
Journal of Machine Learning Research 1 (2007) xxx-xxx Submitted xx/07; Published xx/07

Feature Selection via Dependence Maximization

Le Song lesong@it.usyd.edu.au
NICTA, Statistical Machine Learning Program, Canberra, ACT 0200, Australia
School of Information Technologies, University of Sydney, NSW 2006, Australia

Alex Smola alex.smola@nicta.com
NICTA, Statistical Machine Learning Program, Canberra, ACT 0200, Australia
The Australian National University, Canberra, ACT 0200, Australia

Arthur Gretton arthur.gretton@tuebingen.mpg.de
MPI for Biological Cybernetics, Spemannstr. 38, 72076 Tübingen, Germany

Justin Bedo justin.bedo@nicta.com.au
NICTA, Statistical Machine Learning Program, Canberra, ACT 0200, Australia
The Australian National University, Canberra, ACT 0200, Australia

Karsten Borgwardt borgwardt@dbs.ifi.lmu.de

LMU, Institute for Database Systems, Oettingenstr. 67, 80538 München, Germany

Editor: F. Uzzy

Abstract

We introduce a framework of feature selection based on dependence maximization between
the selected features and the labels of an estimation problem, using the Hilbert-Schmidt
Independence Criterion. The key idea is that good features should be highly dependent on
the labels. Our approach leads to a greedy procedure for feature selection. We show that
a number of existing feature selectors are special cases of this framework. Experiments on
both artificial and real-world data show that our feature selector works well in practice.

1. Introduction

In data analysis we are typically given a set of observations X = {x1, . . . , xm} ⊆ X which
can be used for a number of tasks, such as novelty detection, low-dimensional representation,
or a range of supervised learning problems. In the latter case we also have a set of labels
Y = {y1, . . . , ym} ⊆ Y at our disposition. Tasks include ranking, classification, regression,
or sequence annotation. While not always true in practice, we assume in the following, that
the data X and Y have been generated identically independently distributed (iid) from
some underlying distribution Pr(x, y).

We often want to reduce the dimension of the data (the number of features) before the
actual learning (Guyon and Elisseeff, 2003); a larger number of features can be associated
with higher data collection cost, more difficulty in model interpretation, higher computa-
tional cost for the classifier, and sometimes decreased generalization ability. In other words,
often there exist ulterior motives than finding a well performing estimator which make fea-
ture selection a necessity for reasons of speed or deployment cost. It is therefore important
to select an informative feature subset.

c©2007 Song, Smola, Gretton, Borgwardt, and Bedo.

Song, Smola, Gretton, Borgwardt, and Bedo

The problem of supervised feature selection can be cast as a combinatorial optimization
problem. We have a full set of features, denoted by S (each element in S corresponds to one
dimension of the data). It is our aim to select a subset T ⊆ S such that this subset retains
the relevant information contained in X. Suppose the relevance of a feature subset (to the
outcome) is quantified by Q(T), and is computed by restricting the data to the dimensions
in T . Feature selection can then be formulated as

T 0 = arg max
T ⊆S

Q(T) subject to | T | ≤ t, (1)

where | · | computes the cardinality of a set and t is an upper bound on the number of
selected features. Two important aspects of problem (1) are the choice of the criterion
Q(T) and the selection algorithm.

1.1 Criteria for Feature Selection

A number of quality functionals Q(T) are potential candidates to use for feature selection.
For instance we could use a mutual-information related quantity or a Hilbert Space based
estimator. In any case, the choice of Q(T) should respect the underlying tasks: supervised
learning estimate functional dependence f from training data and guarantee f predicts well
on test data. Therefore, good criteria should satisfy two conditions:

I: Q(T) is capable of detecting desired (linear or nonlinear) functional dependence be-
tween the data and the labels.

II: Q(T) is concentrated with respect to the underlying measure. This guarantees with
high probability that detected functional dependence is preserved in test data.

While many criteria have been explored few take these two conditions explicitly into account.
Examples include the leave-one-out error bound of SVM (Weston et al., 2000) and the
mutual information (Zaffalon and Hutter, 2002). Although the latter has good theoretical
justification, it requires density estimation, which is problematic for high dimensional and
continuous variables. We sidestep these problems by employing a mutual-information like
quantity — the Hilbert-Schmidt Independence Criterion (HSIC) (Gretton et al., 2005).
HSIC uses kernels for measuring dependence and does not require density estimation. HSIC
also has good uniform convergence guarantees. As we show in section 2, HSIC satisfies
conditions I and II, required for Q(T).

1.2 Feature Selection Algorithms

Finding a global optimum for (1) is typically NP-hard (Weston et al., 2003), unless the
criterion is easily decomposable or has properties which make optimization easier, e.g. sub-
modularity Guestrin et al. (2005). Many algorithms transform (1) into a continuous problem
by introducing weights on the dimensions (Weston et al., 2000; Bradley and Mangasarian,
1998; Weston et al., 2003; Neal, 1998). These methods perform well for linearly separable
problems. For nonlinear problems, however, the optimisation usually becomes non-convex
and a local optimum does not necessarily provide good features. Greedy approaches, for-
ward selection and backward elimination, are often used to tackle problem (1) directly.

2

Feature Selection via Dependence Maximization

Forward selection tries to increase Q(T) as much as possible for each inclusion of features,
and backward elimination tries to achieve this for each deletion of features (Guyon et al.,
2002). Although forward selection is computationally more efficient, backward elimination
provides better features in general since the features are assessed within the context of all
others. See Section 7 for experimental details.

In principle, the Hilbert-Schmidt independence criterion can be employed for feature
selection using either a weighting scheme, forward selection or a backward selection strategy,
or even a mix of several strategies. While the main focus of this paper is on the backward
elimination strategy, we also discuss the other selection strategies. As we shall see, several
specific choices of a kernel function will lead to well known feature selection and feature
rating methods.

Note that backward elimination using HSIC (BAHSIC) is a filter method for feature
selection. It selects features independent of a particular classifier. Such decoupling not
only facilitates subsequent feature interpretation but also speeds up the computation over
wrapper and embedded methods.

We will see that BAHSIC is directly applicable to binary, multiclass, and regression
problems. Most other feature selection methods are only formulated either for binary clas-
sification or regression. Multi-class extension of these methods is usually accomplished using
a one-versus-the-rest strategy. Still fewer methods handle classification and regression cases
at the same time. BAHSIC, on the other hand, accommodates all these cases and unsuper-
vised feature selection in a principled way: by choosing different kernels, BAHSIC not only
subsumes many existing methods as special cases, but also allows us to define new feature
selectors. Such versatility of BAHSIC originates from the generality of HSIC. Therefore,
we first introduce HSIC in the next section.

2. Measures of Dependence

We begin with the simple example of linear dependence detection, and then generalize to
the detection of more general kinds of dependence. Consider spaces X ⊂ Rd and Y ⊂ Rl,
on which we jointly sample observations (x, y) from a distribution Pr(x, y). Denote by Cxy

the covariance matrix
Cxy = Exy

[
xy>

]
− Ex [x] Ey

[
y>
]
, (2)

which contains all second order dependence between the random variables. A statistic that
efficiently summarizes the degree of linear correlation between x and y is the Frobenius
norm of Cxy. Given the singular values σi of Cxy we can compute it via

‖ Cxy ‖2Frob :=
∑

i

σ2
i = tr Cxy C>xy .

This quantity is zero if and only if there exists no linear dependence between x and y. This
statistic is limited in several respects, however, of which we mention two: first, dependence
can exist in forms other than that detectable via covariance (and even when a second order
relation exists, the full extent of the dependence between x and y may only be apparent
when nonlinear effects are included). Second, the restriction to subsets of Rd excludes many
interesting kinds of variables, such as strings and class labels. In the next section, therefore,

3

Song, Smola, Gretton, Borgwardt, and Bedo

we generalize the notion of covariance to nonlinear relationships, and to a wider range of
data types.

2.1 Hilbert-Schmidt Independence Criterion (HSIC)

In general X and Y will be two domains from which we draw samples (x, y): these may be
real valued, vector valued, class labels, strings (Lodhi et al., 2002), graphs (Gärtner et al.,
2003), dynamical systems (Vishwanathan et al., 2007), parse trees (Collins and Duffy, 2001),
images (Schölkopf, 1997), or similar. See (Schölkopf et al., 2004; Schölkopf and Smola, 2002)
for further references.

We define a (possibly nonlinear) mapping φ : X → F from each x ∈ X to a feature
space F (and an analogous map ψ : Y → G wherever needed). In this case we may write
the inner product between the features via the kernel functions

k(x, x′) :=
〈
φ(x), φ(x′)

〉
and l(y, y′) :=

〈
ψ(y), ψ(y′)

〉
. (3)

We usually associate with k and l Reproducing Kernel Hilbert Spaces (RKHS). With some
abuse of notation1 we also refer to them, too, F and G. For instance, if X = Rd, then this
could be as simple as a set of polynomials of order up to b in the components of x, with
kernel k(x,x′) = (〈x,x′〉 + a)b. Other kernels, like the Gaussian RBF kernel correspond
to infinitely large feature spaces. We need never evaluate these feature representations
explicitly, however.

We may now define a cross-covariance operator2 between these feature maps, in accor-
dance with Baker (1973); Fukumizu et al. (2004): this is a linear operator Cxy : G 7−→ F
such that

Cxy := Exy [(φ(x)− µx)⊗ (ψ(y)− µy)] where µx = Ex[φ(x)] and µy = Ey[ψ(y)]. (4)

Here ⊗ denotes the tensor product. We need to extend the notion of a Frobenius norm
to operators. This leads us to the Hilbert-Schmidt norm, which is given by the trace of
Cxy C>xy. For operators with discrete spectrum this amounts to computing the `2 norm of
the singular values. We use the square of the Hilbert-Schmidt norm of the cross-covariance
operator (HSIC), ‖ Cxy ‖2HS as our feature selection criterion Q(T). Gretton et al. (2005)
show that HSIC can be expressed in terms of kernels as

HSIC(F ,G,Pr
xy

) := ‖ Cxy ‖2HS (5)

= Exx′yy′ [k(x, x′)l(y, y′)] + Exx′ [k(x, x′)] Eyy′ [l(y, y′)]− 2 Exy[Ex′ [k(x, x′)] Ey′ [l(y, y′)]].

This allows us to compute a measure of dependence between x and y simply by taking
expectations over a set of kernel functions k and l with respect to the joint and marginal
distributions in x and y without the need to perform density estimation, as is the case with
entropy based methods.

1. Strictly speaking there exist many feature maps which correspond to the Hilbert Spaces defined via k
and l.

2. Again we abuse the notation here by using the same subscript in the operator Cxy as in the covariance
matrix of (2), even though we now refer to the covariance between feature maps.

4

Feature Selection via Dependence Maximization

2.2 Estimating the Hilbert-Schmidt Independence Criterion

We denote by Z = (X,Y) the set of observations {(x1, y1), . . . , (xm, ym)} drawn i.i.d.from
Prxy. Denote by EZ the expectation with respect Z as drawn from Prxy. Moreover, denote
by K,L ∈ Rm×m kernel matrices obtained via Kij = k(xi, xj) and Lij = l(yi, yj). Finally
let H = I−m−1 11 ∈ Rm×m be a centering matrix which projects onto the space orthogonal
to the vector 1.

Gretton et al. (2005) derive estimators of HSIC(F ,G,Prxy) which have O(m−1) bias
and they show that this estimator is well concentrated by means of appropriate tail bounds.
For completeness we briefly restate this estimator and its properties below.

Theorem 1 (Biased estimator of HSIC (Gretton et al., 2005)) The estimator

HSIC0(F ,G, Z) := (m− 1)−2 trKHLH (6)

has bias O(m−1), i.e. HSIC(F ,G,Prxy)− EZ [HSIC0(F ,G, Z)] = O(m−1).

