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Abstract. Neurons deep in cortex interact with the environment extremely indirectly; the spikes

they receive and produce are pre- and post-processed by millions of other neurons. This paper

proposes two information-theoretic constraints guiding the production of spikes, that help ensure
bursting activity deep in cortex relates meaningfully to events in the environment. First, neurons

should emphasize selective responses with bursts. Second, neurons should propagate selective inputs

by burst-firing in response to them. We show the constraints are necessary for bursts to dominate
information-transfer within cortex, thereby providing a substrate allowing neurons to distribute

credit amongst themselves. Finally, since synaptic plasticity degrades the ability of neurons to burst

selectively, we argue that homeostatic regulation of synaptic weights is necessary, and that it is best
performed offline during sleep. selectivity and synaptic plasticity and information theory and credit

assignment

1. Introduction

To survive an organism must choose favorable actions in a great variety of situations. This re-
sponsibility falls primarily on the central nervous system and in particular on its millions or billions
of neurons. When deciding how to act neurons face a fundamental problem. A typical neuron does
not interface directly with the environment, but only with other neurons. All it can “see” is a large
number of input patterns, constantly changing, on its thousands of synapses, but what these input
patterns may mean or represent is unknown to it. Worse, all a neuron can do, in essence, is choose
just one of three actions: stay silent, spike once, or burst.1 In other words, a neuron is extraordinarily
“stupid” [1]: it does not know what its inputs mean, it does not know what it is communicating, to
whom, and for what purpose, and in any case it has very little to say. How, then, can neurons possibly
act in the interest of their brain?

A large body of evidence suggests neurons learn by modifying their synapses according to the
distribution of pre- and postsynaptic spikes, modulated by chemical signals such as dopamine and
noradrenaline [2–5]. Spikes play a privileged role in most models of neuronal learning: the distri-
bution of spikes (or inter-spike intervals) determines when synapses are modified. For example in
Hebbian learning synaptic plasticity is a function of correlations between spiking activity, whereas
in spike-timing dependent plasticity (STDP) the precise timing of pre- and postsynaptic spikes de-
termines whether synapses are potentiated or depotentiated [6–12]. Spikes therefore seem to provide
a mechanism the brain uses to assign distribute credit and blame amongst neurons: synapses that
transmit many spikes are proportionally potentiated or depotentiated, suggesting that spiking neurons
and synapses are credited or blamed for good or bad outcomes experienced by the organism. Using
bursts to assign credit and blame only makes sense if bursts contribute actively to total brain activity,
in contrast to silent (or near silent) neurons, which form a more passive background.

This paper makes two main contributions. First, it information-theoretically characterizes the
distinction between bursting foreground and silent background in terms of selectivity (quantified as

1We use the term “burst” loosely to indicate many spikes emitted in a short time.
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effective information). Second, it proposes that neurons communicate selectivity with bursts. By this
we mean: (i) neurons should use bursts to emphasize outputs that depend selectively on their inputs,
and few or no spikes for outputs that depend vaguely on their inputs and (ii) neurons should propagate
selective inputs by responding to spiking inputs with spiking outputs. Bursts should be: (i) selective
and (ii) impactful.

In the results we show that highly selective outputs are responsible for almost all of the information
transferred by a neuron. Moreover, we show that communicating selectivity satisfies a necessary
condition for ensuring that selectivity is preserved by composite channels (such as pairs of neurons
or neuronal populations). We then consider the implications of communicating selectivity for credit
assignment and learning, showing that (de)potentiating synapses in response to selective outputs (i.e.
bursts) yields finer control over how neurons deep in cortex adapt to sensory stimuli, since selective
responses are more traceable.

Finally, we discuss how communicating selectivity may be enforced. Since synaptic strengths change
constantly, ensuring bursts are selective requires ongoing effort. We argue that sleep, when the brain
is offline and its activity is not task-dependent, provides an ideal time to align bursts with effective
information and balance the relationship between input and output spikes.

1.1. Related work. Many models of learning and inference in distributed systems have been devel-
oped, starting perhaps with Selfridge’s Pandemonium of “shrieking demons” [13]. Recent approaches
have focused on Bayesian models [14–17] where, typically, the number of spikes outputted by a neu-
ron or the likelihood of a neuron outputting spikes corresponds to the probability of some event. Our
approach is complementary to these since, after imposing the two constraints required for communi-
cating selectivity, neurons have many remaining degrees of freedom regarding when they should spike.
Neurons are free to use their spikes to predict neuronal or external events, so long as the events they
focus on are specific.

Our work builds on observations that cortical representations of sensory inputs are sparse [18,19].
Indeed communicating selectivity is a necessary condition for bursts to be sparse in cortex. However,
rather than focus on sparsity at the population level, we investigate the more basic notion of selectivity,
which is a local (specific to individual neurons) information-theoretic requirement for global sparsity.

2. Methods

Neurons share the same repertoire of outputs – spiketrains – but differ in how they categorize their
inputs. The most basic fact about a category is how sharp or selective it is: the fraction of inputs it
contains. This section introduces effective information as a tool for quantifying selectivity.

