values. This is necessary in order to meet Cochran’s conditi

and get reliable results from the independence test. (Wavaaee

that on the other hand, this may introduce small changesein th
than for the false directions, but this difference is so $nthht data generating model, but we hope that this has no effect on
their algorithm does not consider it to be significant. the causal reasoning.) The method correctly identifies dusal

The abalone data set also shows that working withalues

. . : TABLE VII

requires some care. For synthetic data sets that we simulate

. DATA SET 6. THE ALGORITHM IDENTIFIES THE TRUE CAUSAL DIRECTION
from one fixed model the-values do not depend on the data
Size In real W0r|d data however thiS Often iS the case H:N FOUR CASES(BOLD FONT).lN ALL OTHER CASES THE METHOD DOES
the data generating process does not exactly follow the mode"°" DEC'DEL'ET:SET/;ZTTEl;';S/LEZ'E:TTEX’NHTE:EEg:fé) F;VALUE'S AT
we assume, but is reasonable close to it, we get good fits for
moderate data sizes. Only including more and more datalsevea
the small difference between process and model, which fibrere

e

distribution
of N given X
°
5o 2
o &2 &
distribution
of N” given Y
°
& -

<o

X=0 X=1 X=2 =1v=8

| pvalx, »y | pvalyx, || pvalx,y | p-valy_,x,

10-9

leads to smalp-values. Figure 13 shows how thevalues vary ){1 8'833 g'ggg g 18_5 30?34_15*
|f_ we include the firstn data points of the abalone data set Vs =107 110 % » 0.009 0.009
(in total: 4177). One can see that although th&alues for Y. 0.935 0.935 0.925 0.102
the correct direction decrease they are clearly prefertibline Ys 0.102 0.925 0.190 0.190

p-values of the wrong direction. This is a well-known problam T 0.556 1.000 0.080 0.997 *
T 0.013 0.435 0.005 0.142

applied statistics that also has to be considered using ethad.

links Y1 — X1, Yo — X1, Tx — X7 andTx — X5. In six more

10° & 10 Feo—forw i o—forw | . . .
/“\ p-forw int /\\ p-forw int cases the method does not decide. This is relatively ofteh an
p-backw int. p-backw int.
10° p-backw cyc| e 107°
10|

pbackweye] May be explained by the small data size, for which it is difficu

(9] (0] (o]
g0 o S E: to reject a null hypothesis. We therefore assign an astetishll
I p-forw int. ’-'I‘-10"0 &10 10 . . . . -
p-backw int. further directions for which the correspondipgvalue is at least
- e o 10 times larger than the one for the other direction. Furtheemo
© numberor sampios O numboror sampies O rumberof sampise we checked that the method does not find any causal link batwee

the symptom variable¥’, as expected.
Fig. 13. Data set 5. The plots shawvalues of forward and backward Here, the method from (Sun et al., 2006) does not find a
direction depending on the number of samples we includeddéta point  significant result in 12 cases (8 cases: exactly the samiéhidosl
meansp < 10~16). The p-value in the correct direction is eventually Iowerfor both directions, 3 cases: small favor of the wrong diregt1
than any reasonable threshold. Nevertheless we prefeditgistion since it . : ' . . . .
is decreasing much more slowly tharbackward. case: small favor for the correct direction) and it wrongijers

Xy — T and X5 — T as being significant.

Data set 6 (acute inflammations). Data set 7 (temperature)

The data seacut e i nfl ammati ons (Czerniak & Zarzycki, furth lied hod q isting 16t
2003) from the UCI ML Repository (Asuncion & Newman, 2007)W(? urther applied our method to a gta set consisting1
aily values of temperature measured in Furtwangen (Geryhan

consists of 120 patients. For each patient we have an irtmiica?1 ) . .
P P ing the variables temperaturd,(in °C) and month {1).