This bias arises from the self-interaction terms which are present in HSIC0, i.e. we still have
O(m) terms of the form Kij Lil and Kji Lli present in the sum, which leads to the O(m−1)
bias. To address this, we now devise an unbiased estimator which removes those additional
terms while ensuring proper normalization. Our proposed estimator has the form

HSIC1(F ,G, Z) :=
1

m(m− 3)

[
tr(K̃ L̃) +

1> K̃ 1 1> L̃ 1
(m− 1)(m− 2)

− 2
m− 2

1> K̃ L̃ 1

]
, (7)

where K̃ and L̃ are related to K and L by K̃ij = (1− δij)Kij and L̃ij = (1− δij)Lij (i.e.
the diagonal entries of K̃ and L̃ are set to zero).

Theorem 2 (Unbiased estimator of HSIC) The estimator HSIC1 is unbiased, that is,
we have EZ [HSIC1(F ,G, Z)] = HSIC(F ,G,Prxy).

Proof We prove the claim by constructing unbiased estimators for each term in (5). Note
that we have three types of expectations, namely Exy Ex′y′ , a partially decoupled expectation
Exy Ex′ Ey′ , and Ex Ey Ex′ Ey′ , which takes all four expectations independently.

If we want to replace the expectations by empirical averages, we need to take care to
avoid using the same discrete indices more than once for independent random variables.
In other words, when taking expectations over n independent random variables, we need
n-tuples of indices where each index occurs exactly once. We define the sets imn to be the
collections of indices satisfying this property. By simple combinatorics one can see that
their cardinalities are given by the Pochhammer symbols (m)n = m!

(m−n)! . Jointly drawn
random variables, on the other hand, share the same index.

For the joint expectation over pairs we have

Exy Ex′y′
[
k(x, x′)l(y, y′)

]
= (m)−1

2 EZ

[∑
(i,j)∈im2

Kij Lij

]
= (m)−1

2 EZ

[
tr K̃ L̃

]
. (8)

5

Song, Smola, Gretton, Borgwardt, and Bedo

Recall that we set K̃ii = L̃ii = 0. In the case of the expectation over three independent
terms Exy Ex′ Ey′ [k(x, x′)l(y, y′)] we obtain

(m)−1
3 EZ

[∑
(i,j,q)∈im3

Kij Liq

]
= (m)−1

3 EZ

[
1> K̃ L̃ 1− tr K̃ L̃

]
. (9)

For four independent random variables Ex Ey Ex′ Ey′ [k(x, x′)l(y, y′)],

(m)−1
4 EZ

[∑
(i,j,q,r)∈im4

Kij Lqr

]
= (m)−1

4 EZ

[
1> K̃ 1 1> L̃ 1−41> K̃ L̃ 1+2 tr K̃ L̃

]
. (10)

To obtain an expression for HSIC we only need to take linear combinations using (5).
Collecting terms related to tr K̃ L̃, 1> K̃ L̃ 1, and 1> K̃ 1 1> L̃ 1 yields

HSIC(F ,G,Pr
xy

) =
1

m(m− 3)
EZ

[
tr K̃ L̃+

1> K̃ 1 1> L̃ 1
(m− 1)(m− 2)

− 2
m− 2

1> K̃ L̃ 1

]
. (11)

This is the expected value of HSIC1[F ,G, Z].

Note that neither HSIC0 nor HSIC1 require any explicit regularization parameters, unlike
earlier work on kernel dependence estimation. This is encapsulated in the choice of the
kernels.

For suitable kernels HSIC(F ,G,Prxy) = 0 if and only if x and y are independent. Hence
the empirical estimate HSIC1 can be used to design nonparametric tests of independence.
A key feature is that HSIC1 itself is unbiased and its computation is simple. Compare this
to quantities based on the mutual information, which requires sophisticated bias correction
strategies (e.g. Nemenman et al., 2002).

Previous work used HSIC to measure independence between two sets of random vari-
ables (Feuerverger, 1993; Gretton et al., 2005). Here we use it to select a subset T from the
first full set of random variables S. We next describe properties of HSIC which support its
use as a feature selection criterion.

2.3 HSIC detects arbitrary dependence (Property I)

We make use of Theorem 4 of Gretton et al. (2005). It states that whenever F ,G are RKHSs
with universal kernels k, l on respective compact domains X and Y in the sense of Steinwart
(2002), then HSIC(F ,G,Prxy) = 0 if and only if x and y are independent.

In terms of feature selection, a universal kernel such as the Gaussian RBF kernel or the
Laplace kernel permits HSIC to detect any dependence between X and Y. HSIC is zero
only if features and labels are independent. Clearly we want to reach the opposite result,
namely strong dependence between features and labels. Hence we try to select features that
maximize HSIC. Likewise, whenever we want to select a subset of features from X we will
try to retain maximal dependence between X and its reduced version.

Note that non-universal kernels can also be used for HSIC, although they may not
guarantee that all dependence is detected. Different kernels incorporate distinctive prior
knowledge into the dependence estimation, and they focus HSIC on dependence of a certain
type. For instance, a linear kernel requires HSIC to seek only second order dependence,

6

Feature Selection via Dependence Maximization

whereas a polynomial kernel of degree b restricts HSIC to test for dependences of degree
(up to) b. Clearly HSIC is capable of finding and exploiting dependence of a much more
general nature by kernels on graphs, strings, or other discrete domains.

2.4 HSIC is concentrated (Property II)

HSIC1, the estimator in (7), can be alternatively formulated using U-statistics (Hoeffding,
1948). This reformulation allows us to derive a uniform convergence bound for HSIC1. In
term of feature selection, this means that the quality of features evaluated using HSIC1

closely reflects its population counterpart HSIC. Furthremore, the same features should
consistently be selected to achieve high dependence if data are repeatedly drawn from the
same distribution. We formalize these results below.

Theorem 3 (U-statisic of HSIC) HSIC1 can be rewritten in terms of a U-statistic

HSIC1(F ,G, Z) = (m)−1
4

∑
(i,j,q,r)∈im4

h(i, j, q, r), (12)

where the kernel h of the U-statistic is defined by

h(i, j, q, r) =
1
24

(i,j,q,r)∑
(s,t,u,v)

Kst[Lst +Luv −2Lsu] (13)

=
1
6

(i,j,q,r)∑
(s≺t),(u≺v)

Kst[Lst +Luv]−
1
12

(i,j,q,r)∑
(s,t,u)

Kst Lsu (14)

Here the first sum represents all 4! = 24 quadruples (s, t, u, v) which can be selected without
replacement from (i, j, q, r). Likewise the sum over (s, t, u) is the sum over all triples chosen
without replacement. Finally, the sum over (s ≺ t), (u ≺ v) has the additional condition
that the order imposed by (i, j, q, r) is preserved. That is (i, q) and (j, r) are valid pairs,
whereas (q, i) or (r, q) are not.
Proof Combining the three unbiased estimators in (8-10) we obtain a single U-statistic

HSIC1(F ,G, Z) = (m)−1
4

∑
(i,j,q,r)∈im4

(Kij Lij +Kij Lqr −2Kij Liq) . (15)

In this form, however, the kernel h(i, j, q, r) = Kij Lij +Kij Lqr −2Kij Liq is not symmetric
in its arguments. For instance h(i, j, q, r) 6= h(q, j, r, i). The same holds for other permuta-
tions of the indices. Thus, we replace the kernel with a symmetrized version, which yields

h(i, j, q, r) :=
1
4!

(i,j,q,r)∑
(s,t,u,v)

(Kst Lst +Kst Luv −2Kst Lsu) (16)

where the sum in (16) represents all ordered quadruples (s, t, u, v) selected without replace-
ment from (i, j, q, r).

7

Song, Smola, Gretton, Borgwardt, and Bedo

This kernel can be simplified, since Kst = Kts and Lst = Lts. The first one only contains
terms Lst Kst, hence the indices (u, v) are irrelevant. Exploiting symmetry we may impose
(s ≺ t) without loss of generality. The same holds for the second term. The third term
remains unchanged, which completes the proof.

We now show that HSIC1(F ,G, Z) is concentrated and that it converges to HSIC(F ,G,Prxy)
with rate 1/

√
m. The latter is a slight improvement over the convergence of the biased

estimator HSIC0(F ,G, Z), proposed by Gretton et al. (2005).

Theorem 4 (HSIC is Concentrated) Assume k, l are bounded almost everywhere by 1,
and are non-negative. Then for m > 1 and all δ > 0, with probability at least 1− δ for all
Prxy ∣∣∣HSIC1(F ,G, Z)−HSIC(F ,G,Pr

xy
)
∣∣∣ ≤ 8

√
log(2/δ)/m

Proof [Sketch] By virtue of (12) we see immediately that HSIC1 is a U-statistic of order 4,
where each term is contained in [−2, 2]. Applying Hoeffding’s bound for U-statistics as in
(Gretton et al., 2005) proves the result.

If k and l were just bounded by 1 in terms of absolute value the bound of Theorem 4 would
be worse by a factor of 2.

2.5 Asymptotic Normality

Theorem 4 gives worst case bounds on the deviation between HSIC and HSIC1. However,
in many cases more accurate bounds for the typical case are needed. In particular, we would
like to know the limiting distribution of HSIC1 for large sample sizes. We now show that,
in fact, HSIC1 is asymptotically normal and we derive its variance. These results are useful
since they allow us to formulate statistics for a significance test. In term of feature selection,
this provides us with an assessment of the functional dependence between selected features
and labels.

Theorem 5 (Asymptotic Normality) If E[h2] < ∞, and data and labels are not inde-
pendent, then as m → ∞, HSIC1 converges in distribution to a Gaussian random variable
with mean HSIC(F ,G,Prxy) and estimated variance

σ2
HSIC1

=
16
m

(
R−HSIC2

1

)
where R =

1
m

m∑
i=1

(
(m− 1)−1

3

∑
(j,q,r)∈im3 \{i}

h(i, j, q, r)
)2
, (17)

where imn \{i} denotes the set of all n-tuples drawn without replacement from {1, . . . ,m}\{i}.

Proof [Sketch] This follows directly from Serfling (1980, Theorem B, p. 193), which shows
asymptotic normality of U-statistics.

Unfortunately (17) is expensive to compute by means of an explicit summation: even com-
puting the kernel h of the U-statistic itself is a nontrivial task. For practical purposes we
need an expression which can exploit fast matrix operations. As we shall see, σ2

HSIC1
can be

computed in O(m2), given the matrices K̃ and L̃. To do so, we first form a vector h with

8

Feature Selection via Dependence Maximization

its ith entry corresponding to
∑

(j,q,r)∈im3 \{i} h(i, j, q, r). Collecting terms in (13) related to
matrices K̃ and L̃, h can be written as

h =(m− 2)2(K̃ ◦ L̃)1+(m− 2)
(
(tr K̃ L̃)1− K̃ L̃ 1− L̃ K̃ 1

)
−m(K̃ 1) ◦ (L̃ 1)

+ (1> L̃ 1) K̃ 1+(1> K̃ 1) L̃ 1−(1> K̃ L̃ 1)1 (18)

where ◦ denotes elementwise matrix multiplication. Then R in (17) can be computed as
R = (4m)−1(m − 1)−2

3 h> h. Combining this with the the unbiased estimator in (7) leads
to the matrix computation of σ2

HSIC1
.

2.6 Computation

Exact Computation of HSIC0 and HSIC1 Note that both HSIC0 and HSIC1 are simple
to compute, since only the kernel matrices K and L are needed, and no density estima-
tion is involved. Assume that computing an entry in K and L takes constant time, then
computing the full matrix takes O(m2) time. In term of the sample size m, we have the
following analysis of the time complexity of HSIC0 and HSIC1 (by considering summation
and multiplication as atomic operations):

HSIC0 Centering L takesO(m2) time. Since tr(KHLH) is equivalent to 1>(K ◦HLH)1,
it also takes O(m2) time. Overall, computing HSIC0 takes O(m2) time.

HSIC1 Each of the three terms in HSIC1, namely tr(K̃ L̃), 1> K̃ 1 1> L̃ 1 and 1> K̃ L̃ 1,
takes O(m2) time. Overall, computing HSIC1 also takes O(m2) time.

Approximate Computation of HSIC0 and HSIC1 Further speedup is also possible via
a low rank approximation of the kernel matrices. Particularly, using incomplete Cholesky
decomposition, Gretton et al. (2005) derive an efficient approximation of HSIC0. Formally,
it can be summarized as the following lemma:

Lemma 6 (Efficient Approximation to HSIC0) Let K ≈ AA> and L ≈ BB>, where
A ∈ Rm×df and B ∈ Rm×dg . Then HSIC0 can be approximated in O(m(d2

f + d2
g)) time.