We model neurons as abstract elements with finite alphabets of inputs and outputs (or situations
and actions) denoted by S and A respectively. The probability that element nk outputs a ∈ A in
response to input s ∈ S is pk(a|s). Time is discretized into bins of fixed length which we leave
unspecified (somewhere between 10 and 100ms). The input and output alphabets consist of patterns
of 0s and 1s corresponding to silences and spikes.

2.1. Quantifying selectivity. The information generated when an element produces an output is
quantified following prior work [20, 21]. Let the potential repertoire punif (S) be the set of potential
inputs equipped with the uniform distribution.

The actual repertoire p̂k(S|a) of inputs that cause (lead to) a is computed by applying Bayes’ rule

(1) p̂k
(
s|a
)

:=
pk
(
a|do(s)

)
· punif (s)

p(a)
,

where p(a) =
∑

s pk
(
a|do(s)

)
· punif (s). The do(−) notation refers to Pearl’s calculus for working

with causal interventions [22]. It stipulates that pk
(
a|do(s)

)
is computed by imposing input s onto
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neuron pk and observing the distribution of responses. Thus, the actual repertoire is computed based
on interventions rather than observations – which is why we denote it by p̂ rather than p.2

Intuitively, an action is selective if it is chosen in response to few out of a large set of potential
inputs. Formally, the effective information generated by an action is the Kullback-Leibler divergence
between the actual and potential repertoires:

(2) ei(S
nk−−→ a) = H

[
p̂(S|a)

∥∥∥ punif (S)
]
.

Kullback-Leibler divergence H[p‖q] =
∑

i pi log2
pi

qi
is non-negative, and is zero if and only if p = q.

Effective information lies in range [0, n], where n = log2(# inputs in S). The effective information
a neuron generates when it outputs a is high if few inputs cause (lead to) the neuron choosing that
output. Conversely, effective information is low if output a is chosen for a large fraction of potential
inputs.

Effective information is an action-specific quantity, unlike mutual information. The expectation
of effective information

∑
a∈A p(a)ei(S → a) is the mutual information I(Sunif ;A) where inputs are

given the uniform distribution.3

Deterministic elements. The above treatment simplifies considerably for a deterministic function
f : S → A. Define Markov matrix

pf (a|s) =

{
1 if f(s) = a
0 else.

The actual repertoire is then

p̂f
(
s|a
)

=

{ 1
|f−1(a)| if f(s) = a

0 else.

The support (the set of inputs with p > 0) of the actual repertoire is the set f−1(a) of inputs that
function f sends to output a. Alternatively, we can describe f−1(a) as a category implicitly defined
by the function f , since f assigns the same label a to all elements of the pre-image.

The effective information generated by a deterministic function is

(3) ei
(
S

f−→ a
)

= log2

|S|
|f−1(a)|

= log2

(
total # of inputs

)(
# of inputs causing a

) .
Thus, an action a by function f is selective if it specifies a small category f−1(a) in a large state
space S. Conversely, the larger f−1(a) is relative to the repertoire of potential inputs, the vaguer the
action.

Fig. 1 shows how a firing and silent AND-gate categorizes its inputs and generates information. Of
particular importance is “tracing back”. When the AND-gate fires, it specifies a unique cause: input
11. On the other hand, when the AND-gate is silent the specification is more vague: the input could
have been any of 00, 01 or 10. A firing AND-gate thus specifies its input more sharply than a silent
AND-gate.

To simplify the exposition we consider deterministic elements in the remainder of the paper – except
for section §3.1.

2In this paper, where we consider effective information generated by a single neuron and the mechanism is known,
the do-calculus is redundant. We retain the notation to maintain consistency with prior and future work, where applying
causal interventions is necessary.

3We use the uniform distribution since, as shown in Eq. (3), it precisely captures the fraction of inputs causing an
output.
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Figure 1. Categorizing inputs. (AB): An AND-gate fires iff it receives input 11.
(C): The gate firing at time t = 1 points to a single cause at time t = 0: 11. (D):
The firing gate generates 2 bits of effective information. (EF): The gate is silent iff
its input is one of 00, 01, 10. (G): The silent AND-gate at time t = 1 points to three
potential causes at time t = 0 that are indistinguishable to it. (H): Silence is vaguer
than firing, generating 0.4 bits of effective information.

2.2. Communicating selectivity. We propose that neurons communicate the selectivity of their
outputs by: (i) emphasizing selective outputs with bursts and (ii) propagating selectivity by bursting
in response to selective inputs. Fig. 2 shows examples of communicating and not communicating
selectivity.

Constraint 1 (emphasize selectivity).
A neuron emphasizes selective outputs with spikes if for each output a ∈ A,

firing-rate(a) ≈ g
(
ei(S → a)

)
for g some monotonically increasing function such as the identity, exponential or sigmoid function.

Neurons have extremely asymmetric input/output ratios: their inputs alphabets are vastly larger
than their output alphabets. They can therefore categorize inputs asymmetrically, so that bursts
are much more selective than responses containing few or no spikes. This fits experimental evidence
showing that neurons burst selectively for highly specific stimuli whereas the vast majority of inputs
elicit little or no spiking response [23].

