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Abstract—Multi-fingered robot grasping is a challenging
problem that is difficult to tackle using hand-coded programs.
In this paper we present an imitation learning approach for
learning and generalizing grasping skills based on human
demonstrations. To this end, we split the task of synthesizing
a grasping motion into three parts: (1) learning efficient grasp
representations from human demonstrations, (2) warping con-
tact points onto new objects, and (3) optimizing and executing
the reach-and-grasp movements. We learn low-dimensional
latent grasp spaces for different grasp types, which form the
basis for a novel extension to dynamic motor primitives. These
latent-space dynamic motor primitives are used to synthesize
entire reach-and-grasp movements. We evaluated our method
on a real humanoid robot. The results of the experiment
demonstrate the robustness and versatility of our approach.

I. INTRODUCTION

The ability to grasp is a fundamental motor skill for
humans and a prerequisite for performing a wide range of
object manipulations. Therefore, grasping is also a funda-
mental requirement for robot assistants, if they are to perform
meaningful tasks in human environments. Although there
have been many advances in robot grasping, determining
how to perform grasps on novel objects using multi-fingered
hands still remains an open and challenging problem.

A lot of research has been conducted on robot grippers
with few degrees of freedom (DoF) which may not be
particularly versatile. However, the number of robot hands
developed with multiple fingers has been steadily increas-
ing in recent years. This progress comes at the cost of
a much higher dimensionality of the control problem and,
therefore, more challenges for movement generation. Hard
coded grasping strategies will typically result in unreliable
robot controllers that can not sufficiently adapt to changes
in the environment, such as the object’s shape or pose.
Such hard coded strategies will also often lead to unnatural
‘robotic looking’ grasps, that do not account for the increased
sophistication of the hardware. Alternative approaches, such
as the optimization of grasps using stochastic optimization
techniques, are computationally expensive and require the
specification of a grasp quality metric [27]. Defining an
adequate grasp metric is often hard to do, as it requires speci-
fying intuitive concepts in a mathematical form. Additionally,
such approaches typically do not consider the whole reach-
and-grasp movement but exclusively concentrate on the hand
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Fig. 1. The Justin robot learns to grasp and lift-up a mug by imitation. The
reach-and-grasp movement is learned from human demonstrations. Latent-
space dynamic motor primitives generalize the learned movement to new
situations.

configuration at the goal.

In this paper, we present an imitation learning approach for
grasp synthesis. Imitation learning allows a human to easily
program a humanoid robot [3], and also to transfer implicit
knowledge to the robot. Instead of programming elaborate
grasping strategies, we use machine learning techniques to
successfully synthesize new grasps from human demonstra-
tion. The benefits of this approach are threefold. First, the
computational complexity of the task is significantly reduced
by using the human demonstrations along with compact low-
dimensional representations thereof. Second, the approach
allows us to imitate human behavior throughout the entire
reach-and-grasp movement, resulting in seamless, natural-
looking motions. Typical transitions between a discrete set
of hand shapes, as can be found in traditional approaches,
are thus avoided. Finally, this approach also allows the user
to have control over the type of grasp that is executed.
By providing demonstrations of only one particular grasp
type, the synthesis algorithm can be used to generate distinct
grasps e.g., only lateral, surrounding, or tripod grasp. The use
of assorted grasps can considerably improve the robustness
of the grasping strategy as the robot can choose a grasp type
which is appropriate for the current task.

A. Related Work

In order to generalize human grasping movements, we
need to understand how humans perform grasps. Human
grasping motions consist of two components: the reaching
motion of the arm for transporting the hand, and the motions









 








Fig. 2. An overview of the proposed approach. The contact points of a known object are warped on the current object. Using the resulting positions, an
optimizer finds the ideal configuration of the hand during the grasp. The optimizer uses low-dimensional grasp spaces learned from human demonstrations.
Finally, a latent space dynamic motor primitive robustly executes the optimized reach-and-grasp motion. The approach is data-driven and can be used to
train and execute different types grasps.

of the fingers for shaping the hand [16], [17]. These two
components are synchronized during the grasping movement
[7]. For example, at around 75% of the movement duration,
the hand reaches its preshape posture and the fingers begin
to close [15]. At this point in time, the reaching motion of
the hand shifts into a low velocity movement phase.