Note that in this case the dominant computation comes from the incomplete Cholesky
decomposition, which can be carried out in O(md2

f) and O(md2
g) time respectively (Fine

and Scheinberg, 2000).
The three terms in HSIC1 can be computed analogously. Denote by DK = diag(AA>)

and DL = diag(BB>) the diagonal matrices of the approximating terms. The latter can
be computed in O(mdf) and O(mdg) time respectively. We have

1> K̃ 1 = 1>(AA>−DK)1 = ‖1>A ‖2 + 1>DK 1 .

Computation requires O(mdf) time. The same holds when computing 1> L̃ 1. To obtain
the second term we exploit that

1> K̃L̃ 1 = 1>(AA>−DK)(BB>−DK)1 = ((A(A> 1))−DK 1)>((B(B> 1))−DL 1).

This can be computed in O(m(df + dg)). Finally, to compute the third term we use

tr K̃L̃ = tr(AA>−DK)(BB>−DL)

= ‖A>B ‖2Frob − trB>DK B− trA>DL A+trDK DL .

9

Song, Smola, Gretton, Borgwardt, and Bedo

This can be computed in O(mdfdg) time. It is the most costly of all operations, since it
takes all interactions between the reduced factorizations of K and L into account. Hence
we may compute HSIC1 efficiently (note again that dominant computation comes from the
incomplete Cholesky decomposition):

Lemma 7 (Efficient Approximation of HSIC1) Let K ≈ AA> and L ≈ BB>, where
A ∈ Rm×df and B ∈ Rm×dg . Then HSIC1 can be approximated in O(m(d2

f + d2
g)) time.

Variance of HSIC1 To compute the variance of HSIC1 we also need to deal with (K̃◦L̃)1.
For the latter, no immediate linear algebra expansion is available. However, we may use of
the following decomposition. Assume that a and b are vectors in Rm. In this case

((aa>) ◦ (bb>))1 = (a ◦b)(a ◦b)> 1

which can be computed in O(m) time. Hence we may compute

((AA>) ◦ (BB>))1 =
df∑
i=1

dg∑
j=1

((Ai ◦Bj)(Ai ◦Bj)>)1

which can be carried out in O(mdfdg) time. To take care of the diagonal corrections note
that (AA>−DK)◦DL = 0. The same holds for B and DK. The remaining term DK DL 1
is obviously also computable in O(m) time.

3. Notation

In the following sections, we will deal mainly with vectorial data. Whenever we have
vectorial data, we use X as a shorthand to denote the matrix of all vectorial observations
xi ∈ Rd (the ith row of X corresponds to x>i). Likewise, whenever the labels can be
bundled into a matrix Y or a vector y (for binary classification), we will use the latter for
a more concise notation. Also, we will refer to the jth column of X and Y as x∗j and y∗j
respectively as needed.

Furthermore, we denote the mean and standard deviation of the jth feature (dimension)
by x̄j = 1

m

∑m
i xij and sj = (1

m

∑m
i (xij − x̄j)2)1/2 respectively (xij is the value of the jth

feature of data xi). For binary classification problems we denote bym+ andm− the numbers
of positive and negative observations. Moreover, x̄j+ and x̄j− correspond respectively to the
means of the positive and negative classes at the jth feature (the corresponding standard
deviations are sj+ and sj−). More generally, let my be the number of samples with class
label equal to y (this notation is also applicable to multiclass problems). Finally, let 1n be
a vector of all ones with length n and 0n be a vector of all zeros.

For non-vectorial or scalar data, we will use lower case letters to denote them. Very
often the labels are scalars, we use y to denote them. The mean and standard deviation of
the labels are ȳ and sy respectively.

4. Feature Selection via HSIC

Having defined our feature selection criterion, we now describe algorithms that conduct
feature selection on the basis of this dependence measure. Denote by S the full set of

10

Feature Selection via Dependence Maximization

features, T a subset of features (T ⊆ S). We want to find T such that the dependence
between features in T and the labels is maximized. Moreover, we may choose between
different feature selection strategies, that is, whether we would like to build up a catalog of
features in an incremental fashion (forward selection) or whether we would like to remove
irrelevant features from a catalog (backward selection). For certain kernels, such as a
linear kernel, both selection methods are equivalent: the objective function decomposes
into individual coordinates, and thus feature selection can be done without recursion in
one go. Although forward selection is computationally more efficient, backward elimination
in general yields better features (especially for nonlinear features), since the quality of the
features is assessed within the context of all other features (Guyon and Elisseeff, 2003).

4.1 Backward Elimination Using HSIC (BAHSIC)

BAHSIC works by generating a list S† which contains the features in increasing degree of
relevance. At each step S† is appended by a feature from S which is not contained in S†
yet by selecting the features which are least dependent on the reference set (i.e. Y or the
full set X).

Once we perform this operation, the feature selection problem in (1) can be solved
by simply taking the last t elements from S†. Our algorithm produces S† recursively,
eliminating the least relevant features from S and adding them to the end of S† at each
iteration. For convenience, we also denote HSIC as HSIC(σ,S), where S are the features
used in computing the data kernel matrix K, and σ is the parameter for the data kernel
(for instance, this might be the size of a Gaussian kernel k(x,x′) = exp(−σ ‖x−x′‖2)).

Step 3 of the algorithm denotes a policy for adapting the kernel parameters. Depending
on the availability of prior knowledge and the type of preprocessing, we explored three types
of policies

1. If we have prior knowledge about the nature of the nonlinearity in the data, we can
use a fixed kernel parameter throughout the iterations. For instance, we can use a
polynomial kernel of fixed degree, e.g. (〈x,x′〉 + 1)2, to select the features for the
XOR dataset showed in Figure 1(a).

2. If we have no prior knowledge, we can optimize HSIC over a set of kernel parameters.
In this case, the policy corresponds to arg maxσ∈Θ HSIC(σ,S), where Θ is a set
of parameters that ensure the kernel is bounded. For instance, σ can be the scale
parameter of a Gaussian kernel, k(x,x′) = exp(−σ ‖x−x′‖2). Optimizing over the
scaling parameter allows us to adapt to the scale of the nonlinearity present in the
(feature-reduced) data.

3. Adapting kernel parameters via optimization is computational intensive. Alternatively
we can use a policy that produces approximate parameters in each iteration. For
instance, if we normalize each feature separately to zero mean and unit variance, we
know that the expected value of the distance between data points, E

[
(x−x′)2

]
, is 2d

(d is the dimension of the data). When using a Gaussian kernel, we can then use a
policy that assigns σ to 1/(2d) as the dimension of the data is reduced.

Step 4 of the algorithm is concerned with the selection of a set I of features to eliminate.
While one could choose a single element of S, this would be inefficient when there are a

11

Song, Smola, Gretton, Borgwardt, and Bedo

Algorithm 1 BAHSIC
Input: The full set of features S
Output: An ordered set of features S†

1: S† ← ∅
2: repeat
3: σ ← Ξ
4: I ← arg maxI

∑
j∈I HSIC(σ,S \{j}), I ⊂ S

5: S ← S \I
6: S† ← S† ∪I
7: until S = ∅

large number of irrelevant features. On the other hand, removing too many features at once
risks the loss of relevant features. In our experiments, we found a good compromise between
speed and feature quality was to remove 10% of the current features at each iteration.

In BAHSIC, the kernel matrix L for the labels is fixed through the whole process. It
can be precomputed and stored for speedup if needed. Therefore, the major computation
comes from repeated calculation of the kernel matrix K for the dimension-reduced data.
Assume that computing an entry in K requires constant time irrespective of the dimension
of the data, then the ith iteration of BAHSIC takes O(βi−1dm2) time (d is the total number
of features, βi−1d features remain after i− 1 iterations, we have m2 elements in the kernel
matrix in total). If we want to reduce the number of features to t we need at most τ =
logβ(t/d) iterations. This brings the total time complexity to O

(
1−βτ

1−β dm
2
)

= O
(

d−t
1−βm

2
)

operations. When using incomplete Cholesky factorization we may reduce computational
complexity somewhat further to O

(
d−t
1−βm(d2

f + d2
g)
)

time. This saving is significant as long
as dfdg < m, which may happen, for instance whenever Y is a binary label matrix. In this
case dg = 1, hence incomplete factorizations may yield significant computational gains.

4.2 Forward Selection Using HSIC (FOHSIC)

FOHSIC uses the converse approach to backward selection: it builds a list of features in
decreasing degree of relevance. This is achieved by adding one feature at a time to the
set of features S† obtained so far using HSIC as a criterion for the quality of the so-added
features. For faster selection of features, we can choose a group of features (for instance, a
fixed proportion γ) at step 4 and add them in one shot at step 6. The adaptation of kernel
parameters in step 3 follows the same policies as those for BAHSIC. The feature selection
problem in (1) can be solved by simply taking the first t elements from S†.

Time Complexity Under the same assumption as BAHSIC, the ith iteration of FOHSIC
takes O((1 − γ)i−1dm2) time. The total number of iterations τ to obtain t features is
t = [1 − (1 − γ)τ]d, that is τ = log(d−t)−log d

log(1−γ) iterations. Performing τ steps will therefore

take
∑τ−1

i=0 d(1− γ)i = d(1− (1− γ)τ)/γ = t/γ operations. This means that FOHSIC takes
O(tm2/γ) time to extract t features.

12

Feature Selection via Dependence Maximization

Algorithm 2 FOHSIC
Input: The full set of features S, desired number of features t
Output: An ordered set of features S†

1: S† ← ∅
2: repeat
3: σ ← Ξ
4: I ← arg maxI

∑
j∈I HSIC(σ,S† ∪{j}), I ⊂ S

5: S ← S \I
6: S† ← S† ∪I
7: until | S† | = t

5. Variants of BAHSIC

So far we discussed a set of algorithms to select features once we decided to choose a
certain family of kernels k, l to measure dependence between two sets of observations. We
now proceed to discussing a number of design choices for k and l. This will happen in two
parts: in the current section we discuss generic choices of kernels on data and labels. Various
combinations of such kernels will then lead to new algorithms that aim to discover different
types of dependence between features and labels (or between a full and a restricted dataset
whenever we are interested in unsupervised feature selection). After that (in section 6) we
will study specific choices of kernels which correspond to existing feature selection methods.

5.1 Kernels on Data

There exists a great number of kernels on data. Obviously, different kernels will correspond
to a range of different assumptions on the type of dependence between the random variables
x and y. Hence different kernels induce distinctive similarity measure on the data.

Linear kernel The simplest choice for k is to take a linear kernel k(x,x′) = 〈x,x′〉. This
means that we are just using the underlying Euclidean space to define the similarity measure.
Whenever the dimensionality d of x is very high, this may allow for more complexity in the
function class than what we could measure and assess otherwise. An additional advantage
of this setting is that the kernel decomposes into the sum of products between individual
coordinates. This means that any expression of the type trKM can be maximized with
respect to the subset of available features via

d∑
j=1

x>∗j Mx∗j (19)

This means that the optimality criterion decomposes into a sum over the scores of individual
coordinates. Hence maximization with respect to a subset of size t is trivial, since it just
involves finding the t largest contributors. Using (11) we can see that for HSIC1 the matrix
M is given by

M =
1

m(m− 3)

[
L̃+

(
11>− I

) 1> L̃ 1
(m− 1)(m− 2)

− 2
m− 2

(
L̃ 1 1>−diag

(
L̃ 1
))]

. (20)

13

Song, Smola, Gretton, Borgwardt, and Bedo

These terms are essentially rank-1 and diagonal updates on L̃, which means that they can
be computed very efficiently. Note also that in this case FOHSIC and BAHSIC generate
the optimal feature selection with respect to the criterion applied.

Polynomial kernel Clearly in some cases the use of linear features can be quite limiting.
It is possible, though, to use higher order correlations between data for the purpose of
feature selection. This is achieved by using a polynomial kernel

k(x,x′) =
(〈

x,x′
〉

+ a
)b for some a ≥ 0 and b ∈ N . (21)

This kernel incorporates all polynomial interactions up to degree b (provided that a > 0).
For instance, if we wanted to take only mean and variance into account, we would only need
to consider b = 2 and a = 1. Placing a higher emphasis on means is achieved by increasing
the constant offset a.