Constraint 2 (propagate selectivity).
A neuron propagates selectivity to the extent that its input and output firing rates are aligned on
average,

avg firing-rate
(
inputs

)
≈ firing-rate

(
output

)
.
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Figure 2. Communicating selectivity. An element (not shown) has 6 binary
input lines, and so can receive 26 = 64 input patterns. (A): The element categorizes
the 64 firing patterns into 4 categories. (B): To emphasize selectivity, the element
assigns more spikes to sharper categories. (C): Selectivity is not emphasized if vague
categories receive more spikes than sharp categories. (D): The 64 input patterns are
arranged so that the number of spikes increases from the bottom left corner to the
top right. (E): To propagate selectivity the element assigns more output spikes to
inputs containing many spikes and conversely. (F): An element fails to propagate
selectivity if it assigns many output spikes to inputs containing few spikes.

Most synapses are excitatory, so that presynaptic spikes tend to cause postsynaptic spikes. Prop-
agating selectivity requires further that the ratio of input to output spikes is actively regulated.

Neurons can fail to propagate selectivity in two ways. First, they may overspike, bursting when
they receive few spikes. In this case, they will bias the brain towards epileptic seizures. Second, they
may underspike, responding to many bursting inputs with silence. In this case, they will tend to
ignore important events in the brain and the environment, possibly to the detriment of the organism.

The two constraints are complementary. Emphasizing selectivity requires that sharp categories
correspond to bursts. Propagating selectivity requires that neurons burst when they receive many
spikes. Together they imply that neurons conserve effective information – i.e. neurons treat their
input-spikes, on average, as selectively as the neurons that generated them:

(4)
1

|{j : j → k}|
∑
j→k

g
(
ei
(
Sj

nj−→ aj

))
≈ g

(
ei
(
Sk

nk−−→ ak

))
for each element nk.

We highlight some features of the proposal. First, treating spikes selectively depends only on
the neuron: its mechanism and its output. Selectivity can be computed locally. Second, effective
information maps naturally onto firing rates since it is a non-negative scalar.4 Third, emphasizing
selectivity conserves energy since costly outputs, which generate high effective information, are chosen
for a small fraction of potential inputs. Spikes and, more generally, synaptic activity caused by spikes,

4We do not propose a rate code in the sense that only firing rates are meaningful. Rather, we suggest that firing
rates have a specific, standardized meaning. Additional information can be encoded in the precise timing of spikes.
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is metabolically expensive, accounting for much of the brain’s large energy budget, whereas silence is
less expensive [24]. If spikes are expensive, they should be used as little as possible.

The choice of function g in Eq. (1) is not information-theoretically crucial, so long as it is mono-
tonically increasing and consistently applied across the system. The relationship between the number
of spikes received and produced by neuronal populations has implications for how activity propagates
through cortex [25,26], which may impose additional constraints on the choice of function.

Inhibitory neurons do not propagate selectivity since inhibitory (GABA) synapses suppress postsy-
naptic postsynaptic spiking activity: increasing inhibitory input decreases spiking output. Inhibitory
neurons thus operate according to different principles than those proposed here (although note they
do appear to emphasize selectivity) and are deferred to future work.

Implications for the neural code. It remains unclear what neurons encode into their spiketrains or
how they decode and usefully exploit the information they find there. Certainly, propagating symbols
– such as, for example, distributed patterns of spiking activity – is difficult because of the asymmetric
ratio between neuronal inputs and outputs: thousands of input wires are compressed into a single
output wire.

What neurons can easily do is burst when they receive many bursting inputs (Constraint 2) and
ensure that bursts are selective (Constraint 1). In this way, neurons ensure that, on average, they
produce selective outputs when they receive selective inputs. Additional information may be encoded
into the precise timing of neuronal firing as an overlay on top of the more basic firing rate code
advocated here.

Thus, even if neurons have difficulty propagating symbols, they can at least propagate selectivity, a
property of symbols that we argue below is important for credit assignment.

3. Results

3.1. Selectivity and information transfer. This subsection presents a rigorous justification for
the constraints proposed above. It is well known that the mutual information quantifies the amount
of information transferrable across a channel [27]. It is useful to view neurons, or populations of
neurons, as information-theoretic channels in the brain. The first result then shows that the effective
information generated by highly selective outputs approximates mutual information up to first order:

Theorem 1 (selective outputs dominate information transfer).
Suppose outputs by neuron nk are grouped under two labels, a0 and a1, and pk(a1) � 1. Then the
total information transferred by the neuron is approximated to 1st order by the information it transfers
using a1 alone:

(5) Ik(Sunif ;A) = pk(a1) · ei(S nk−−→ a1) + O
(
pk(a1)2

)
.

Proof. See Appendix of [28]. �

We apply the theorem by grouping together highly selective outputs (bursts) as a1 and other out-
puts as a0. It follows that almost all of the information transferred by a neuron is carried by its
selective outputs. Theorem 1 and Constraint 1 jointly provide the first step towards an explana-
tion of why synaptic plasticity depends so strongly on pre- and post- synaptic spikes – because, if
neurons communicate selectivity, then it is bursts that carry signals and are therefore useful for learn-
ing. Indeed, a recent study has shown that hippocampal neurons rely heavily on bursts to transfer
information to downstream brain structures and to encode memories when learning [29].