Early studies into human hand control assumed muscles
and joints as being controlled individually by the central
nervous system [26], [19]. However, more recent studies have
found evidence suggesting that the fingers are controlled us-
ing hand synergies [23], [2] — i.e., the controlled movements
of the fingers are synchronized.

According to this view, fingers are moved “synergistically”
thereby reducing the number of DoF needed for controlling
the hand. Such hand synergies can be modeled as projections
of the hand configuration space into lower-dimensional sub-
spaces [20] such as the principal components. Movements
along the first principal component of this subspace result
in a basic opening and closing behavior of the hand. The
second and higher-order principal components refine this
motion and allow for more precise shaping of the hand [20],
[24], see Fig. 3. Although the majority of the variation in
the finger configurations is within the first two principal
components, higher-order principal components also contain
important information for accurately executing grasps [23].
The gain in grasp accuracy does, however, plateau at around
five dimensions [22], [20]. Therefore, the space of human
hand synergies during grasping can be well represented by
a five-dimensional subspace.

Following this idea, various researchers have used di-
mensionality reduction techniques to find finger synergies
in recorded human grasps [4], [8]. Once a low-dimensional
representation of finger synergies is found, it can be used
to synthesize new grasps in a generate-and-test fashion. For
example, the authors of [8] use Simulated Annealing to find

an optimal grasp on a new object while taking into account
the finger synergies. Common to such approaches is the
use of a grasp metric [27] that estimates the quality of a
potential solution candidate. However, such metrics can be
computationally demanding and rely on having an accurate
model of the objects. In general, it is difficult to define
a grasp metric that includes both, physical aspects of the
grasps (such as the stability) as well as functional aspects
that depend upon the following manipulations.

Alternative approaches to grasp synthesis predict the suc-
cess probability of grasps for different parts of the object. For
example, good grasping regions are estimated from recorded
2D images of the object in [25]. A labeled training set
of objects including the grasping region is subsequently
produced by using a ray-tracing algorithm. The resulting
dataset is then used to train a probabilistic model of the
ideal grasping region. The learned model, in turn, allows
a robot to automatically identify suitable grasping regions
based on visual features. In a similar vein, Boularias et al.
[6] use a combination of local features and Markov Random
Fields to infer good grasping regions from recorded point
clouds. Given an inferred grasping region, the reach-and-
grasp motion still needs to be generated using a set of
heuristics. Additionally, this approach does not address the
problems of how to shape the hand and where to place the
finger contacts.

Tegin et. al. [28] also used imitation learning from human
demonstration to extract different grasp types. However,
they do not model the whole reach-and-grasp movement
and circumvent the high-dimensionality problem by using
simpler manipulators.

II. OUR APPROACH

In our approach, we address the challenges of robot grasp-
ing by decomposing the task into three different stages: (1)



learning efficient grasp representations from human demon-
strations, (2) warping contact points onto new objects, and
(3) optimizing and executing the synchronized reach-and-
grasp movements.

An overview of the proposed approach can be seen in
Fig. 2. The contact points of a known object are first warped
onto the current object using the techniques in Sec. II-B.
The warped contact points are then used by the optimizer
to identify all parameters needed for executing the grasp,
i.e., the configuration of the fingers and the position and
orientation of the hand. The optimization is performed in
low-dimensional grasp spaces which are learned from human
demonstrations. Finally, the reach-and-grasp movement is
executed using a novel extension to dynamic motor primitive
[14] called latent-space dynamical systems motor primitive
(LS-DMP).

A. Learning Grasp Types from Human Demonstration

Using human demonstrations as reference when synthe-
sizing robot grasps can help to narrow down the set of
solutions and increase the visual appeal of the generated
grasp. At the same time, a discrete set of example grasps
can also heavily limit the power of such an approach. To
overcome this problem, we use dimensionality reduction
techniques on the set of human demonstrations in order
to infer the low-dimensional grasp space. To this end, we
recorded the movements of nine test-subjects, where each test
subject was asked to perform reach-and-grasp actions on a
set of provided objects. We subsequently performed Principal
Component Analysis (PCA) on the dataset, projecting it onto
five principal components. This choice of dimensionality is
based on research on the physiology of the human hand
[22], [20] which suggested that five principle components
are sufficient for accurately modeling the movements of the
human hand.