Radial Basis Function kernel Note that polynomial kernels only map data into a finite
dimensional space: while potentially huge, the dimensionality of polynomials of bounded
degree is finite, hence criteria arising from such kernels will not provide us with guarantees
for a good dependence measure. On the other hand, many radial basis function kernels,
such as the Gaussian RBF kernel map x into an infinite dimensional space. One may show
that these kernels are in fact universal in the sense of Steinwart (2002). That is, we use
kernels of the form

k(x,x′) = κ(‖x−x′ ‖) where κ(ξ) = exp(−ξ) or κ(ξ) = exp(−ξ2) (22)

to obtain Laplace and Gaussian kernels respectively. Since the spectrum of the correspond-
ing matrices is rapidly decaying it is easy to compute incomplete Cholesky factorizations of
the kernel matrix efficiently.

String and Graph kernel One of the key advantages of our approach is that it is not
limited to vectorial data. For instance, we can perform feature selection on documents or
graphs. For many such situations we have

k(x, x′) =
∑
avx

wa#a(x)#a(x′), (23)

where a v x is a substring of x (Vishwanathan and Smola, 2003; Leslie et al., 2002). Similar
decompositions can be made for graphs, where kernels on random walks and paths can be
defined. As before, we could use BAHSIC to remove or FOHSIC to generate a list of features
such that only relevant ones remain. That said, given that such kernels are additive in their
features, we can use the same argument as made above for linear kernels to determine
meaningful features in one go.

5.2 Kernels on Labels

The kernels on the data described our inherent assumptions on which properties of x (e.g.
linear, polynomial, or nonparametric) are relevant for estimation. We now describe the
complementary part, namely a set of possible choices for kernels on labels. Note that
these kernels can be just as general as those defined on the data. This means that we

14

Feature Selection via Dependence Maximization

may apply our algorithms to classification, regression, Poisson models, ranking, etc. in the
same fashion. This is a significant difference to previous approaches which only apply to
specialized settings such as binary classification. For completeness we begin with the latter.

Binary Classification The simplest kernel we may choose is

l(y, y′) = yy′ where y, y′ ∈ {±1} . (24)

In this case the label kernel matrix L = y y> has rank 1 and it is simply the outer product
of the vector of labels. Note that we could transform l by adding a positive constant c, such
as to obtain l(y, y′) = yy′ + c which yields l(y, y′) = 2δy,y′ for c = 1. This transformation,
however, is immaterial: once K has been centered it is orthogonal to constant matrices.

A second transformation, however, leads to nontrivial changes: we may change the
relative weights of positive and negative classes. This is achieved by transforming y → cyy.
For instance, we may pick c+ = m−1

+ and c− = m−1
− . That is, we choose

y =
(
m−1

+ 1>m+
,m−1

− 1>m−

)>
which leads to l(y, y′) = m−1

y m−1
y′ yy

′ (25)

That is, we give different weight to positive and negative class according to their sample
size. As we shall see in the next section, this corresponds to making the feature selection
independent of the class size and it will lead to criteria derived from Maximum Mean
Discrepancy estimators (Gretton et al., 2007).

Multiclass Classification Here we have a somewhat larger choice of options to contend
with. Clearly the simplest kernel would be

l(y, y′) = cyδy,y′ where cy > 0. (26)

For cy = m−1
y we obtain a per-class normalization. Clearly, for n classes, the kernel matrix

L can be represented by the outer product of a rank-n matrix, where each row is given by
cyi e

>
yi

, where ey denotes the y-th unit vector in Rn. Alternatively, we may adjust the inner
product between classes to obtain

l(y, y′) =
〈
ψ(y), ψ(y′)

〉
(27)

where ψ(y) = ey
m

my(m−my)
− z and z = ((m−m1)−1, . . . , (m−mn)−1)>.

This corresponds to assigning a “one versus the rest” feature to each class and taking the
inner product between them. As before in the binary case, note that we may drop z from
the expansion, since constant offsets do not change the relative values of HSIC for feature
selection. In this case we recover (26) with cy = m2m−2

y (m−my)−2.

Regression This is one of the situations where the advantages of using HSIC are clearly
apparent: we are able to adjust our method to such situations simply by choosing appro-
priate kernels. Clearly, we could just use a linear kernel l(y, y′) = yy′ which would select
simple correlations between data and labels.

Another choice is to use an RBF kernel on the labels, such as

l(y, y′) = exp
(
−σ̄
∥∥y − y′∥∥2

)
. (28)

15

Song, Smola, Gretton, Borgwardt, and Bedo

This will ensure that we capture arbitrary nonlinear dependence between x and y. The
price is that in this case L will have full rank, hence computation of BAHSIC and FOHSIC
are correspondingly more expensive.

6. Connections to Other Approaches

We now show that several feature selection criteria are special cases of BAHSIC by choosing
appropriate preprocessing of data and kernels. We will directly relate these criteria to the
biased estimator HSIC0 in (6). Given the fact that HSIC0 converges to HSIC1 with rate
O(m−1) it follows that the criteria are well related. Additionally we can infer from this
that by using HSIC1 these other criteria could also be improved by correcting their bias. In
summary BAHSIC is capable of finding and exploiting dependence of a much more general
nature (for instance, dependence between data and labels with graph and string values).

6.1 Pearson Correlation

Pearson’s correlation is commonly used in microarray analysis (van’t Veer et al., 2002;
Ein-Dor et al., 2006). It is defined as

Rj :=
1
m

m∑
i=1

(
xij − x̄j

sxj

)(
yi − ȳ
sy

)
where (29)

x̄j =
1
m

m∑
i=1

xij and ȳ =
1
m

m∑
i=1

yi and s2xj
=

1
m

m∑
i=1

(xij − x̄j)2 and s2y =
1
m

m∑
i=1

(yi − ȳ)2.

This means that all features are individually centered by x̄j and scaled by their coordinate-
wise variance sxj as a preprocessing step. Performing those operations before applying a
linear kernel yields the equivalent HSIC0 formulation:

trKHLH = tr
(
XX>Hyy>H

)
=
∥∥∥HX>Hy

∥∥∥2
(30)

=
d∑

j=1

(
m∑

i=1

(
xij − x̄j

sxj

)(
yi − ȳ
sy

))2

=
d∑

j=1

R2
j . (31)

Hence HSIC1 computes the sum of the squares of the Pearson Correlation (pc) coefficients.
Since the terms are additive, feature selection is straightforward by picking the list of best
performing features.

6.2 Mean Difference and its Variants

The difference between the means of the positive and negative classes at the jth feature,
(x̄j+− x̄j−), is useful for scoring individual features. With different normalization of the
data and the labels, many variants can be derived. In our experiments we compare a
number of these variants. For example, the centroid (lin) (Bedo et al., 2006), t-statistic (t),
signal-to-noise ratio (snr), moderated t-score (m-t) and B-statistics (lods) (Smyth, 2004)
all belong to this family. In the following we make those connections more explicit.

16

Feature Selection via Dependence Maximization

Centroid Bedo et al. (2006) use vj := λ x̄j+−(1 − λ) x̄j− for λ ∈ (0, 1) as the score for
feature j.3 Features are subsequently selected according to the absolute value |vj |. In
experiments the authors typically choose λ = 1

2 .

For λ = 1
2 we can achieve the same goal by choosing Lii′ = yiyi′

myimyi′
(yi, yi′ ∈ {±1}),

in which case HLH = L, since the label kernel matrix is already centered. Hence we
have

trKHLH =
m∑

i,i′=1

yiyi′

myimyi′
x>i xi′ =

d∑
j=1

 m∑
i,i′=1

yiyi′xijxi′j

myimyi′

 =
d∑

j=1

(x̄j+− x̄j−)2.

(32)

This proves that the centroid feature selector can be viewed as a special case of
BAHSIC in the case of λ = 1

2 . From our analysis we see that other values of λ amount
to effectively rescaling the patterns xi differently for different classes, which may lead
to undesirable features being selected.

t-Statistic The normalization for the jth feature is computed as

s̄j =

[
s2j+
m+

+
s2j−
m−

] 1
2

(33)

In this case we define the t-statistic for the jth feature via tj = (x̄j+− x̄j−)/ s̄j .

Compared to the Pearson correlation, the key difference is that now we normalize
each feature not by the overall sample standard deviation but rather by a value which
takes each of the two classes separately into account.

Signal to noise ratio is yet another criterion to use in feature selection. The key idea is
to normalize each feature by s̄j = sj+ + sj− instead. Subsequently the (x̄j+− x̄j−)/ s̄j

are used to score features.

Moderated t-score is similar to t-statistic and is used for microarray analysis (Smyth,
2004). Its normalization for the jth feature is derived via a Bayes approach as

s̃j =
m s̄2j +m0 s̄20
m+m0

(34)

where s̄j is from (33), and s̄0 and m0 are hyperparameters for the prior distribution
on s̄j (all s̄j are assumed to be iid). s̄0 and m0 are estimated using information from
all feature dimensions. This effectively borrows information from the ensemble of
features to aid with the scoring of an individual feature. More specifically, s̄0 and m0

can be computed as (Smyth, 2004)

m0 = 2Γ′−1

1
d

d∑
j=1

(zj − z̄)2 − Γ′
(m

2

) (35)

s̄20 = exp
(
z̄−Γ

(m
2

)
+ Γ

(m0

2

)
− ln

(m0

m

))
(36)

3. The parameterization in (Bedo et al., 2006) is different but it can be shown to be equivalent.

17

Song, Smola, Gretton, Borgwardt, and Bedo

where Γ(·) is the gamma function, ′ denotes derivative, zj = ln(s̄2j) and z̄ = 1
d

∑d
j=1 zj .

B-statistic is the logarithm of the posterior odds (lods) that a feature is differentially
expressed. Lönnstedt and Speed (2002); Smyth (2004) show that, for large number of
features, B-statistic is given by

Bj = a+ b t̃2j (37)

where both a and b are constant (b > 0), and t̃j is the moderated-t statistic for the
jth feature. Here we see that Bj is monotonic increasing in t̃j , and thus results in the
same gene ranking as the moderated-t statistic.

The reason why these connections work is that the signal-to-noise ratio, moderated t-
statistic, and B-statistic are three variants of the t-test. They differ only in their respective
denominators, and are thus special cases of HSIC0 if we normalize the data accordingly.

6.3 Maximum Mean Discrepancy

For binary classification, an alternative criterion for selecting features is to check whether the
distributions Pr(x|y = 1) and Pr(x|y = −1) differ and subsequently pick those coordinates
of the data which primarily contribute to the difference between the two distributions.

More specifically, we could use Maximum Mean Discrepancy (MMD) (Borgwardt et al.,
2006), which is a generalization of mean difference for Reproducing Kernel Hilbert Spaces,
given by

MMD = ‖Ex [φ(x)|y = 1]− Ex [φ(x)|y = −1]‖2H . (38)

A biased estimator of the above quantity can be obtained simply by replacing expectations
by averages over a finite sample. We relate a biased estimator of MMD to HSIC0 again by
setting m−1

+ as the labels for positive samples and −m−1
− for negative samples. If we apply

a linear kernel on labels, L is automatically centered, i.e. L1 = 0 and HLH = L. This
yields

trKHLH = trKL (39)

=
1
m2

+

m+∑
i,j

k(xi, xj) +
1
m2
−

m−∑
i,j

k(xi, xj)−
2

m+m−

m+∑
i

m−∑
j

k(xi, xj)

=

∥∥∥∥∥∥ 1
m+

m+∑
i

φ(xi)−
1
m−

m−∑
j

φ(xj)

∥∥∥∥∥∥
2

H

.

The quantity in the last line is an estimator of MMD with bias O(m−1) (Borgwardt et al.,
2006). This implies that HSIC0 and the biased estimator of MMD are identical up to a
constant factor. Since the bias of HSIC0 is also O(m−1), this effectively show that scaled
MMD and HSIC1 converges to each other with rate O(m−1).