Importantly, by using the uniform distribution we quantify the information transferred by the
neuron itself. Using a different prior would inject additional information that is not available to the
neuron.
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The second result provides an upper bound on the effective information generated by composite
channels:

Theorem 2 (effective information for composite channels).
Let channels n1 and n2 have Markov matrices p1(y|x) and p2(z|y) on finite sets X, Y and Z. Let
p12(z|x) =

∑
y∈Y p2(z|y) · p1(y|x) denote the composite channel. Then

(6) ei
(
X

n2◦n1−−−−→ z
)
≤
∑
y∈Y

c(y|z) · ei
(
X

n1−→ y
)
, where c(y|z) := p2(z|y) · p1(y)

p12(z)
.

Proof. Appendix A1. �

Theorem 2 provides a necessary condition for the composite of two channels, n2 ◦ n1, to generate
high effective information when outputting z: it is necessary that the mass of probability distribution
c(y|z) is concentrated on outputs y with high effective information under channel n1. In the cortex,
channels n1 and n2 could correspond to two (populations of) neurons. For output z to transfer a large
amount of information through the composite channel it is necessary that

(*)
outputs y with high effective information ei(n1, y) under channel n1,
have a high probability p2(y|z) of causing output z under channel n2

– and conversely, to keep p12(z) low.

Communicating selectivity provides a method for ensuring (*) holds:

(1) outputs with high effective information are tagged with bursts (emphasizing selectivity) and
are therefore

(2) more likely to cause bursts whereas, conversely, vague outputs are tagged with few spikes and
are less likely to cause bursts (propagating selectivity).

Example 1 (application to bursting neurons).
Consider when z = burst2 is a particular burst by neuron n2. Then the effective information generated
about X by channel n2 ◦ n1,

ei
(
X

n2◦n1−−−−→ burst2
)
≤
∑
y∈Y

c(burst2|y) · ei
(
X

n1−→ y
)
,

is bounded by the average of the effective information generated by outputs y of neuron n1 that cause
burst2. Note that c(burst2|y) quantifies the probability that burst2 was caused by y. Thus, for the left-
hand side of the equation to be high, it is necessary that the y ∈ Y causing burst2 have high effective
information – i.e. are themselves bursts.

3.2. Credit assignment. Figuring out how to assign credit is a problem faced by any distributed
system. When a hungry mouse reaches for cheese only a small fraction of neurons are actively involved.
Most neurons are specialized for unrelated activities. It follows that not all neurons in the brain should
be rewarded when the mouse sates it hunger. This section describes how communicating selectivity
helps neurons distribute credit amongst themselves by providing a way to identify which neurons and
synapses actively contributed to global outcomes.

Explanatory power. Effective information quantifies how well an outputs fits an input. It can be
shown that

(7)

ei
(
S

nk−−→ a
)

= H
(
punif (S)

)
− H

(
p̂k(S|a)

)
=

(
total bits available

)
−

(
bits indistinguishable to nk

)
=

(
# bits output a explains

)
,
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Figure 3. Explanatory power. (AB): Two elements receive the same configu-
ration of dots. The first fits horizontal rectangles to configurations; the second fits
vertical rectangles. The configuration is one of 11, 760 fitting in a horizontal rectangle
of height 2, and one of 139, 040 fitting in a vertical rectangle of width 7. Since the
elements emphasize selectivity, the first element signals its superior explanation with
more spikes than the second element.

where H(p) = −
∑

i pi log2 pi is Shannon entropy. Outputs with higher effective information have
more explanatory power. Alternatively, they fit the input data tighter.

It is useful to reinterpret the results above in terms of explanatory power. Theorem 1 says that
outputs with high explanatory power account for most of the information transferred by an element.
Theorem 2 provides a necessary condition for conserving explanatory power when composing elements.

Fig. 3 illustrates explanatory power using two elements loosely modeled on orientation columns
in visual cortex. Inputs are configurations of dots on an 8 × 8 pixel grid. Element n1 categorizes
configurations by height whereas n2 categorizes configurations by width. The configuration in Fig. 3
has height 2 and width 7. The horizontal detector generates ei(n1, 2) = 5.8 bits and the vertical
detector generates ei(n2, 7) = 2.2 bits, see appendix for computations. Element n1 generates more
effective information since fewer configurations fit in a 2 × 8 rectangle than a 8 × 7 rectangle: the
horizontal explanation fits the data better than the vertical explanation.

• If the elements communicate selectivity then n1 will produce more spikes than n2. Thus,
goodness-of-fit is signaled with spikes.
• Moreover, if the elements connect to motor neurons that communicate selectivity, then n1

yields a stronger motor response than n2. Thus, neurons that fit their input data better exert
more control on downstream activity than those that do not.

If the organism subsequently experiences a negative outcome, the motor neuron responding to n1’s
burst is more to blame than the motor neuron not responding to n2’s few spikes. Communicating
selectivity thus provides a minimal substrate for credit assignment.