The resulting grasp space is a compact representation
of the recorded grasps as it models the synergies between
the different fingers and finger segments. The first principal
component, for example, encodes the opening and closing
of the hand. Fig. 3 shows grasps from the space spanned by
the first two principal components.

The above approach yields general grasp spaces that do
not give the user control over the grasp type to be executed
by the robot. However, for many tasks it is important to favor
a particular grasp type over another when synthesizing the
robot movements. For example, for carrying a pen one can
use a tip grasp, while for writing with the pen an extension
grasp is better suited. Hence, in a second experiment with the
same test subjects we learned grasp spaces for specific grasp
types, such as lateral grasps or tripod grasps. To determine
the grasp space, we devised a grasp taxonomy [10] consisting
of twelve grasp types and recorded specific datasets for each
of these types. The datasets were subsequently used to learn
grasp spaces for the specific grasp type.

Due to the differences in kinematics of the human and
robot hand, there are multiple ways to map the hand state to
the robot state, also known as the correspondence problem

















Fig. 3. The space spanned by the first two principal components of human
recorded grasps applied to the robot hand. The first component describes the
opening and closing of the hand. The second principal component modulates
the shape of the grasp.

in the robotics literature [9]. In this paper, we solve the
correspondence problem by dividing the generalization of
grasps into two parts, i.e., the reproduction of the hand shape
and the adaptation of Cartesian contact points. The reproduc-
tion of the hand shape is realized by directly mapping the
human joint angles to the robot hand. For the index, middle
and ring fingers this results in an accurate mapping with
robot hand configurations similar to the demonstrated human
hand shapes. In order to map the thumb, an additional offset
needed to be added to the carpometacarpal joint. Using this
type of mapping, the reproduced hand shapes will be similar
to those of the human. The generalization of the Cartesian
contact points is achieved by the contact warping algorithm
described in Sec. II-B. The two generalizations in Cartesian
space and in joint space are then reconciled through the
optimization process explained in Sec. II-D.

B. Generalizing Grasps through Contact Warping

In this section, we introduce the contact warping algo-
rithm. This algorithm allows the robot to adapt given contact
points from a known object to a novel object. As a result, we
can generalize demonstrated contact points to new situations.
Assume that we are given two 3D shapes from the same
semantic/functional category through dense sets of range data
points. In our approach, the process of shape warping, that
is, computing a mapping from the source shape to the target
shape, has been broken down into three steps.

1) Rigid alignment of source and target shapes, such
that semantically/functionally corresponding points get
close to each other.



2) Assignment of correspondences between points from
the source shape and points on the target shape.

3) Interpolation of correspondences to a continuous (but
possibly non-smooth) mapping.

The alignment step involves sampling and aligning many
surflet pairs, i.e., pairs of surface points and their local
normals, from source and target shapes. The estimation of
relative clusters of the pose parameters is obtained from the
surflet-pair alignments [11], [12].
Since the alignment of source and target shapes has

brought corresponding parts close to each other, we can
again rely on the local surface description by surflets to
find correspondences, based on proximity of points and
alignment of normal vectors. The correspondence assignment
that we have used here is an improved version of the method
described in [11]. In this approach, correspondences were
assigned for each source surflet independently into the set
of target surflets. For strong shape variations or unfavorable
alignment between source and target, such an approach could
result in a confusion of similar parts.
In order to cope with larger shape variation, some inter-

action between assignments of neighboring points has to be
introduced. We have, therefore, formulated correspondence
search as an optimal assignment problem. In this formula-
tion, interaction between assignments of different points is
enforced through uniqueness constraints.
Let {x1, . . . , xN} be points from the source shape, trans-

formed to align with the target shape; let {y1, . . . , yN} be
points from the target shape.1 Assignment of source point i
to target point j is expressed as an assignment matrix,

aij =

{

1 if i is assigned to j,
0 otherwise.