18

Feature Selection via Dependence Maximization

6.4 Kernel Target Alignment

Alternatively, one could use Kernel Target Alignment (KTA) (Cristianini et al., 2003) to
test directly whether there exists any correlation between data and labels. KTA has been
used for feature selection in this context. Formally it is defined as tr(KL)/‖K ‖‖L ‖, that
is, the cosine between the kernel matrix and the label matrix.

The nonlinear dependence on K makes it somewhat hard to optimize for. Indeed,
for computational convenience the normalization is often omitted in practise (Neumann
et al., 2005), which leaves us with trKL, the corresponding estimator of MMD. Note the
key difference, though, that normalization of L according to label size does not occur.
Nor does KTA take centering into account. Whenever the sample sizes for both classes
are approximately matched, such lack of normalization is negligible and we see that both
criteria effectively check a similar criterion.

Hence in some cases in binary classification, selecting features that maximizes HSIC also
maximizes MMD and KTA. Note that in general (multiclass, regression, or generic binary
classification) this connection does not hold. Moreover, the use of HSIC offers uniform
convergence bounds on the tails of the distribution of the estimators.

6.5 Shrunken Centroid

The shrunken centroid (pam) method (Tibshirani et al., 2002, 2003) performs feature rank-
ing using the differences from the class centroids to the centroid of all the data, ie.

(x̄j+− x̄j)
2 + (x̄j−− x̄j)

2 , (40)

as a criterion to determine the relevance of a given feature. It also scores each feature
separately.

To show that this criterion is related to HSIC we need to devise an appropriate map for
the labels y. Consider the feature map ψ(y) with ψ(1) = (m−1

+ , 0)> and ψ(−1) = (0,m−1
−)>.

Clearly, when applying H to Y we obtain the following centered effective feature maps

ψ̄(1) = (m−1
+ −m−1,−m−1) and ψ̄(−1) = (−m−1,m−1

− −m−1). (41)

Consequently we may express trKHLH via

trKHLH =

∥∥∥∥∥ 1
m+

m+∑
i=1

xi−
1
m

m∑
i=1

xi

∥∥∥∥∥
2

+

∥∥∥∥∥ 1
m−

m−∑
i=1

xi−
1
m

m∑
i=1

xi

∥∥∥∥∥
2

(42)

=
d∑

j=1

(1
m+

m+∑
i=1

xij −
1
m

m∑
i=1

xij

)2

+

(
1
m−

m−∑
i=1

xij −
1
m

m∑
i=1

xij

)2
 (43)

=
d∑

j=1

(
(x̄j+− x̄j)

2 + (x̄j−− x̄j)
2
)

(44)

This is the information used by the shrunken centroid method, hence we see that it can
be seen to be a special case of HSIC when using a linear kernel on the data and a specific
feature map on the labels. Note that we could assign different weights to the two classes,

19

Song, Smola, Gretton, Borgwardt, and Bedo

which would lead to a weighted linear combination of distances from the centroid. Finally,
it is straightforward how this definition can be extended to multiclass settings, simply by
considering the map ψ : y → m−1

y ey.

6.6 Ridge Regression

BAHSIC can also be used to select features for regression problems, except that in this case
the labels are continuous variables. We could, in principle, use an RBF kernel or similar
on the labels to address the feature selection issue. What we show now is that even for a
simple linear kernel, interesting results can be obtained. More to the point, we show that
feature selection using ridge regression can also be seen to arise as a special case of HSIC
feature selection. We assume here that y is centered.

In ridge regression (Hastie et al., 2001), we estimate the outputs y using the design
matrix V and a parameter vector w by minimizing the following regularized risk functional

J = ‖y−Vw‖2 + λ ‖w‖2 . (45)

Here the second term is known as the regularizer. If we choose V = X we obtain the
family of linear models. In the general (nonlinear) case V may be an arbitrary matrix,
where each row consists of a set of basis functions, e.g. a feature map φ(x). One might
conclude that small values of J correspond to good sets of features, since there a w with
small norm would still lead to a small approximation error. It turns out that J is minimized
for w = (V>V +λ I)−1 y. Hence the minimum is given by

J∗ = y> y−y>V(V>V +λ I)−1 V> y (46)

= constant− tr
[
V(V>V +λ I)−1 V>

]
y y> . (47)

Whenever we are only given K = V>V we have the following equality

J∗ = constant− tr
[
K(K+λ I)−1

]
y y> . (48)

This means that the matrices

K̄ := V(V>V +λ I)−1 V> and K̄ := K(K+λ I)−1 (49)

are equivalent kernel matrices to be used in BAHSIC. Note that obviously instead of using
y y> as a kernel on the labels L we could use a nonlinear kernel in conjunction with the
matrices arrived at from feature selection by ridge regression. It also generalizes the setting
of Hastie et al. (2001) to situations other than regression.

6.7 Quadratic Mutual Information

Torkkola (2003) introduces the quadratic mutual information for feature selection. That is,
he uses the L2 distance between the joint and the marginal distributions on x and y as a
criterion for how dependent the two distributions are:

I(x, y) =
∫ ∫

(Pr(x, y)− Pr(x) Pr(y))2dxdy (50)

20

Feature Selection via Dependence Maximization

In general, (50) is not efficiently computable. That said, when using a Parzen windows
estimate of the joint and the marginals, it is possible to evaluate I(x, y) explicitly. Since
we only have a finite number of observations, one uses the estimates

p̂(x) =
1
m

m∑
i=1

κx(xi − x) (51a)

p̂(y) =
1
m

m∑
i=1

κy(yi − y) (51b)

p̂(x, y) =
1
m

m∑
i=1

κx(xi − x)κy(yi − y). (51c)

Here κx and κy are appropriate kernels of the Parzen windows density estimator. Denote
by

κij =
∫
κx(xi − x)κx(xj − x)dx and νij =

∫
κy(yi − y)κy(yj − y)dy (52)

inner products between Parzen windows kernels. In this case we have

‖p̂(x, y)− p̂(x) · p̂(y)‖2 = m−2
[
trκν − 21> κν 1+1> κ11> ν 1

]
= m−2κH νH . (53)

In other words, we obtain the same criterion as what can be derived from a biased estimator
of HSIC. The key difference, though, is that this analogy only works whenever κ and ν can
be seen to be arising from an inner product between Parzen windows kernel estimates. This
is not universally true: for instance, for graphs, trees, or strings no simple density estimates
can be found. This is a serious limitation. Moreover, since we are using a plug-in estimate
of the densities, we inherit an innate slow-down of convergence due to the convergence of
the density estimators. This issue is discussed in detail in (Anderson et al., 1994).

6.8 Recursive Feature Elimination with Support Vectors

Another popular feature selection algorithm is to use Support Vector Machines and to
determine the relevance of features by the size of the induced margin as a solution of
the dual optimization problem (Guyon et al., 2002). While the connection to BAHSIC
is somewhat more tenuous in this context, it is still possible to recast this algorithm in
our framework. Before we do so, we describe the basic idea of the method, using ν-SVM
instead of plain C-SVMs: for ν-SVM without a constant offset b we have the following dual
optimization problem (Schölkopf et al., 1999).

minimize
α

1
2
α>(K ◦L)α subject to α> 1 = νm and αi ∈ [0, 1]. (54)

This problem is first solved with respect to α for the full set of features. Features are
then selected from (54) by removing coordinates such that the objective function decreases
least (if at all). For computational convenience, α is not recomputed for a number of
feature removals, since repeated solving a quadratic program tends to be computationally
expensive.

21

Song, Smola, Gretton, Borgwardt, and Bedo

We now show that this procedure can be viewed as a special case of BAHSIC, where
now the class of kernels, parameterized by σ is the one of conformal kernels. Given a base
kernel k(x,x′) Amari and Wu (1999) propose the following kernel:

k̄(x,x′) = α(x)α(x′)k(x,x′) where α(x) ≥ 0. (55)

It is easy to see that

α>(K ◦L)α = y> [diagα]K [diagα]y = y> K̄ y, (56)

where K̄ is the kernel matrix arising from the conformal kernel k̄(x,x′). Hence for fixed α
the objective function is given by a quantity which can be interpreted as a biased version
of HSIC. Re-optimization with respect to α is consistent with the kernel adjustment step
in Algorithm 1. The only difference being that here the kernel parameters are given by α
rather than a kernel width σ. That said, it is also clear from the optimization problem that
this style of feature selection may not be as desirable, since the choice of kernel parameters
emphasizes only points close to the decision boundary.

7. Experiments

We analyze BAHSIC and related algorithms in an extensive set of experiments. The current
section contains results on synthetic and real benchmark data, that is, data from Statlib,
the UCI repository, and data from the NIPS feature selection challenge. Sections 8 and
9 then discusses applications to biological data, namely brain signal analysis and feature
selection for microarrays.

Since the number of possible choices for feature selection within the BAHSIC family is
huge, it is clearly impossible to investigate and compare all of them to all possible other
feature selectors. In the present section we pick the following three feature selectors as
representative examples. A wider range of kernels and choices is investigated in Section 8
and 9 in the context of biomedical applications.

In this section, we presents three concrete examples of BAHSIC which are used for our
later experiments. We apply a Gaussian kernel k(x,x′) = exp(−σ‖x−x′ ‖2) on data, while
varying the kernels on labels. These BAHSIC variants are dedicated respectively to the
following setttings:

Binary classification (BIN) Use the feature map in (25) and apply a linear kernel.

Multiclass classification (MUL) Use the feature map in (26) and apply a linear kernel.

Regression problem (REG) Use the kernel in (28), i.e. a Gaussian RBF kernel on Y.

For the above variants a further speedup of BAHSIC is possible by updating entries in the
data kernel matrix incrementally. We use the fact that distance computation of a RBF kernel
decomposes into individual coordinates, i.e. we use that ‖xi−xi′ ‖2 =

∑d
j=1 ‖xij − xi′j‖2.

Hence ‖xi−xi′ ‖2 needs to be computed only once, and subsequent updates are effected by
subtracting ‖xij − xi′j‖2.

We will use BIN, MUL and REG as the particular instances of BAHSIC in our experi-
ments. We will refer to them commonly as BAHSIC since the exact meaning will be clear

22

Feature Selection via Dependence Maximization

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1: Artificial datasets and the performance of different methods when varying the number of
observations. The first row contains plots for the first 2 dimension of the (a) binary (b) multiclass
and (c) regression data. Different classes are encoded with different colours. The second row
plots the median rank (y-axis) of the two relevant features as a function of sample size (x-axis)
for the corresponding datasets in the first row. The third row plots median rank (y-axis) of the
two relevant features produced in the first iteration of BAHSIC as a function of the sample size.
(Blue circle: Pearson’s correlation; Green triangle: RELIEF; Magenta downward triangle: mutual
information; Black triangle: FOHSIC; Red square: BAHSIC. Note that RELIEF only works for
binary classification.)

depending on the datasets encountered. Furthermore, we also instantiate FOHSIC using
the same kernels as BIN, MUL and REG, and we adopt the same convention when we refer
to it in our experiments.

23

Song, Smola, Gretton, Borgwardt, and Bedo

7.1 Artificial Data

We constructed 3 artificial datasets, as illustrated in Figure 1, to illustrate the difference
between BAHSIC variants with linear and nonlinear kernels. Each dataset has 22 dimensions
— only the first two dimensions are related to the prediction task and the rest are just
Gaussian noise. These datasets are (i) Binary XOR data: samples belonging to the same
class have multimodal distributions; (ii) Multiclass data: there are 4 classes but 3 of
them are collinear; (iii) Nonlinear regression data: labels are related to the first two
dimension of the data by y = x1 exp(−x2

1−x2
2)+ε, where ε denotes additive Gaussian noise.

We compare BAHSIC to FOHSIC, Pearson’s correlation, mutual information (Zaffalon and
Hutter, 2002), and RELIEF (RELIEF works only for binary problems). We aim to show
that when nonlinear dependencies exist in the data, BAHSIC with nonlinear kernels is very
competent in finding them.

We instantiate the artificial datasets over a range of sample sizes (from 40 to 400), and
plot the median rank, produced by various methods, for the first two dimensions of the
data. All numbers in Figure 1 are averaged over 10 runs. In all cases, BAHSIC shows good
performance. More specifically, we observe:

Binary XOR Both BAHSIC and RELIEF correctly select the first two dimensions of the
data even for small sample sizes; while FOHSIC, Pearson’s correlation, and mutual
information fail. This is because the latter three evaluate the goodness of each fea-
ture independently. Hence they are unable to capture nonlinear interaction between
features.