Traceability. The spiking input patterns neurons received by neurons deep in cortex have been
preprocessed by millions of other neurons. It is these spiking patterns that directly determine which
synapses are modified – rather than what is actually going on in the environment. It is therefore
crucial that spikes deep in the brain relate meaningfully to events in the environment. Traceability
refers to the extent to which spikes relate to external events. Theorems 1 and 2 provide an abstract
framework for understanding how spikes deep in a system relate to external events. Below, we provide
a concrete explication of the mechanics of traceability in the simplest possible case. For detailed
computations see Appendix A3.
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Figure 4. Communicating selectivity =⇒ traceability. What does the spik-
ing of the top element imply about the input two layers down? (A): A 2-layer hierar-
chy of AND-gates. (B): The system of AND-gates both emphasizes and propagates
selectivity, so spikes can be traced back through multiple layers and time-steps. The
input must have been 1111.

We consider AND, OR and NOR gates. Inputs and outputs are 0s and 1s, where 0s corresponds
to silence and 1s to spiking (or bursting).

AND OR NOR

Emphasize X × X (spikes → high ei)

Propagate X X × (spikes-in → spikes-out)

Figs 4 and 5 consider how spikes relate to inputs two layers away in a minimal model. Fig. 4 shows
a system of AND-gates. These emphasize and propagate selectivity since (i) spikes generate 2 bits
of information whereas silences generate 0.4 bits and (ii) AND-gates only spike when they receive 1
spike on each wire.

The spike at the top of the system directly relates to a specific environmental event since it implies
the two gates below both spiked, which in turn implies the input was 1111. Fig. 5B considers the
same setup with AND-gates replaced by OR-gates. The spike at the top now implies little about the
input two layers further down. Finally, Fig. 5C considers NOR-gates. Here, spikes trace back one
step but not two, since NOR-gates emphasize selectivity but do not propagate it. In panels BC many
different inputs at the bottom layer cause a spiking response at the top, so the spike at the top relates
nonspecifically or vaguely to the environment.

Although AND-gates are much simpler than neurons, they share two critical features. First, AND-
gates spike for less than half their inputs (ei(spike) > 1). Although neurons do not burst for a unique
pattern, they appear to burst highly selectively (for far fewer than half of their physiological inputs,
ei(spike) � 1), typically in response to some preferred, biologically meaningful stimulus such as an
edge, face, or particular person. Second, AND-gates only spike when they receive spikes. Here again,
the result generalizes to excitatory neurons which require spiking activity on many of their synapses
before they burst. These are the only two features neurons need share with AND-gates for bursts to
be more traceable than silences.

Communicating selectivity ensures bursts relate more directly to environmental inputs and motor
outputs than silences. Emphasizing selectivity brings bursts into the foreground (the silent background
does not relate to the specifics of the current situation) and propagating selectivity ensures the bursting
foreground plays the major role in determining what neurons do next (bursts cause bursts). Bursts
therefore provide a local signature of responsibility so that bursting neurons and synapses should
receive credit or blame.
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Figure 5. Not communicating selectivity =⇒ no traceability. (A): System
as in Figure 4 with AND-gates replaced by ORs and NORs respectively. (B): Spikes
are not selective in a system of OR-gates since they do not emphasize selectivity. A
spike at the top of the network could have been caused by many input patterns 2
layers down. (C): Spikes are selective in a system of NOR gates, but selectivity is not
propagated (silences cause spikes, rather than spikes causing spikes). Consequently,
although spikes trace back a single step, after two steps they become much less
traceable.

This fits a large body of experimental evidence showing that spikes and spike-timing play decisive
roles in synaptic plasticity [2, 4, 30]. Communicating selectivity with bursts constrains comparatively
few of a neuron’s thousands of degrees of freedom. In essence it forces them to specialize on a small
fraction of their (bursting) inputs. In this way, the brain ensures spikes deep in the brain meaningfully
relate to activity in the environment. Our approach is thus complementary to many existing models
of synaptic plasticity [6, 10,11].

Selectivity determines the granularity of synaptic plasticity. Finally, we consider how trace-
ability affects the “spatial resolution” of synaptic plasticity. Most Hebbian and spike-timing dependent
learning rules entail that neurons potentiate or depotentiate their spiking synapses shortly before or
after postsynaptic spikes [3–6]. We illustrate the importance of selectivity by considering the indi-
rect effects of spike-dependent learning. When a neuron modifies one of its synapses, it modifies its
response to the sensory input that caused the synapse to spike – but also its response to all other
sensory inputs causing the synapse to fire. The size of this set of sensory inputs is the granularity of
the synaptic potentiation.

Fig. 6 considers granularity in 1080 randomly generated three-layer feedforward networks. Each
neuron receives connections from 20 other neurons, with synaptic weights sampled from the uniform
distribution and then renormalized to average values shown on the x-axis (54 values ranging from
0.04 to 0.0559). Effective information was approximately computed by sampling from 10,000 input
patterns on layer L1.

As synaptic weights were increased, the ei(L1
net−−→ l3) generated by layer L3 about layer L1 progres-

sively decreased: selectivity was lost, see ×’s. Moreover, see •’s, as effective information decreased,
the number of sensory inputs on L1 resulting in a given plastic event in L3 increased: synaptic poten-
tiations in L3 treated more and more inputs at L1 as indistinguishable, resulting in less fine-grained
learning.