(1)

Furthermore, let dij = ‖xi − yj‖ be the Euclidean distances
between source and target points and cij = ni · mj be the
angle cosines between the unit normal vectors ni and mj at
source point i and target point j, respectively.
The objective is to minimize the sum of distances between

correspondences, i.e., mutually assigned points,

D(a11, . . . , a1N , a21, . . . , aNN ) =
N
∑

i=1

N
∑

j=1

dijaij , (2)

subject to the constraints

N
∑

i=1

aij = 1 ∀j ∈ {1, . . . , N} , (3)

i.e., to assign every target point to exactly one source point,

N
∑

j=1

aij = 1 ∀i ∈ {1, . . . , N} , (4)

i.e., to assign every source point to exactly one target point,
and

cijaij ≥ 0 ∀i, j ∈ {1, . . . , N} , (5)

1An equal number N of points from source and target shapes can always
be re-sampled from the original data sets.

Fig. 4. Mug warping example. A dense set of surface points from the
source mug (top row) and their mappings to the target mug (bottom row)
are colored to code their three Cartesian source coordinates (three columns).

i.e., to assign only between points with inter-normal angle
of ≤ 90 degrees. The two equality constraints (3) and
(4) mediate the desired interaction between assignments of
different points. The inequality constraint (5) can exclude
points from being assigned and, therefore, the problem may
become infeasible. Thus, we have to add imaginary source
and target points x0 and y0 which have no position and no
normal direction. They can be accommodated by appending
large entries d0j and di0 to the distance matrix, which larger
than all real distances in the data set, as well as zero entries
c0j = ci0 = 0 to the angle cosine matrix. These imaginary
points can be assigned to all real points with a penalty, which
is chosen such that only points without a compatible partner
will receive this imaginary assignment. We subsequently
minimize the cost function

C(a01, . . . , a0N , a10, . . . , aNN )

= D(a11, . . . , a1N , a21, . . . , aNN ) (6)

+
N
∑

i=1

di0ai0 +
N
∑

j=1

d0ja0j .

For solving this constrained optimization problem, we use
the interior-point algorithm, which is guaranteed to find an
optimal solution in polynomial time [30].

Finally, point correspondences are interpolated to obtain
a continuous (but possibly non-smooth) mapping of points
from the source domain to the target domain. More theory
and systematic evaluations of the procedure are given in [13].

Fig. 4 shows an example of a dense set of surface points
warped between two mugs. A warp of the contact points of
an actual grasp from the source to the target mug is shown
on the left of Fig. 2.

C. Latent Space Dynamic Motor Primitives

In order to execute different grasps, the robot requires
a suitable representation of the grasping actions. Ideally,
the grasping action should be straightforward to learn from



a couple of human demonstrations and easily adapted to
various objects and changes in the object locations. The
action representation should also ensure that the components
of the grasping movement are synchronized. The dynamical
systems motor primitives (DMPs) representation fulfills all
of the above requirements [14]. DMPs have been widely
adopted in the robotics community, and are well-known
for their use in imitation learning [21], [18]. The DMP
framework represents the movements of the robot as a set of
dynamical systems

ÿ = αz(βzτ
−2(g − y)− τ−1ẏ) + aτ−2f(x, θ1:N )

where y is a state variable, g is the corresponding goal state,
and τ is a time scale. The first set of terms represents a
critically-damped linear system with constant coefficients αz

and βz . The last term, with amplitude coefficient a = g−y0,
incorporates a shaping function

f(x, θ1:N ) =

∑N
i=1

ψi(x)θix
∑N

j=1
ψj(x)

,

where ψi(x) are Gaussian basis functions, and the weight
parameters θ1:N define the general shape of the movements.
The weight parameters θ1:N are straightforward to learn
from a single human demonstration of a goal directed
movement. The variable x is the state of a canonical system
shared by all DoFs. The canonical system acts as a timer
to synchronize the different movement components. It has
the form ẋ = −τx, where x0 = 1 at the beginning of
the motion and thereafter decays towards zero. The meta-
parameters g, a, and τ can be used to generalize the learned
DMP to new situations. For example, the goal state g of
the reaching movement is defined by the position of the
object and the desired grasp. We explain how the DMP goal
meta-parameters are computed for new objects in Sec. II-D.
However, we need first to define how the finger trajectories
can be encoded as DMPs, such that they generalize to new
situations in a human-like manner.