that tells us whether a specific symptom is present or absern, | inheri i h q Si
the temperature and the diagnosis of a medical expert, whetﬁk;] earth '_”d‘?”ts a (;]yc Ic s_tructurfe,hw ere:s Ioe_s r;ot. Ince
the patient suffers from acute inflammations of urinary t&ad the month indicates the position of the earth relativelynte $un,

and/or Wh.ether .heisuffers from acute nephritises. In pa#ic  1g janzing contributed this data set. It is one paihon ps: / / webdav.
we have binary indicators (yes or nb): occurrence of nausea,t uebi ngen. npg. de/ cause- ef f ect/
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which is causing the temperature on earth, we take+ 7" as the to be the Heaviside step function defined ffyv) =1 if w >0
ground truth. Here, we aggregate states and use monthadnstnd g(w) = 0 otherwise, equation (3) leads to (with(t) the

of days. Again, this is done in order to meet Cochran’s cémalit probability mass function of/ := —N)

it is not a scaling problem of our method (if we do not aggregat y

the method returngq,ys—,7 = 0.9327 and pr_,qays = 1.0000). P(X=1Y =y)=Py+N>0)=P(M<y) = Z m(t).
For 1000 data points both directions are rejected oo

(p-valuey;, s+ = 3e — 4, p-valuer_,,; = 1le — 13). Figure

14 shows, however, that again thevalues,_,r are decreasing X i ) be d ived b ANM. But
much more slowly tham-values-_, »;. Using other criteria than monotonously increasing can be described by an - puteven

simple p-values we still may prefer this direction and propose Fome models that we regard_ as a r_latural exgmples}(f(‘a)lzzig
as the true one. ead to such a monotonously increasing conditional: By

andPY|X=1 peing discretized Gaussians with equal variance and
different means.

Hence, every conditional for whiclP(X = 1]Y = y) is

10°

=p-forw int.
p-backw cyc.
107

-20
107,

1 right)

@

VI. PROOFS

p-value

0 left, Y:
o o o o
Y

I

=

proportion of Y values

(Y

A. Proof of Theorem 1

2000 4000 6000 0
number of samples

Proof:

= First we assumeuppY = e with <
Fig. 14. Data set 7 and Data set 8. Left: The plot shewalues of forward This im plp th t{]\l]/O ._ym} %\OI P %\1]
and backward direction depending on the number of sampleéackeled (no <o < ym. THIS IMplies thallVmax := min{n € N|P(
data point meang < 10~16). Again we prefer the correct direction since n) > 0} is finite. Define the non-empty sets;

A

N

the p-values are decreasing much more slowly thabackward. Right: The supp XY =y;, fori =0,...,m. That meang),...,Cm
data set does not allow an ANM in any of the two directions. réfae the supp X are the smallest sets satisfyiR(X € C. h%
method does not propose an answer. L. ¢
yi) = 1. For all 4, j it follows that
The method proposed in (Sun et al., 2006) finds a larger Ci=CjorC;nCj=0andf |5 =¢ =const. (4)

likelihood for the correct direction, but does not considis

difference as being significant. This is proved by an induction argument.

Base step: Considef,, corresponding to the largest

Data set 8 (faces). value Ym = max{f(z)|z € X} 4+ Nmax Of suppY.
This data set (Armann & Bulthoff, 2010)499 instances) shows Assuming f(z1) < f(z2) for 1,22 € Cn leads to
the limitations of ANMs. Here X represents a parameter used ym = f(z1) + Nmax < f(z2) + Nmax = ym and

therefore to a contradiction. Induction step: Considgr

to create pictures of artificial faces( takes values betwee X T iy
and assume properties (4) are satisfied forCgllwith

and 14, where 0 corresponds to a female face4 corresponds K s
to a face that is rather masculine. All other parameter walue k <k <m. If z e CpNCy for somek

are interpolated. These faces were shown to some subjects wh - - A
had to irllodicate whether they believe this is a mate= 1)J or > PNV =y~ J@) =PN =y — f(2)) >0 VE € Gy
a female ¥ = 0) face. In this example we regatd as being

the cause ol. However, the data do not admit an ANM in any
direction px_,v = 0 andpy_, x = 0). Thus, the method does
not make a mistake, but does not find the correct answer,reithe
On this data set the method in (Sun et al., 2006) again detects
an insignificantly larger likelihood for the correct dirmt.

:>C~Y,;, cC, = C~’l~c =C, =7 |C*k:f |éf€:c0nst

Furthermore, ifC, N C; = 0Vk < k < m, then
f |ék: const using the same argument as 1o, .