Multiclass Data BAHSIC, FOHSIC and mutual information select the correct features
irrespective of the size of the sample. Pearson’s correlation only works for large sample
size. The collinearity of 3 classes provides linear correlation between the data and the
labels, but due to the interference of the fourth class such correlation is picked up by
Pearson’s correlation only for a large sample size.

Nonlinear Regression Data The performance of Pearson’s correlation and mutual in-
formation is slightly better than random. BAHSIC and FOHSIC quickly converge to
the correct answer as the sample size increases.

In fact, we observe that as the sample size increases, BAHSIC is able to rank the relevant
features (the first two dimensions) almost correctly in the first iteration. In the third row of
Figure 1, we show the median rank of the relevant features produced in the first iteration as
a function of the sample size. It is clear from the pictures that BAHSIC effectively selects
features in a single iteration when the sample size is large enough. For the regression case,
we also see that BAHSIC with several iterations, indicated by the red square in Figure 1(f),
slightly improves the correct ranking over BAHSIC with a single iteration, given by the
blue square in Figure 1(i).

While this does not prove BAHSIC with nonlinear kernels is always better than that
with a linear kernel, it illustrates the competence of BAHSIC in detecting nonlinear features.
This is obviously useful in a real-world situations. The second advantage of BAHSIC is that
it is readily applicable to both classification and regression problems, by simply choosing a
different kernel on the labels.

24

Feature Selection via Dependence Maximization

7.2 Public Benchmark Data

Algorithms In this experiment, we show that the performance of BAHSIC can be compa-
rable to other state-of-the-art feature selectors, namely SVM Recursive Feature Elimination
(RFE) (Guyon et al., 2002), RELIEF (Kira and Rendell, 1992), L0-norm SVM (L0) (Weston
et al., 2003), and R2W2 (Weston et al., 2000). We used the implementation of these algo-
rithms as given in the Spider machine learning toolbox, since those were the only publicly
available implementations.4 Furthermore, we also include filter methods, namely FOHSIC,
Pearson’s correlation (PC), and mutual information (MI), in our comparisons.

Datasets We used various real world datasets taken from the UCI repository,5 the Statlib
repository,6 the LibSVM website,7 and the NIPS feature selection challenge8 for comparison.
Due to scalability issues in Spider, we produced a balanced random sample of size less than
2000 for datasets with more than 2000 samples.

Experimental Protocol We report the performance of an SVM using a Gaussian kernel
on a feature subset of size 5 and 10-fold cross-validation. These 5 features were selected
per fold using different methods. Since we are comparing the selected features, we used the
same SVM for all methods: a Gaussian kernel with σ set as the median distance between
points in the sample (Schölkopf and Smola, 2002) and regularization parameter C = 100.
On classification datasets, we measured the performance using the error rate, and on regres-
sion datasets we used the percentage of variance not-explained (also known as 1− r2). The
results for binary datasets are summarized in the first part of Table 1. Those for multiclass
and regression datasets are reported respectively in the second and the third parts of Table 1.

To provide a concise summary of the performance of various methods on binary datasets,
we measured how the methods compare with the best performing one in each dataset in
Table 1. We recorded the best absolute performance of all feature selectors as the baseline,
and computed the distance of each algorithm to the best possible result. In this context it
makes sense to penalize catastrophic failures more than small deviations. In other words,
we would like to have a method which is at least almost always very close to the best
performing one. Taking the `2 distance achieves this effect, by penalizing larger differences
more heavily. It is also our goal to choose an algorithm that performs homogeneously well
across all datasets. The `2 distance scores are listed for the binary datasets in Table 1.
In general, the smaller the `2 distance, the better the method. In this respect, BAHSIC
and FOHSIC have the best performance. We did not produce the `2 distance for multiclass
and regression datasets, since the limited number of such datasets did not allow us to draw
statistically significant conclusions.

Besides using 5 features, we also plot the performance of the learners as a function of the
number of selected features for 9 datasets (covertype, ionosphere, sonar, satimage, segment,
vehicle, housing, bodyfat and abalone) in Figure 2. Generally speaking, the smaller the
plotted number the better the performance of the corresponding learner. For multiclass

4. http://www.kyb.tuebingen.mpg.de/bs/people/spider
5. http://www.ics.uci.edu/ mlearn/MLSummary.html
6. http://lib.stat.cmu.edu/datasets/
7. http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
8. http://clopinet.com/isabelle/Projects/NIPS2003/

25

Song, Smola, Gretton, Borgwardt, and Bedo

Table 1: Classification error (%) or percentage of variance not-explained (%). The best result, and
those results not significantly worse than it, are highlighted in bold (one-sided Welch t-test with
95% confidence level). 100.0±0.0∗: program is not finished in a week or crashed. -: not applicable.

Data BAHSIC FOHSIC PC MI RFE RELIEF L0 R2W2
covertype 26.3±1.5 37.9±1.7 40.3±1.3 26.7±1.1 33.0±1.9 42.7±0.7 43.4±0.7 44.2±1.7
ionosphere 12.3±1.7 12.8±1.6 12.3±1.5 13.1±1.7 20.2±2.2 11.7±2.0 35.9±0.4 13.7±2.7

sonar 27.9±3.1 25.0±2.3 25.5±2.4 26.9±1.9 21.6±3.4 24.0±2.4 36.5±3.3 32.3±1.8
heart 14.8±2.4 14.4±2.4 16.7±2.4 15.2±2.5 21.9±3.0 21.9±3.4 30.7±2.8 19.3±2.6

breastcancer 3.8±0.4 3.8±0.4 4.0±0.4 3.5±0.5 3.4±0.6 3.1±0.3 32.7±2.3 3.4±0.4
australian 14.3±1.3 14.3±1.3 14.5±1.3 14.5±1.3 14.8±1.2 14.5±1.3 35.9±1.0 14.5±1.3

splice 22.6±1.1 22.6±1.1 22.8±0.9 21.9±1.0 20.7±1.0 22.3±1.0 45.2±1.2 24.0±1.0
svmguide3 20.8±0.6 20.9±0.6 21.2±0.6 20.4±0.7 21.0±0.7 21.6±0.4 23.3±0.3 23.9±0.2

adult 24.8±0.2 24.4±0.6 18.3±1.1 21.6±1.1 21.3±0.9 24.4±0.2 24.7±0.1 100.0±0.0∗

cleveland 19.0±2.1 20.5±1.9 21.9±1.7 19.5±2.2 20.9±2.1 22.4±2.5 25.2±0.6 21.5±1.3
derm 0.3±0.3 0.3±0.3 0.3±0.3 0.3±0.3 0.3±0.3 0.3±0.3 24.3±2.6 0.3±0.3

hepatitis 13.8±3.5 15.0±2.5 15.0±4.1 15.0±4.1 15.0±2.5 17.5±2.0 16.3±1.9 17.5±2.0
musk 29.9±2.5 29.6±1.8 26.9±2.0 31.9±2.0 34.7±2.5 27.7±1.6 42.6±2.2 36.4±2.4

optdigits 0.5±0.2 0.5±0.2 0.5±0.2 3.4±0.6 3.0±1.6 0.9±0.3 12.5±1.7 0.8±0.3
specft 20.0±2.8 20.0±2.8 18.8±3.4 18.8±3.4 37.5±6.7 26.3±3.5 36.3±4.4 31.3±3.4
wdbc 5.3±0.6 5.3±0.6 5.3±0.7 6.7±0.5 7.7±1.8 7.2±1.0 16.7±2.7 6.8±1.2
wine 1.7±1.1 1.7±1.1 1.7±1.1 1.7±1.1 3.4±1.4 4.2±1.9 25.1±7.2 1.7±1.1

german 29.2±1.9 29.2±1.8 26.2±1.5 26.2±1.7 27.2±2.4 33.2±1.1 32.0±0.0 24.8±1.4
gisette 12.4±1.0 13.0±0.9 16.0±0.7 50.0±0.0 42.8±1.3 16.7±0.6 42.7±0.7 100.0±0.0∗

arcene 22.0±5.1 19.0±3.1 31.0±3.5 45.0±2.7 34.0±4.5 30.0±3.9 46.0±6.2 32.0±5.5
madelon 37.9±0.8 38.0±0.7 38.4±0.6 51.6±1.0 41.5±0.8 38.6±0.7 51.3±1.1 100.0±0.0∗

`2 11.2 14.8 19.7 48.6 42.2 25.9 85.0 138.3
satimage 15.8±1.0 17.9±0.8 52.6±1.7 22.7±0.9 18.7±1.3 - 22.1±1.8 -
segment 28.6±1.3 33.9±0.9 22.9±0.5 27.1±1.3 24.5±0.8 - 68.7±7.1 -
vehicle 36.4±1.5 48.7±2.2 42.8±1.4 45.8±2.5 35.7±1.3 - 40.7±1.4 -

svmguide2 22.8±2.7 22.2±2.8 26.4±2.5 27.4±1.6 35.6±1.3 - 34.5±1.7 -
vowel 44.7±2.0 44.7±2.0 48.1±2.0 45.4±2.2 51.9±2.0 - 85.6±1.0 -
usps 43.4±1.3 43.4±1.3 73.7±2.2 67.8±1.8 55.8±2.6 - 67.0±2.2 -

housing 18.5±2.6 18.9±3.6 25.3±2.5 18.9±2.7 - - - -
bodyfat 3.5±2.5 3.5±2.5 3.4±2.5 3.4±2.5 - - - -
abalone 55.1±2.7 55.9±2.9 54.2±3.3 56.5±2.6 - - - -

and regression datasets, it is clear that the curves for BAHSIC very often lie along the
lower bound of all methods. For binary classification, however, SVM-RFE as a member of
our framework performs the best in general. The advantage of BAHSIC becomes apparent
when a small percentage of features is selected. For instance, BAHSIC is the best when
only 5 features are selected from data set 1 and 2. Note that in these cases, the performance
produced by BAHSIC is very close to that using all features. In a sense, BAHSIC is able
to shortlist the most informative features.

26

Feature Selection via Dependence Maximization

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2: The performance of a classifier or a regressor (vertical axes) as a function of the number of
selected features (horizontal axes). Note that the maximum of the horizontal axes are equal to the
total number of features in each data set. (a-c) Balanced error rate by a SVM classifier on the binary
data sets Covertype (1), Ionosphere (2) and Sonar (3) respectively; (d-f) balanced error rate by a
one-versus-the-rest SVM classfier on multiclass data sets Satimage (22), Segment (23) and Vehicle
(24) respectively; (g-i) percentage of variance not-explained by a SVR regressor on regression data
set Housing (25), Body fat (26) and Abalone (27) respectively.

8. Analysis of Brain Computer Interface Data

In this experiment, we show that BAHSIC selects features that are meaningful in practice.
Here we use it to select a frequency band for a brain-computer interface (BCI) data set from
the Berlin BCI group (Dornhege et al., 2004). The data contains EEG signals (118 channels,
sampled at 100 Hz) from five healthy subjects (‘aa’, ‘al’, ‘av’, ‘aw’ and ‘ay’) recorded during
two types of motor imaginations. The task is to classify the imagination for individual
trials.

27

Song, Smola, Gretton, Borgwardt, and Bedo

Our experiment proceeds in 3 steps: (i) A Fast Fourier transformation (FFT) is per-
formed on each channel and the power spectrum is computed. (ii) The power spectra from
all channels are averaged to obtain a single spectrum for each trial. (iii) BAHSIC is used
to select the top 5 discriminative frequency components based on the power spectrum. The
5 selected frequencies and their 4 nearest neighbours are used to reconstruct the temporal
signals (with all other Fourier coefficients eliminated). The result is then passed to a normal
CSP method (Dornhege et al., 2004) for feature extraction and then classified using a linear
SVM.

Automatic filtering using BAHSIC is then compared to other filtering approaches: nor-
mal CSP method with manual filtering (8-40 Hz), the CSSP method (Lemm et al., 2005)
and the CSSSP method (Dornhege et al., 2006). All results presented in Table 2 are ob-
tained using 50 × 2-fold cross-validation. Our method is very competitive and obtains the
first and second place for 4 of the 5 subjects. While the CSSP and the CSSSP methods
are specialized embedded methods (w.r.t. the CSP method) for frequency selection on BCI
data, our method is entirely generic. BAHSIC decouples feature selection from CSP, while
proving competitive.