Representing and generalizing the motions of the fingers
is a challenging task due to the high dimensionality of the
finger-configuration space. A naive solution would be to
assign one DMP to each joint [19]. However, as previously
discussed in Sec. I-A, humans seem to generalize their
movement trajectories within lower-dimensional spaces of
the finger configurations, and not at the level of each joint
independently [23], [20]. If the robot’s generalization of the
grasping action does not resemble the human’s execution,
implicit information contained within the human demon-
strations is lost. Therefore, in order to facilitate behavioral
cloning of human movements, the DMPs for multi-fingered
hands should be realized in a lower dimensional space. In
addition, overfitting is avoided by representing the movement
in a lower-dimensional space.

In particular, the DMPs can be defined in the latent
spaces learned in Sec. II-A. As such spaces are learned
from complete trajectories of the grasping movements, they
also include the finger configurations needed for representing

the hand during the approach and preshaping phases of the
action, as well as the final grasps [20]. We use a DMP for
each of the latent space dimensions as well as DMPs for
the wrist position and orientation. The weight parameters
for these DMPs can be learned from human demonstrations
by first projecting the tracked motions into the latent space
and subsequently learning the weights from the resulting
trajectory. Thus, the same data that is used to learn the
latent space can be reused for learning the weight parameters.
The resulting latent-space DMPs, as well as the reaching
movement’s DMPs, are linked to the same canonical system,
thus, ensuring that they remain synchronized. The output of
the latent-space DMPs is afterwards mapped back into the
high-dimensional joint space by the PCA projection. In this
manner, the grasping action can be executed seamlessly, and
the robot can begin closing its fingers before the hand has
reached its final position.
Thus, we have defined a human-like representation of

the grasping movements that can be acquired by imitation
learning. Given this DMP representation, the robot still needs
to determine the meta-parameters for new situations. This
process is described in the next section.

D. Estimating the Goal Parameters

In order to generalize the latent-space DMPs to new
objects, we need to estimate the goal state g for each latent-
space dimension, as well as the orientation of the hand
for a new set of contact points which we have acquired
from contact warping as discussed in Sec. II-B. We use
one contact-point per finger, where the contact point is
always located at the finger tip. Each point is specified in
Cartesian coordinates. As we have four fingers, this results
into a 12-dimensional task space vector xC . Additionally,
we also want to estimate the position and orientation of the
hand in the world coordinate frame. We therefore add six
virtual joints v, i.e., three translational and three rotational
joints. We will denote the transformation matrix, which is
defined by these six virtual joints, as T(v). We define the
finger tip position vector x1:4 as the concatenation of all
four finger tip positions. This vector is a function of the
transformation matrix T(v) and the joint configurations of
the fingers q = m+Kg, i.e.,

φW (y) = T(v)φH(m+Kg).

The vector m represents the mean of the PCA transformation
and K is given by the first five eigenvectors. The function
φH(q) calculates the finger tip-positions in the local hand
coordinate frame. This setup is an inverse kinematics prob-
lem with the difference that we want to optimize the joint
positions of the fingers in the latent space instead of directly
optimizing the joint positions q. Thus, the inverse kinematics
problem is over-constrained as we have twelve task variables
and only eleven degrees of freedom. Therefore, instead of
the standard Jacobian pseudo-inverse solution, we need to
employ a different approach.
Our task is to estimate the optimal configuration y∗ =

[v∗,g∗] of the hand, which consists of the orientation and



the latent space coordinates, such that the squared distance
between finger-tip positions x1:4 and the contact points xC

is minimal, i.e.,

y∗ = [v∗,g∗] = argmax
y
L(y),

L(y) = −(φW (y)− xC)
TC−1(φW (y)− xC) (7)

+yTWy.