Thus we can choose some séts . .., C; from Cy, ..., Cim,
where I < m, such thatCy,...,C; are disjoint, and
¢, := f(Cy) are pairwise different values. Without loss of

It is possible, however, to include generalizations of ANMs ) ~
P 9 generality assumé€y = Cy. Further, even the sets

that are capable of modeling this data set. One possib8itipi

consider models of the form ¢ +supp N :={cp +h : P(N =h) >0}
V=f(X+N),NLX and X=g(Y+N),NLY (3) are pairwise different: Ify; = c;, + hy = ¢; + ha thenCy, C

with some possibly non-invertible functions and ¢ (for con- supp (XY =y;) = i and C; C C;, which impliesk = 1.

tinuous data, a similar model has been proposed by Zhang & Now consider the case whebé has infinite andX finite

Hyvarinen (2009)). In this model the functighdoes not only act support:supp X = {zo, ..., zp}. Then we defin&y, ..., C;
on the support oft, but on an enlarged space. Using a method 0 be disjoint sets, such thdtis constant on each of them:
that is based on the same ideas described in section IV oideis a ¢ := f(Ci). This time, it does not matter which of these sets

to fit this data set quite wellpy_,y = 1.000 and py_, x = 0). is call_ed(_]o. Again, we will deduce that the setg+supp N
However, we do not have any theoretical identifiability tesand are disjoint: _ .
the method has one further drawback: Simulations show that i The setsD; := supp Y'|X = x; fulfill
often prefers the variable with the smaller support as thecef D; = D; or D;nD; =0 andyg |5, = d; = const.
In particular, we can indicate why the model class at thetrigh i
hand side of equation (3) gets too largeXifis a binary variable Thus we haver;, + supp N and ¢, + supp N are either

andY is the discretization of a continuous variable: If one gets equal or disjoint. But ifc;, + supp N = ¢; + supp N for



k # L it follows for zq € Cy, 7, € C; and ally € ¢ +
supp N (since there is a backward mode€l= g(Y)+N)

P(X =z4,Y =y)
X =x,Y =vy)
=a) PN =y — f(2a))

= const

= const
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B. Proof of Theorem 3

Proof: We distinguish between two different cases:

P(X =x,)-P(N =y — f(xp)) a) P(N=k) >0Vm < k<landP(N = k) = 0 for all
P(N =y — f(za)) otherk.
= PN =y — [ (1)) = const .
and thusP(N = 0)/P(N = r) = const,Vr € supp N.
This is only possible for a uniformly distributedv, wo I )
which leads to a contradiction singéehas been assumed " ] e
S 9) ®—©®
to have infinite support. D1 e ee®
Thus we have proved condition c). For a) it remains to show
that the setg; are shifted versions of each other. This partf @ et St T T
of the proof is valid for both cases (eith&r or Y has finite z 7 5 7 X

support): Conside€; for anyi. According to the assumption
that an ANMY — X holds we have

N|Y:COgJ\~f|Y:Ci

& X—gle)lV =L X —gle)]Y =c;
(*)
with d; = g(¢;) — g(cp). Thus C; = Cp + d; (including
do = 0), which completes conditions a).
To prove b) observe that we have for alk C;

P(X=a) _ P(X=a2)P(N=c — f(z))

P(X€Ci)) Yiec, PX=2)P(N=c; - [(2))
P(X=z,N=c¢; — f(z))

PY =¢)

PX=z-4d;|Y =c)
PX=2—-di,N=cyo— f(z—d))

= X+ di|lY =co L XY = ¢

:P(X=x|Y=Ci)

)

P(Y =¢p)
P(X € ()

. In order to show that we have a reversible ANM, we have
to construct ay, such thatX = g(Y)) + N. Therefore define
the functiong as follows: g(y) = 0,Vy € ¢ + supp N and
g(y) = d;,Vy € ¢; +supp N, i > 0. (This is well-defined
because of a) and c¢).) The noiseis determined by the joint
distribution P(XVY), of course. It remains to check, whether
the distribution of N|Y = y is independent of;. Consider

a fixed y and choose such thaty € ¢; + supp N. Since
C; = Cp + d; the conditiong(y) + h € C; is satisfied for
all h € Cy and therefore independently gfandc;. Now, if
g(y) + h € C; we have

P(Y =y)
_PX =g +hN=y—flgly) + 1)
P(Y =y)

_ P(X =g +hPN=y—c)

Yiec, P(X =2)P(N =y — f(2))
_PX=9@+h)  PX =g +h—d)

P(X () P(X € Cp)

P(X =h)
P(X € ()
which does not depend op And if g(y) + h ¢ C; then
P(N = h|Y =y) = 0, which does not depend aneither.