To summarize: as selectivity decreases, the responses of neurons deep in cortex lump more and more
sensory inputs together. For example, a neuron may modify itself after the organism is exposed to fire,
but at the same time also change its response to many completely unrelated situations. Controlling
the granularity of learning deep in cortex is therefore necessary. Since learning is driven by spikes, and
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Figure 6. Selectivity determines the granularity of synaptic plasticity. Av-
erage synaptic weights plotted against effective informations (×’s) and the average
number of input patterns affected by individual synaptic modifications (•’s).

even more so by bursts of spikes, we have argued that this can be done by controlling the selectivity
of bursts.

Although we only considered feedforward networks, it is worth noting that recurrent networks can
be viewed as feedforward networks when unfolded over time. The response of a recurrent network at
time t = 3 generates effective information about its state at time t = 2 and also t = 1, so that the
granularity of a system’s response to its own prior state therefore depends on the selectivity of its
responses.

3.3. Plasticity and synaptic homeostasis. Observed properties of cortical excitatory neurons –
that (i) burst-firing is selective and (ii) the more spikes a neuron receives the more it produces, with
average cortical firing stable over time – are compatible with the hypothesis that neurons communicate
selectivity. However, neurons in cortex unceasingly modify the weights of existing synaptic contacts
in response to a highly non-stationary environment [31]. It follows that active effort is necessary to
ensure bursts remain selective as the brain is constantly rewires itself.

Synaptic potentiation reduces the selectivity of bursts. There is increasing evidence that,
while a number of plasticity mechanisms in various brain regions can lead to both strengthening and
weakening of synapses, overall synaptic strength tends to increase in the course of waking activities
[32, 33]. Synaptic potentiation degrades the selectivity of bursts by increasing the number of inputs
that cause burst-firing, see Fig. 7. Eventually, going to the logical – if not physiological – extreme, a
fully potentiated neuron would fire constantly so that its spikes have no information-theoretic value
at all. In practice, synapses would saturate long before this extreme, severely compromising learning.
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ei = 4 ei = 2.8

SYNAPTIC
POTENTIATION

TRACING
BACK SHARPLY

TRACING
BACK VAGUELY

Figure 7. Synaptic potentiation reduces the selectivity of bursts. Increasing
synaptic strengths causes elements to fire more frequently in more situations. Con-
sequently, burst categories become larger (from 4 potential causes to 9) and bursts
becomes less informative and harder to trace back.

Moreover, since spikes and excitatory post-synaptic potentials are metabolically expensive, a pro-
gressive increase in firing rates and connection strengths is costly and ultimately unsustainable. The
brain consumes a disproportionate amount of the body’s energy (≈15%), and it is estimated that up
to 75% of the brain’s budget goes to maintain synaptic activity [24]. Stronger synapses occupy more
space, require more supplies, and may lead to cellular stress [34]. Consequently a system containing
billions of plastic elements should regulate the relationship between inputs and outputs.

Renormalization is best performed offline. We argue that the selectivity of bursts is best regu-
lated during sleep. Regulating selectivity requires computing effective information. This can be done
by sampling inputs from the uniform distribution and counting how many inputs fall into each output
category. In practice, neurons never receive uniformly distributed inputs. However, sampling from a
large number of uncorrelated or weakly correlated firing patterns approximates effective information
across physiologically relevant input patterns.

Sampling during wakefulness is problematic. The inputs a neuron receives while its organism
engages in behavior form an extremely biased sample. For example, the inputs sampled by a motor
neuron during a day spent performing mostly one kind of activity (say typing), provide biased estimates
on the distribution of spiking activity. If synaptic strengths were downscaled during sleep using the
same distribution over inputs that caused them to potentiate during the wakefulness, then downscaling
would depotentiate exactly what was potentiated.

Synaptic renormalization is therefore best performed off-line, most notably during sleep, when
neurons receive inputs uncoupled from the immediate needs dictated by environmental interactions
[35, 36]. Indeed, a paramount fact about the sleeping brain is that it is spontaneously active, often
at levels similar to those observed during wakefulness [37]. Moreover, this spontaneous activity seems
to faithfully reflect the underlying connectivity at multiple levels [38], and to change as a function
of experience, that is, in response to changes in synaptic strength [39]. During sleep, then, the
cerebral cortex perturbs and samples from itself for many hours with many different firing patterns
and, crucially, does so in a task-independent manner.

Experimental evidence suggests that average firing rates and net synaptic strength increase in
both the cerebral cortex and the hippocampus during wakefulness [32, 33]. By contrast both average
firing rates and net synaptic strength, as indexed by both molecular and electrophysiological markers,
decrease after periods of sleep. During sleep many neuromodulators are released at their lowest level,
and phasic, burst release is notably absent [40]. Low neuromodulation may, first of all, prevent the
occurrence of synaptic potentiation when neural activity is decoupled from behavior (you would not
want to learn your dreams) and, second, favor a net depression of synaptic strength to achieve an
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overall renormalization. The occurrence of slow oscillations during NREM sleep, characterized by
periods of activity (UP-states) followed by profound hyperpolarization (DOWN-states) every second
or so, may also favor synaptic depression and renormalization [41].

4. Discussion

How does a population of individually stupid neurons make collectively intelligent decisions? This
paper argues a necessary condition is that neurons burst selectively, so that bursting neurons take
credit for their accomplishments and responsibility for their mistakes.