In Figure 3, we use HSIC to visualize the responsiveness of different frequency bands
to motor imagination. The horizontal and the vertical axes in each subfigure represent the
lower and upper bounds for a frequency band, respectively. HSIC is computed for each of
these bands. Dornhege et al. (2006) report that the µ rhythm (approx. 12 Hz) of EEG
is most responsive to motor imagination, and that the β rhythm (approx. 22 Hz) is also
responsive. We expect that HSIC will create a strong peak at the µ rhythm and a weaker
peak at the β rhythm, and the absence of other responsive frequency components will create
block patterns. Both predictions are confirmed in Figure 3. Furthermore, the large area
of the red region for subject ‘al’ indicates good responsiveness of his µ rhythm. This also
corresponds well with the lowest classification error obtained for him in Table 2.

Table 2: Classification errors (%) on BCI data after selecting a frequency range.
Method aa al av aw ay

CSP(8-40Hz) 17.5±2.5 3.1±1.2 32.1±2.5 7.3±2.7 6.0±1.6
CSSP 14.9±2.9 2.4±1.3 33.0±2.7 5.4±1.9 6.2±1.5
CSSSP 12.2±2.1 2.2±0.9 31.8±2.8 6.3±1.8 12.7±2.0

BAHSIC 13.7±4.3 1.9±1.3 30.5±3.3 6.1±3.8 9.0±6.0

9. Analysis of Microarray Data

The fact that BAHSIC may be instantiated in numerous ways may create problems for
application, that is, it is not immediately clear which criteria we might want to choose.
Here we provide guidelines for choosing a specific member of the BAHSIC family by using
gene selection as an illustration.

28

Feature Selection via Dependence Maximization

(a) (b) (c)

(d) (e)

Figure 3: HSIC, encoded by the colour value for different frequency bands. The x-axis corresponds
to the upper cutoff and the y-axis denotes the lower cutoff (clearly no signal can be found where
the lower bound exceeds the upper bound). Red corresponds to strong dependence, whereas blue
indicates that no dependence was found. The figures are for subject (a) ‘aa’, (b) ‘al’, (c) ‘av’, (d)
‘aw’ and (e) ‘ay’.

9.1 Datasets

While some past work focused on analysis of a specific single microarray dataset we decided
to perform a large scale comparison of a raft of techniques on many datasets. We believe that
this leads to a more accurate description of the performance of feature selectors. We ran our
experiments on 28 datasets, of which 15 are two-class datasets and 13 are multiclass datasets.
These datasets are assigned a reference number for convenience. Two-class datasets have a
reference number less than or equal to 15, and multiclass datasets have reference numbers of
16 and above. Only one dataset, yeast, has feature dimension less than 1000 (79 features).
All other datasets have dimensions ranging from approximately 2000 to 25000. The number
of samples varies between approximately 50 and 300 samples. A summary of the datasets
and their sources is as follows:

• The six datasets studied in (Ein-Dor et al., 2006). Three deal with breast cancer (van’t
Veer et al., 2002; van de Vijver et al., 2002; Wang et al., 2005) (numbered 1, 2 and
3), two with lung cancer (Bhattacharjee et al., 2001; Beer et al., 2002) (4, 5), and
one with hepatocellular carcinoma (Iizuka et al., 2003) (6). The B cell lymphoma
dataset (Rosenwald et al., 2002) is not used because none of the tested methods
produce classification errors lower than 40%.

29

Song, Smola, Gretton, Borgwardt, and Bedo

• The six datasets studied in (Warnat et al., 2005). Two deal with prostate can-
cer (Dhanasekaran et al., 2001; Welsh et al., 2001) (7, 8), two with breast cancer (Gru-
vberger et al., 2001; West et al., 2001) (9, 10), and two with leukaemia (Bullinger et al.,
2004; Valk et al., 2004) (16, 17).

• Five commonly used bioinformatics benchmark datasets on colon cancer (Alon et al.,
1999) (11), ovarian cancer (Berchuck et al., 2005) (12), leukaemia (Golub et al.,
1999)(13), lymphoma (Alizadeh et al., 2000)(18), and yeast (Brown et al., 2000)(19).

• Nine datasets from the NCBI GEO database. The GDS IDs and reference numbers
for this paper are GDS1962 (20), GDS330 (21), GDS531 (14), GDS589 (22), GDS968
(23), GDS1021 (24), GDS1027 (25), GDS1244 (26), GDS1319 (27), GDS1454 (28),
and GDS1490 (15), respectively.

9.2 Classification Error and Robustness of Genes

We used stratified 10-fold cross-validation and SVMs to evaluate the predictive perfor-
mance of the top 10 features selected by various members of BAHSIC. For two-class
datasets, a nonlinear SVM with an Gaussian RBF kernel, k(x, x′) = exp

(
−‖x−x′ ‖2

2σ2

)
,

was used. The regularization constant C and the kernel width σ were tuned on a grid of
{0.1, 1, 10, 102, 103} × {1, 10, 102, 103}. Classification performance is measured as the frac-
tion of misclassified samples. For multiclass datasets, all procedures are the same except
that we used the SVM in a one-versus-the-rest fashion. A new BAHSIC member are also
included in the comparison, with kernels (‖x−x′ ‖+ ε)−1 (dis; ε is a small positive number
to avoid singularity) on the data.

The classification results for binary and multiclass datasets are reported in Table 3 and
Table 4, respectively. In addition to error rate we also report the overlap between the top
10 gene lists created in each fold. The multiclass results are presented separately since some
older members of the BAHSIC family, and some competitors, are not naturally extensible
to multiclass datasets. From the experiments we make the following observations:

When comparing the overall performance of various gene selection algorithms, it is of
primary interest to choose a method which works well everywhere, rather than one which
sometimes works well and sometimes performs catastrophically. It turns out that the linear
kernel (lin) outperforms all other methods in this regard, both for binary and multiclass
problems.

To show this, we measure how various methods compare with the best performing one
in each dataset in Tables 3 and 4. The deviation between algorithms is taken as the square
of the difference in performance. This measure is chosen because gene expression data is
relative expensive to obtain, and we want an algorithm to select the best genes from them.
If an algorithm selects genes that are far inferior to the best possible among all algorithms
(catastrophic case), we downgrade the algorithm more heavily. Squaring the performance
difference achieves exactly this effect, by penalising larger differences more heavily. In other
words, we want to choose an algorithm that performs homogeneously well in all datasets. To
provide a concise summary, we add these deviations over the datasets and take the square
root as the measure of goodness. These scores (called `2 distance) are listed in Tables 3 and

30

Feature Selection via Dependence Maximization

4. In general, the smaller the `2 distance, the better the method. It can been seen that the
linear kernel has the smallest `2 distance on both the binary and multiclass datasets.

9.3 Subtype Discrimination using Nonlinear Kernels

We now investigate why it is that nonlinear kernels (RBF and dis) provide better genes for
classification in three datasets from Table 4 (datasets 18 (Alizadeh et al., 2000), 27 (GDS1319),
and 28 (GDS1454)). These datasets all represent multiclass problems, where at least two
of the classes are subtypes with respect to the same supertype.9 Ideally, the selected genes
should contain information discriminating the classes. To visualise this information, we plot
in Figure 4 the expression value of the top-ranked gene against that of a second gene ranked
in the top 10. This second gene is chosen so that it has minimal correlation with the first
gene. We use colours and shapes to distinguish data from different classes (datasets 18 and
28 each contain 3 classes, therefore we use 3 different colour and shape combinations for
them; dataset 27 has 4 classes, so we use 4 such combinations).

We found that genes selected using nonlinear kernels provide better separation between
the two classes that correspond to the same supertype (red dots and green diamonds), while
the genes selected with the linear kernel do not separate these subtypes well. In the case
of dataset 27, the increased discrimination between red and green comes at the cost of a
greater number of errors in another class (black triangle), however these mistakes are less
severe than the errors made between the two subtypes by the linear kernel. This eventually
leads to better classification performance for the nonlinear kernels (see Table 4).

The principal characteristic of the datasets is that the blue square class is clearly sep-
arated from the rest, while the difference between the two subtypes (red dots and green
diamonds) is less clear. The first gene provides information that distinguishes the blue
square class, however it provides almost no information about the separation between the
two subtypes. The linear kernel does not search for information complementary to the first
gene, whereas nonlinear kernels are able to incorporate complementary information. In
fact, the second gene that distinguishes the two subtypes (red dots and green diamonds)
does not separate all classes. From this gene alone, the blue square class is heavily mixed
with other classes. However, combining the two genes together results in better separation
between all classes.

9.4 Rules of Thumb and Implication to Gene Activity

To conclude these experiments, considering the fact that the linear kernel performed best
in our feature selection evaluation, yet also taking into account the existence of nonlinear
interaction between genes (as demonstrated in section 9.3), we propose the following two
rules of thumb for gene selection:

1. Always apply a linear kernel for general purpose gene selection.

9. For dataset 18, the 3 subtypes are diffuse large B-cell lymphoma and leukemia, follicular lymphoma, and
chronic lymphocytic leukemia; For dataset 27, the 4 subtypes are various C blastomere mutant embryos:
wild type, pie-1, pie-1+pal-1, and mex-3+skn-1; For dataset 28, the 3 subtypes are normal cell, IgV
unmutated B-cell, and IgV mutated B-cell.

31

Song, Smola, Gretton, Borgwardt, and Bedo

(a) (b) (c)

(d) (e) (f)

Figure 4: Nonlinear kernels (MUL and dis) select genes that discriminate subtypes (red dots and
green diamonds) where the linear kernel fails. The two genes in the first row are representative of
those selected by the linear kernel, while those in the second row are produced with a nonlinear
kernel for the corresponding datasets. Different colors and shapes represent data from different
classes. (a,d) dataset 18; (b,e) dataset 28; and (e,f) dataset 27.

2. Apply a Gaussian kernel if nonlinear effects are present, such as multimodality or
complementary effects of different genes.

This result should come as no surprise, due to the high dimensionality of microarray
datasets, but we corroborate our claims by means of an extensive experimental evalua-
tion. These experiments also imply a desirable property of gene activity as a whole: it
correlates well with the observed outcomes. Multimodal and highly nonlinear situations ex-
ist, where a nonlinear feature selector is needed (as can be seen in the outcomes on datasets
18, 27 and 28), yet they occur relatively rarely in practice.

10. Conclusion

This paper provides a unifying framework for a raft of feature selection methods. This
allows us to give tail bounds and asymptotic expansions for feature selectors. Moreover,
we are able to design new feature selectors which work well in practice by means of the
Hilbert-Schmidt Independence Criterion (HSIC).

The idea behind the resulting algorithm, BAHSIC, is to choose the feature subset that
maximises the dependence between the data and labels. The absence of bias and good con-
vergence properties of the empirical HSIC estimate provide a strong theoretical jutification
for using HSIC in this context. Although BAHSIC is a filter method, it still demonstrates

32

Feature Selection via Dependence Maximization

T
ab

le
3:

T
w

o-
cl

as
s

da
ta

se
ts

:
cl

as
si

fic
at

io
n

er
ro

r
(%

)
an

d
nu

m
be

r
of

co
m

m
on

ge
ne

s
(o

ve
rl

ap
)

fo
r

10
-f
ol

d
cr

os
s-

va
lid

at
io

n
us

in
g

th
e

to
p

10
se

le
ct

ed
fe

at
ur

es
.

E
ac

h
ro

w
sh

ow
s

th
e

re
su

lt
s

fo
r

a
da

ta
se

t,
an

d
ea

ch
co

lu
m

n
is

a
m

et
ho

d.
E

ac
h

en
tr

y
in

th
e

ta
bl

e
co

nt
ai

ns
tw

o
nu

m
be

rs
se

pa
ra

te
d

by
“|

”:
th

e
fir

st
nu

m
be

r
is

th
e

cl
as

si
fic

at
io

n
er

ro
r

an
d

th
e

se
co

nd
nu

m
be

r
is

th
e

nu
m

be
r

of
ov

er
la

ps
.