Fig. 15. Visualization of the path from equation (5). Hete, = f(z2) +
Nmax and wq

f(fl'l) + Nmax.

=: Assume that there is an ANM in both directions
X —- Y andY — X. As mentioned above we have
a freedom of choosing an additive constant for the
regression function. In the remainder of this proof we
require P(N = k) = P(N = k) = 0Vk < 0 and
P(N = 0),P(N = 0) > 0. The largestk, such that
P(N = k) > 0 will be called Nimax. In analogy to the
proof above we defin€y := supp X|Y = y for all
y €suppY.
At first we note that allCy, are shifted versions of
each other (since there is a backward ANM) and
additionally, they are finite sets (otherwise it follows
from the compact support df that there are infinitely
many infinite setsf~!(f(z)) on which f is constant,
which contradicts the assumptions.) Start with any
that satisfies:; = min{f~!(f(z1))} and define

&1 :=min {2 € Cpay) . \ (@)}

This implies f(21) > f(z1) andzy € Cy(z,).
If such an #; does not exist because the set
on the right hand side is empty, then it can-
not exist for any choice ofr;: It is clear that
Cl(z1)+Nmax = F(f(z1)) and then we consider
the first C¢(4,)4n,..,+i that is not empty. Then
this set must bef~'(f(i1)) for someiy. This
leads to an iterative procedure and to the required
decomposition ofupp X.

We have that either

max{f " (f(£1))} > max{f " (f(z1))} or
min{f ™' (f(21))} < min{f " (f(z1))} :

Otherwise  Cy(;,) and  Cyzy)—1 satisfy
maxC’f(il),l > maxC’f(il) and mian(il)71 <
min Cy ;). Because ofty € Cyz,y, @1 ¢ Cpzyy—1
this contradicts the existence of an backward ANM.
We therefore assume without loss of generality
max{f~'(f(#1))} > max{f~'(f(z1))}. Then we
even havei; > z1, 1 min{C' ;)4 N, } and
min{C'¢ (5, )4 Npart11- (Otherwise we use the

T1 =



b)

same argument as above With'y \ ..
Cf(21)+ Numax+1-) Define further

zo :=min £ (f(21) + Nmax + 1)

Since /1 (£(#1)) € C(ay )4 Ny UL (F(21)) N
C(w1)+Nmax+1 = 0, such a value must exist. Again,
we can definet, in the same way as above.

Sety1 = f(:El) + Nmax and 21 = f(:El) + 2 - Nmax
and consider the finite box fronfminCy,,y1) to
(max C>,, z1). This box contains all the support from
XY = f(z1) + Nmax + i, Wherei = 0, ..., Nmax.
Assume we know the positions in this box, where
P(XY) s larger than zero. Then this box determines
the support of X |Y = f(z1) + 2 - Nmax + 1 (the
line above the box) just using the support 8f and
N. lterating gives us the whole support BfXY) in
the box above (fromys = f(z2) + Nmax 10 29 =
f(z2) + 2 - Nmax). Since the width of the boxes are
bounded by3 - max Cf(zl) — min Cf(zl), for example,

at some point the box af,, must have the same support
as the one of;. Figure 15 shows an example, in which
n = 2. Using only the distributions oV and N we can
now determine a factow for which P(X = z;,Y =
f(xl) + Nmax) =« P(X = x’qu = f(xn) + Nmax)
This is done by following a sequence betwéen, y; )
and (zn, yn) using only horizontal and vertical steps:

(x17y1)7 (i.hyl)v (:%17 f(xQ))7 (:L'Q,f(l'g)),
($27 92)7 (£27 92)7 L) (xnv y’ﬂ) (5)

2nd

(cf Figure 15). Since this factor only depends on the
distributions of N and N, the samex satisfiesP(X =
Zn,Y = f(zn) + Nmax) = a - P(X = z9p-1,Y =
f(z2n—1) + Nmax) and therefore

P(X =21,Y = f(21) + Nmax) = o*-
PX =zgy1)yn1Y = f(@®ksr1)n—1) + Nmax)

Note that a corresponding equation with the same
constantx holds for the direction to the left af;. This
leads to a contradiction, since there is no probability
distribution for X with infinite support that can fulfill
this condition (no matter if is greater, equal or smaller
than1).