What can a neuron do for its brain? Loosely speaking, the brain’s goal is to act usefully in
any situation. It is composed of hundreds of billions of neurons; its actions consist of their actions.
It is up to each neuron to figure out how to act usefully based on local data, spikes, and global
data, neuromodulatory signals. Since spikes are produced for neurons by neurons, it is plausible that
there are constraints in place guiding their production and reception. We therefore investigate how
selectively neurons categorize their inputs, focusing on spikes.

Neurons are specialized. Some respond preferentially to visual stimuli, others to auditory ones, still
others to motor commands. Within the visual systems, some respond more to shapes and others to
colors. Clearly, different neurons categorize inputs differently, and thus inputs that are “important”
for one neuron may not be so for another. In any given situation, then, which neuronal outputs are
important? From the point of view of the system as a whole it is necessary to emphasize important
categorizations right now (e.g. there is probably a face) as opposed to currently unimportant cate-
gorizations (e.g. there is probably not a car). Moreover, it is advisable for other neurons (say in the
planning and motor systems) to pay attention to important rather than to unimportant inputs when
deciding and learning. How can this be achieved?

We proposed that neurons communicate – that is, emphasize and propagate – important or selective
outputs using bursts. Neurons emphasize selectivity by mapping effective information onto spike
trains so that the greater the number of spikes, the greater the selectivity of the output. Emphasizing
selective outputs with spikes makes metabolic sense since spikes are energetically expensive, suggesting
they should be used rarely, in response to highly specific (i.e. selective) inputs. Neurons propagate
selectivity by outputting many spikes when they receive many input spikes. Bursts thus exert more
control over downstream activity – and ultimately behavior.

We then showed that communicating selectivity highlights outputs with high explanatory power:
burstiness reflects goodness-of-fit. The better a neuronal output fits its input, the more spikes it
produces and the more impact it has on downstream neuronal activity. Neurons must learn how to act
with only spikes and neuromodulators for guides – their interactions with the external environment
are extraordinarily indirect. Decisions that lead to positive outcomes for the organism should be
reinforced. However, in a system consisting of billions of neurons and trillions of synapses, it is not a
priori obvious who is responsible for a successful outcome. Indeed, responsibility must be distributed
across many neurons. But not all. Some neurons and synapses are more responsible than others.
Communicating selectivity provides a simple way to track responsibility.

Although communicating selectivity is a constraint placed on neurons individually, its main impli-
cations are for their collective dynamics. In particular, if bursts are selective, it ensures that transient
coalitions of bursting neurons are also selective, and therefore useful for learning, inference, and be-
havior.

Testing the proposal. Neurons are known to burst for specific stimuli such as faces and vertical
or horizontal edges, suggesting they may emphasize selectivity. Further, excitatory neurons spike-
for-spikes, suggesting they may propagate selectivity. However selectivity, as quantified by effective
information, refers to the proportion of potential inputs that cause an output and not the specificity
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of a neural response to stimuli in the environment, which is a system property and does not depend
on any single neuron. Estimating the effective information generated by neuronal outputs requires
manipulating the inputs received by a significant fraction of its thousands of synapses and observing
the responses over a wide range of physiologically relevant inputs. Directly testing whether neurons
communicate selectivity with bursts is thus technically challenging.

However, some implications of communicating selectivity are more accessible. First, it should
be investigated to what extent communicating selectivity provides a useful substrate for learning
and cognition; specifically for assigning credit. Spike-timing dependent plasticity has proven to be
difficult to work with because of a tendency to learn to overspike, spiraling into epileptic seizures.
A depotentiation bias is therefore necessary [7]. Introducing a sleep-phase where synaptic weights
are downscaled to counteract overspiking opens up new computational possibilities for STDP during
wakefulness.

Second, whether (and how) neurons regulate selectivity should be investigated. We have argued that
homeostatic regulation of synaptic strengths is necessary and that such regulation is best performed
during sleep. Thus, the hypothesis can be tested by investigating how synaptic strengths are modified
during sleep and learning. A growing body of evidence suggests that synaptic strengths are downscaled
during sleep [32, 33, 40, 42]. How closely this regulation ties to the selectivity of bursts remains to be
seen.
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A1. Proof of Theorem 2

Given distribution p(x) on X, let H(p) = −
∑

x∈X p(x) · log p(x) denote the entropy.

Theorem 2.
Let p1(y|x) and p2(z|y) be Markov matrices on finite sets X, Y and Z. Let p12(z|x) =

∑
y∈Y p1(y|x) ·

p2(z|y) denote the composite channel. Then

ei
(
X

n2◦n1−−−−→ z
)
≤
∑
y∈Y

c(y|z) · ei
(
X

n1−→ y
)
, where c(y|z) := p2(z|y) · p1(y)

p12(z)
.

Proof. As usual, p1(y) :=
∑

x∈X p1(y|do(x)) · punif (x) and p12(z) :=
∑

x∈X p12(z|do(x)) · punif (x).

http://xxx.lanl.gov/abs/1202.4482
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The actual repertoire is

(8) p̂12(x|z) =
p12(z|do(x)) · punif (x)

p12(z)
=

∑
y∈Y p1(y|do(x)) · p2(z|y) · punif (x)

p12(z)
.