The matrix W = diag(w) defines a damping or regu-
larization term for the step-size of y, and C = diag(c)
defines the inverse precision for each task variable. The
Jacobian J = ∂φW /∂y for this problem can be obtained
straightforwardly, i.e., for the derivation w.r.t v it is given
by the standard geometric Jacobian and for the derivation
w.r.t the latent variable g it is given by Jl = JqK, where Jq

denotes the geometric Jacobian.

We will solve the optimization problem given in Equation
(7) by iteratively applying a least squares solution. Given
the current hand configuration yk and the desired finger-tip
positions xC , the update step for the hand configuration is
therefore given by

∆yk = (JTCJ+W )−1JTC (xC − φW (yk)) . (8)

As we have to solve an overconstrained inverse kinematics
setting, in contrast to the more common underconstrained
inverse kinematics setting, we use the left-pseudo inverse

in Equation (8). This update equation also corresponds to
a Bayesian view on inverse kinematics [29]. We repeat the
update until convergence in order to get the optimal hand
configuration y∗. We always start our optimization from an
initial posture where the hand is pointing downwards.

III. SETUP AND EVALUATIONS

To evaluate the proposed approach, we conducted a set
of experiments using the Rollin’ Justin robot platform [5].
Justin is a mobile humanoid robot system with an upper-
body including 43 actuated degrees-of-freedom (DoF). In our
experiments we controlled 22 DoF pertaining to the Torso
(3 DoF), the right arm (7 DoF), and the four-fingered right
hand (12 DoF). The experiments were performed both in
simulation and on the physical robot.

A. Simulation Results

In the first experiment, we evaluated the performance
and the results of our approach in a simulated environment
for the Justin robot. As explained in Sec. II, we trained
individual LS-DMPs for each of the principal components of
the demonstrated reach-and-grasp movement. Fig. 5 shows
the latent-space trajectories for three out of the five principal
components of the hand shape. The example trajectories are
depicted in blue, while the trajectory learned by the LS-
DMP is depicted in red. This figure reveals an interesting
insight into the nature of the recorded human reach-and-grasp
movements: many of the example trajectories have a distinct
sigmoid shape that has a bell-shaped velocity profile. This
insight corresponds to the results in [1] , which showed that

Fig. 6. The Justin robot executes a reach-and-grasp movement in sim-
ulation. Using the trained LS-DMP a new trajectory (red) to the target
object is synthesized. The optimal hand position and orientation (shown
as a coordinate system) is estimated along with the optimal hand shape in
latent-space.

humans perform point-to-point reaching movements such
that the velocity profile along the path can be characterized
by a symmetric bell-shape. Our results indicate that a similar
property holds for the latent space trajectories of the hand
shape during a reach and grasp.

After learning, we first executed the LS-DMP in simula-
tion. Fig. 6 shows the start and end configuration during one
run of the algorithm. The red curve depicts the trajectory of
the hand as generated by the LS-DMP, while the displayed
coordinate system shows the estimated hand orientation of
the robot. To evaluate the accuracy of the produced grasping
motions, we repeatedly changed the position and orientation
of the target object and measured the distance between
the warped contact points on the object and the fingertip
positions. Ideally, the fingertips should always coincide with
the contact points. Tab. I shows the average distance of the
fingers to the warped contact points after executing a reach-
and-grasp movement. We also varied the grasp spaces in
order to evaluate the effect of the grasp type on the the
resulting hand shape. The grasp space indicated by Multi in
Tab. I was learned using all available human demonstrations.
This grasp space encompasses a wide range of variations of
the human hand. As can be seen in the table, we achieved
the most accurate results by using this grasp space. In this
case, the average error is about 7mm.

It should be noted that the fingers of the robot are much
larger than human fingers and have a width of about 3cm.
Given the size of the robot’s fingers, the produced error only
corresponds to about a quarter of the finger width. The table
clearly shows that changing the grasp type results in higher
average error. This increased error is to be expected, as we
constrained the space of possible solutions to a specific grasp
type. At the same time, visual inspection of the resulting
grasps shows that this error does not deteriorate the quality
of the resulting grasps, as will be seen in the next section.