<: This direction is proved in exactly the same way as in
Theorem 1.

P(N=k)>0Vke€Z.

Since X andY are dependent there agg and y2, such

that g(y1) # g¢(y2) with g being the “backward func-

tion”. Comparing {P(X = k,Y = y1),k > m} and

{P(X = kY = y),k > m} we can identify the

differenced := ¢(y2) — g(y1). Wlog considerd > 0. We
P(X=m—-1Y=y:) _ PX=m+d-1,Y=ys) :

use P_(szjyzyl)l = P(X:erd,Y:yzf in order to

determineP(X =m—1,Y = y;) and thenP(X =m —1)

(using f andPY). Iterations lead to alP(X = z).

C. Proof of Theorem 4

Each distributiony” | X = z; has to have the same support (up

to an additive shift) and thus the same number of elements wit

12

and probability larger thar0: #supp X - #supp N = k - #suppY.
This proofs (i). For (ii) we now consider 3 different cases:f1
andg are bijective, 24 is not injective and 35 is not injective.
These three cases are sufficient siffcand g injective implies

n =m and f and g bijective. For each of those cases we show
that a necessary condition for reversibility includes asteone
additional equality constraint faP~ or PY.

1st case;f andg are bijective.

Proposition 6: AssumeY = f(X)+ N, N 1 X for
bijective f and n(l) # 0,p(k) # 0Vk,l. If the model is
reversible with a bijectivg, then X andY are uniformly
distributed.

Proof: Since g is bijective we have thavy3t,
g(ty) = g(y) — 1. From (2) we can deduce

n(y—flr+D)p+1) Az +1-9@1))e)
n(ty — f(z))p(x) i(z+1—g(y))q(ty)
which implies

ple+1) _ nlty—f@)aly)
p(z) n(y — flz+1))q(ty)
_petm) T nlty = fl@+k)a@)™
p(z) [Ty n(y — fz + K+ 1)) q(ty)™

Sincef is bijective it follows thatg(y) = ¢(¢y). This holds
for all y and thusY and X are uniformly distributed. m
casey is not injective.

Assume g(yg) = g¢g(y1). From (2) it follows that

n(vo—s()) = W)y and thus (Tt (0)] =
o ylff(m)) q(y1) n(yrf(m))
% vz, z, which imply equality constraints on.
n\yi—Jryx

To determine the number of constraints we define a function
that maps the arguments of the numerator to those of the
denominator

Im(yo — f)
yo — f(x)

We sayh has a cycle if there is a € N, s.t. h¥(a) =
(ho...oh)(a) € Im(yo — f)Vk < z and h*(a) = a. For
example:2 Moge ol o
Proposition 7: AssumeY = f(X)+ N, N 1 X and
n(l) # 0,p(k) # 0Vk,l. Assume further that the model
is reversible with a non-injective.
e If h has at least one cyclef#Imf — #cycles+ 1
parameters of, are determined by the others.
o If h has no cycles#Imf parameters of. are deter-
mined by the others.

— Z/MmZ

h = oy — f(x)

yo,y1,f

Proof: Assume h has a cycle of length
) h h h h
rm ny +— mno +— ... = mn +— ny (here,
Yo — ni1,---,¥0 — nr € Imf), then % = 1 because
alwo)” _ n(m) | nm2)  nle) 0 on) _
q(y)” n(nz) = n(ns) """ n(ni) n(ni) ]
and n(yo — f(x)) = n(yn — f(z))ve, that is
n(ny) = n(ng) = ... = n(n,). Thus we get- — 1 equality

constraints for each cycle of length For any (additional)
non-cyclic structure of length: n; — ng — ... — n, and

nr ¢ Im(yo - f) (here,yo — Nl Y0 — N1 € Imf):

we haven(ni) = ... = n(n,) and thusr — 1 equality
constraints. Together with the normalization these are
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#Imf — #cycles+ 1 constraints. inference principle to a finite amount of data from two valésh
we also mentioned the limitations gfvalues on real world data
If » has no cycle, we havgIm f — 1 independent equations sets with changing data size.