Observe that

(9) p̂1(x|y) =
p1(y|do(x)) · punif (x)

p1(y)
.

Combining Eq. (8) and (9) obtains

p̂12(x|z) =
∑
y∈Y

c(y|z) · p̂1(x|y).

It is easy to check that c(y|z) induces a probability distribution on Y so that, by convexity of relative
entropy [27],

H

∑
y∈Y

c(y|z) · p̂1(X|y)

∥∥∥∥∥∥
∑
y∈Y

c(y|z) · punif (X)


︸ ︷︷ ︸

ei(X
n2◦n1−−−−→z)

≤
∑
y∈Y

c(y|z) ·H
[
p̂1(X|y)

∥∥∥punif (X)
]

︸ ︷︷ ︸
ei(X

n1−→y)

.

�

A2. Effective information for Fig. 3

Effective information for the two detectors can be computed by exhaustively perturbing each with
all possible configurations. However, since we understand their mechanisms, it is easy to replace
exhaustive perturbation of the elements with combinatorics. First, since we have imposed the condition
that every configuration contains 4 distinct dots in the 8×8 grid, it follows that the number of potential
input patterns is 635, 376 =

(
8×8
4

)
.

Effective information for the vertical rectangle: n2. The number of configurations fitting inside
a vertical rectangle of width 7 is computed as follows. 4 dots can fit inside a rectangle of width 7 in(
8×7
4

)
ways. Excluding configurations that fit inside a smaller rectangle of width 6, we find that there

are
(
8×7
4

)
− 2
(
8×6
4

)
+
(
8×5
4

)
configurations that fit inside a rectangle of width 7, but not a rectangle of

width 6 (we add
(
8×5
4

)
to compensate for double counting). Finally, there are two ways a rectangle of

width 7 can fit inside the grid, so there are 139, 040 = 2
[(

8×7
4

)
− 2
(
8×6
4

)
+
(
8×5
4

)]
configurations that

fit only inside a 7 pixel wide rectangle. Effective information is 2.2 bits.

Effective information for the horizontal rectangle: n1. The computation is similar to that
above. There are

(
8×2
4

)
− 2
(
8
4

)
ways a configuration of 4 dots can fit inside a rectangle of height 2,

without fitting inside a smaller rectangle of height 1. There are 7 different ways a rectangle of height
2 can be placed inside the grid, so there are 11, 760 = 7

[(
8×2
4

)
− 2
(
8
4

)]
configurations only fit a 2 pixel

high rectangle. Effective information is 5.8 bits.

A3. Applying Theorem 2 to Figures 4 and 5

We apply equation

ei
(
X

n2◦n1−−−−→ z
)
≤
∑
y∈Y

c(y|z) · ei
(
X

n1−→ y
)
, where c(y|z) := p2(z|y) · p1(y)

p12(z)

to the three cases in turn.
AND-gates.
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4 = log2

16

1
= ei(X

AND2◦AND−−−−−−−−→ 1) ≤
∑

y∈{11}

1 · ei(X AND2

−−−−→ 11)

=
∑

y∈{11}

[
ei(X

AND−−−→ 1) + ei(X
AND−−−→ 1)

]
= 2 + 2

Distribution c(y|z) is concentrated on y = 11. The channel n1 = AND2 decomposes into two AND-
gates, generating 2 bits of information each. The only input on the bottom layer that causes a spike
on the top layer is 1111.

OR-gates.

0.1 = log2

16

15
= ei(X

OR2◦OR−−−−−−→ 1) ≤
∑

y∈{01,10,11}

c(y|z) · ei(X OR2

−−−→ y)

=
16

15
· 1

4
· 3

4
·
[
ei(X

OR−−→ 0) + ei(X
OR−−→ 1)

]
+

16

15
· 3

4
· 1

4
·
[
ei(X

OR−−→ 1) + ei(X
OR−−→ 0)

]
+

16

15
· 3

4
· 3

4
·
[
ei(X

OR−−→ 1) + ei(X
OR−−→ 1)

]
=

3

15
(2 + 0.415) +

3

15
(0.415 + 2) +

9

15
(0.415 + 0.415)

= 1.02

The distribution c(y|z) points to three potential causes: 01, 10, and 11, and is therefore less con-
centrated than in the case of an AND-gate. Moreover, each of these three potential inputs is less
informative than in the preceding case.

The set of potential inputs on the bottom layer that cause a spike on the top layer includes
everything except 0000.

Finally, note that in this case the upper-bound is very loose.

NOR-gates.

0.83 = log2

16

9
= ei(X

NOR2◦NOR−−−−−−−−→ 1) ≤
∑

y∈{00}

1 · ei(X NOR2

−−−−→ 00)

=
∑

y∈{00}

[
ei(X

NOR−−−→ 0) + ei(X
NOR−−−→ 0)

]
= 0.415 + 0.415

As for the AND-hierarchy, distribution c(y|z) is concentrated. However, it points to input 00, for
which NOR-gates are uninformative.

The nine potential inputs causing output 1 on the top layer are
{0101, 1001, 0110, 1010, 1011, 0111, 1101, 1110, 1111}.
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