B. Real Robot Experiments

We also conducted experiments with the real Rollin’ Justin
robot. Three different types of mugs were used during
the experiments. After placing a mug on a table in front
of the robot, all information about the pose of the mug
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Fig. 5. The plots show example trajectories (blue), and the mean trajectory (red), for three (out of five) latent space dimensions during the closing of the
hand. The trajectories have been shifted and scaled to start at zero and end at one, in order to allow for easier comparison of their shapes. As the scaled
trajectories have similar shapes, they can be represented by individual DMPs and easily learned from human demonstrations.

TABLE I

AVERAGE DISTANCE BETWEEN WARPED CONTACT POINTS AND

FINGERTIPS AFTER GRASPING.

Grasp Type Multi Tripod Surrounding Lateral

Avg. Error (m) 0.007 0.013 0.0157 0.014

was estimated using a Kinect camera and the techniques
explained in [12]. Subsequently, using the contact warping
techniques from Sec. II-B the contact points from a known
mug were warped onto the currently seen mug. The resulting
contact points were subsequently fed into the optimizer to
estimate all parameters that are needed to execute the reach-
and-grasp movement. The estimation of all parameters using
the algorithm in Sec. II-D takes about one to five seconds.
We performed about 20 repetitions of this experiment with
the different mugs placed at various positions and heights.
Additionally, we included a lifting-up motion to our move-
ment, in order to evaluate whether the resulting grasp was
stable or not. In all of the repetitions the robot was able to
successfully grasp and lift-up the observed object.

Furthermore, we also executed the reach-and-grasp move-
ments using grasp spaces belonging to different grasp types.
No change was made to the structure or other parameters of
the algorithm. The only difference between each execution
run was the grasp space to be loaded. Fig. 7 shows three of
the grasp types used in our taxonomy along with the result of
applying them to the Justin robot. The figure clearly shows
that changing the grasp type can have a significant effect
on the appearance of the executed grasp. For example, we
can see that the use of the tripod-grasp results in delicate
grasps with little finger opposition, while surrounding grasps
lead to more caging grasps with various finger oppositions.
Our approach exploits the redundancy in hand configurations
and allows desired grasp types to be set according to the
requirements of the manipulation task that is going to be
executed. Fig. 8 shows a sequence of pictures captured
from one of the reach-and-grasp movements executed on the
real robot. Reach-and-grasp movements for different grasp
types and situations are shown in the video submitted as
supplemental material.

  










Fig. 7. The three grasp types lateral, surrounding, and tripod from our
taxonomy are demonstrated by a human and later reproduced by the Justin
robot. All parameters of the reach-and-grasp movement, such as the shape
of the hand, its position, and orientation are automatically determined using
latent space dynamic motor primitives.

IV. CONCLUSION

In this paper, we presented a new approach for imita-
tion and generalization of human grasping skills for multi-
fingered robots. The approach is fully data-driven and learns
from human demonstrations. As a result, it can be used
to easily program new grasp types into a robot – the user
only needs to perform a set of example grasps. In addition
to stable grasps on the object, this approach also leads to
visually appealing hand configurations of the robot. Contact
points from a known object are processed by a contact
warping technique in order to estimate good contact points
on a new object.

We, furthermore, presented latent-space dynamic motor
primitives as an extension to dynamic motor primitives that
explicitly models synergies between different body parts.
This significantly reduces the number of parameters needed
to control systems with many DoF such as the human hand.
Additionally, we have presented a principled optimization
scheme that exploits the low-dimensional grasp spaces to
estimate all parameters of the reach and grasp movement.



Fig. 8. A sequence of images showing the execution of a reach-and-grasp movement by the Justin humanoid robot. The executed latent-space dynamic
motor primitive was learned by imitation. The type of the grasp to be executed can be varied according to the requirements of the task to subsequently
executed. New grasp types can be trained within minutes by recording a new set of human demonstrations.

The proposed methods were evaluated both in simulation
and on the real Justin robot. The experiments exhibited the
robustness of the approach with respect to changes in the
environment. In all of the experiments on the real, physical
robot, the method successfully generated reach-and-grasp
movements for lifting up the seen object.
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