plus the sum constraint. E.gZ.E—ig = % = % implies Since it is known that? fails for small data sizes, changing
_ n(3) _ n(4)? the independence test for those cases may lead to an even
n(#) =n(6)5y and n(2) = Sy - Further, higher performance of the algorithm. Further, our method ca
n(yo— (@)  qlyo) Sap@n(yo — f(Z) be generalized in different directions: (1) handling mohant
n(y1 — f(:c)) = a(y1) = Zjﬁp(i)n(yl ~ 1) two variables is straightforward from a practical point aéw,

although one may have to introduce regularization to make th
introduces a functional relationship betwee@andn. B  regression computationally feasible. Therefor, the workvtooij
Note that if = does not have any divisors, there are net al. (2009) and the practical approach of combining cairgtr
cycles and thugtImf parameters of, are determined. We pased methods and ANMs by Tillman et al. (2009) may be

have the following corollary helpful. (2) One should work on practically feasible extens
Corollary 8: In all cases the number of fixed parameters igf ANMs and (3) it should be investigated how our procedure
lower bounded by[1/2 - #Imf] +1> 2. can be applied to the case, where one variable is discretéhand
3rd case:f is not injective. other continuous. Corresponding identifiability resuktsnain to
Assume f(zo) = f(z1). In a slight abuse of notation we be shown. (4) We further believe that it is valuable to test th
write following principle for causal inference: One decides for— Y
Z)mZL X Z)mZL — Z/mZ not only if one finds an ANM in this direction and not the other,
9-9 (y,9) = gy — 9@ but also if the observed empirical distributionréasonably closer

to the set of distributions that allow for an ANM frol¥ to Y
than to the set of distributions that allow for an ANM from
Im(zg—(9—9g)) — Z/mZ to X (e.g. the KL divergence to the subset ANM,y is smaller
zo—g(y)+g9(H) — x1—g@)+g@) =  than to the subset ANM_, x, see section llI-C). Clearly, the
challenges of computing the distances to those sets oitistms
and quantifying whateasonablycloser means have to be solved.
We answered the theoretical question of identifiabilityt tou
TTRY future work the concept of ANMs (like any proposed concept
injective andn(l) # 0, p(k) # 0 Vk, 1. Assume further that ot ca.sa inference) has to be addressed empirically: Itilgho
the model is reversible for a function be tested on a large number of real world data sets, for which
« If 7 has at least one cyclgilm(g — g) — #cycles+ 1 the ground truth is known. Our small collection of experitsen

Similar as above, we define
hlo@h!] :
We say thath has a cycle if there is ae N, s.t. h¥(a) =

(ho...oh)(a) € Im(zg — (g — g)) Vk < z and h*(a) = a.
Proposition 9: AssumeY = f(X)+ N, N 1L X, f is not

parameters op are determined by the others. for example, only give a hint that ANMs may help for causal
« If h has no cycles#Im(g — g) parameters op are inference. It is still possible that exhaustive experirsesttow that
determined by the others. the assumptions current methods for causal inference aedba
Proof: From (2) it follows thatZ2e) — A (20-9(»)) — on are most often not met in nature. Nevertheless we regard ou
p(w1) i(z1-g()) work as promising and hope that more fundamental and general
p(zo—g(y)+g(g))»n (ﬂ—f(zg—g(y)+g(g))) ) principles for identifying causal relationships will bevetoped

p(Irg(yHg(@))% gﬂf(xlg(yHg(ﬂ))
follows analogously to the proof of Proposition 7. ® ACKNOWLEDGEMENT
If (x1 —x¢) does not dividen, there are no cycles and thus
#Im(g — g) parameters op are determined.

Corollary 10: In all cases the number of fixed parameter
is lower bounded by1/2 - #Im(g —g)] +1 > 2.
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