Fo
r

cl
as

si
fic

at
io

n
er

ro
r,

th
e

be
st

re
su

lt
,a

nd
th

os
e

re
su

lt
s

no
t

si
gn

ifi
ca

nt
ly

w
or

se
th

an
it

,a
re

hi
gh

lig
ht

ed
in

bo
ld

(o
ne

-s
id

ed
W

el
ch

t-
te

st
w

it
h

95
%

co
nfi

de
nc

e
le

ve
l;

a
ta

bl
e

co
nt

ai
ni

ng
th

e
st

an
da

rd
er

ro
rs

is
pr

ov
id

ed
in

th
e

su
pp

le
m

en
ta

ry
m

at
er

ia
l)
.

Fo
r

th
e

ov
er

la
p,

la
rg

es
t

ov
er

la
ps

fo
r

ea
ch

da
ta

se
t

ar
e

hi
gh

lig
ht

ed
(n

o
si

gn
ifi

ca
nc

e
te

st
is

pe
rf

or
m

ed
).

T
he

se
co

nd
la

st
ro

w
su

m
m

ar
is

es
th

e
nu

m
be

r
of

ti
m

es
a

m
et

ho
d

w
as

th
e

be
st

.
T

he
la

st
ro

w
co

nt
ai

ns
th

e
` 2

di
st

an
ce

of
th

e
er

ro
r

ve
ct

or
s

be
tw

ee
n

a
m

et
ho

d
an

d
th

e
be

st
pe

rf
or

m
in

g
m

et
ho

d
on

ea
ch

da
ta

se
t.

W
e

us
e

th
e

fo
llo

w
in

g
ab

br
ev

ia
ti

on
s:

pc
-

P
ea

rs
on

’s
co

rr
el

at
io

n,
sn

r
-

si
gn

al
-t

o-
no

is
e

ra
ti

o,
pa

m
-

sh
ru

nk
en

ce
nt

ro
id

,
t

-
t-

st
at

is
ti

cs
,
m

-t
-

m
od

er
at

ed
t-

st
at

is
ti

cs
,
lo

ds
-

B
-s

ta
ti

st
ic

s,
lin

-
ce

nt
ro

id
,
di

s
-

(‖
x
−

x
′ ‖

+
ε)
−

1
,
rf

e
-

sv
m

re
cu

rs
iv

e
fe

at
ur

e
el

im
in

at
io

n)

D
at

as
et

p
c

sn
r

p
am

t
m

-t
lo

d
s

li
n

R
B

F
d
is

rf
e

1
12

.7
|3

11
.4
|3

11
.4
|4

12
.9
|3

12
.9
|4

12
.9
|4

15
.5
|3

19
.1
|1

13
.9
|2

14
.3
|0

2
33

.2
|1

33
.9
|2

33
.9
|1

29
.5
|1

29
.5
|1

27
.8
|1

32
.9
|2

31
.5
|3

32
.8
|2

34
.2
|0

3
37

.4
|0

37
.4
|0

37
.4
|0

34
.6
|6

34
.6
|6

34
.6
|6

37
.4
|1

37
.4
|0

37
.4
|0

37
.4
|0

4
41

.6
|0

38
.8
|0

41
.6
|0

40
.7
|1

40
.7
|0

37
.8
|0

41
.6
|0

41
.6
|0

39
.7
|0

41
.6
|0

5
27

.8
|0

26
.7
|0

27
.8
|0

26
.7
|2

26
.7
|2

26
.7
|2

27
.8
|0

27
.8
|0

27
.6
|0

27
.8
|0

6
30

.0
|2

25
.0
|0

31
.7
|0

25
.0
|5

25
.0
|5

25
.0
|5

30
.0
|0

31
.7
|0

30
.0
|1

30
.0
|0

7
2.

0|
6

2.
0|

5
2.

0|
5

28
.7
|4

26
.3
|4

26
.3
|4

2.
0|

3
2.

0|
4

30
.0
|0

2.
0|

0
8

3.
3|

3
0.

0|
4

0.
0|

4
0.

0|
4

3.
3|

6
3.

3|
6

3.
3|

2
3.

3|
1

6.
7|

2
0.

0|
0

9
10

.0
|6

10
.0
|6

8.
7|

4
34

.0
|5

37
.7
|6

37
.7
|6

12
.0
|3

10
.0
|5

12
.0
|1

10
.0
|0

10
16

.0
|2

18
.0
|2

14
.0
|2

14
.0
|8

22
.0
|9

22
.0
|9

16
.0
|2

16
.0
|0

18
.0
|0

32
.5
|0

11
12

.9
|5

12
.9
|5

12
.9
|5

19
.5
|0

22
.1
|0

33
.6
|0

11
.2
|4

9.
5|

6
16

.0
|4

19
.0
|0

12
30

.3
|2

36
.0
|2

31
.3
|2

26
.7
|3

35
.7
|0

35
.7
|0

18
.7
|1

35
.0
|0

33
.0
|1

29
.7
|0

13
8.

4|
5

11
.1
|0

7.
0|

5
22

.1
|3

27
.9
|6

15
.4
|1

7.
0|

2
9.

6|
0

11
.1
|0

4.
3|

1
14

20
.8
|1

20
.8
|1

20
.2
|0

20
.8
|3

20
.8
|3

20
.8
|3

20
.8
|0

20
.2
|0

19
.7
|0

20
.8
|0

15
0.

0|
7

0.
7|

1
0.

0|
5

4.
0|

1
0.

7|
8

0.
7|

8
0.

0|
3

0.
0|

2
2.

0|
2

0.
0|

1
b
es

t
5|

2
7|

1
6|

1
6|

6
4|

10
5|

9
6|

0
6|

2
4|

0
6|

0
` 2

16
.9

20
.9

17
.3

43
.5

50
.5

50
.3

13
.2

22
.9

35
.4

26
.3

T
ab

le
4:

M
ul

ti
cl

as
s

da
ta

se
ts

:
in

th
is

ca
se

co
lu

m
ns

ar
e

th
e

da
ta

se
ts

,
an

d
ro

w
s

ar
e

th
e

m
et

ho
ds

.
T

he
re

m
ai

ni
ng

co
nv

en
ti

on
s

fo
llo

w
T
ab

le
3.

D
at

a
16

17
18

19
20

21
22

23
24

25
26

27
28

b
es

t
` 2

li
n

36
.7
|1

0.
0|

3
5.

0|
3

10
.5
|6

35
.0
|3

37
.5
|6

18
.6
|1

40
.3
|3

28
.1
|3

26
.6
|6

5.
6|

6
27

.9
|7

45
.1
|1

7|
6

32
.4

R
B

F
33

.3
|3

5.
1|

4
1.

7|
3

7.
2|

9
33

.3
|0

40
.0
|1

22
.1
|0

72
.5
|0

39
.5
|0

24
.7
|4

5.
6|

6
22

.1
|1

0
21

.5
|3

6|
5

37
.9

d
is

29
.7
|2

28
.8
|5

6.
7|

0
8.

2|
9

29
.4
|7

38
.3
|4

43
.4
|4

66
.1
|0

40
.8
|0

38
.9
|4

7.
6|

1
8.

2|
8

31
.6
|3

5|
4

51
.0

33

Song, Smola, Gretton, Borgwardt, and Bedo

good performance compared with more specialised methods in both artificial and real world
data. It is also very competitive in terms of runtime performance.10

A variant of BAHSIC can also be used to perform feature selection for unlabeled data.
In this case, we want to select a subset T of variables such that it is strongly correlated
with the full dataset. In other words, we want to find a compressed representation of the
data itself in the hope that it is useful for a subsequent learning tasks. BAHSIC readily
accommodates this by simply using the full data set X as the labels. Clearly, we want to
maximize dependence between the selected variables and X without adding many variables
which are simply very much correlated to each other. This ingredient is not yet explicitly
formulated in the BAHSIC framework. We will investigate this in the future.

Appendix: Feature Weighting Using HSIC

Besides the backward elimination algorithm, feature selection using HSIC can also proceed
by converting problem (1) into a continuous optimization problem. By adding a penalty on
the number of nonzero terms, such as a relaxed `0 “norm” of a weight vector over the features
we are able to solve the problem with continuous optimization methods. Unfortunately, this
approach does not perform as well as the the backward elimination procedure proposed in
the main text. For completeness and since related methods are somewhat popular in the
literature, the approach is described below.

We introduce a weighting w ∈ Rn on the dimensions of the data: x 7−→ w ◦x, where ◦
denotes element-wise product. Thus feature selection using HSIC becomes an optimization
problem with respect to w (for convenience we write HSIC as a function of w, HSIC(w)). To
obtain a sparse solution of the selected features, the zero “norm” ‖w ‖0 is also incorporated
into our objective function (clearly ‖.‖0 is not a proper norm). ‖w ‖0 computes the number
of non-zero entries in w and the sparsity is achieved by imposing heavier penalty on solutions
with large number of non-zero entries. In summary, feature selection using HSIC can be
formulated as:

w = arg max
w

HSIC(w)− λ ‖w‖0 where w ∈ [0,∞)n (57)

The zero “norm” is not a continuous function. However, it can be approximated well by a
concave function (Fung et al., 2002) (α = 5 works well in practice):

‖w‖0 ≈ 1>(1− exp−αw) (58)

While the optimization problem in (57) is non-convex, we may use relatively more efficient
optimization procedures for the concave approximation of the `0 norm. For instance, we
may use the convex-concave procedure (CCCP) of Yuille and Rangarajan (2003). For a
Gaussian kernel HSIC can be decomposed into the sum of a convex and a concave function:

HSIC(w)− λ‖w ‖0 ≈ tr(K(I−m−1 11>)L(I−m−1 11>))− λ1>(1−e−αw) (59)

Depending on the choice of L we need to assign all terms involving exp with positive
coefficients into the convex and all terms involving negative coefficients to the concave
function.

10. Code is available as part of the Elefant package at http://elefant.developer.nicta.com.au.

34

Feature Selection via Dependence Maximization

References

A. Alizadeh, M. Eisen, R. Davis, et al. Distinct types of diffuse large b-cell lymphoma
identified by gene expression profiling. Nature, 403:503–511, 2000.

U. Alon, N. Barkai, D. Notterman, K. Gish, S. Ybarra, D. Mack, and A. Levine. Broad
patterns of gene expression revealed by clustering analysis of tumor and normal colon
tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci., 96:6745–6750, 1999.

S. Amari and S. Wu. An information-geometrical method for improving performance of
support vector machine classifiers. In D. Willshaw and A. Murray, editors, Proceedings
of ICANN’99, volume 1, pages 85–90. IEE Press, 1999.

N. Anderson, P. Hall, and D. Titterington. Two-sample test statistics for measuring discrep-
ancies between two multivariate probability density functions using kernel-based density
estimates. Journal of Multivariate Analysis, 50:41–54, 1994.

C. Baker. Joint measures and cross-covariance operators. Transactions of the American
Mathematical Society, 186:273–289, 1973.

J. Bedo, C. Sanderson, and A. Kowalczyk. An efficient alternative to svm based recursive
feature elimination with applications in natural language processing and bioinformatics.
In Artificial Intelligence, 2006. to appear.

D. G. Beer, S. L. Kardia, S. L. Huang, et al. Gene-expression profiles predict survival of
patients with lung adenocarcinoma. Nat. Med., 8:816–824, 2002.

A. Berchuck, E. Iversen, and J. Lancaster et al. Patterns of gene expression that characterize
long-term survival in advanced stage serous ovarian cancers. Clin. Cancer Res., 11:3686–
3696, 2005.

A. Bhattacharjee, W. G. Richards, W. G. Staunton, et al. Classification of human lung
carcinomas by mrna expression profiling reveals distinct adenocarcinoma subclasses. Proc.
Natl. Acad. Sci., 98:13790–13795, 2001.

K. M. Borgwardt, A. Gretton, M. J. Rasch, H.-P. Kriegel, B. Schölkopf, and A. J. Smola.
Integrating structured biological data by kernel maximum mean discrepancy. Bioinfor-
matics (ISMB), 22(14):e49–e57, 2006.

P. S. Bradley and O. L. Mangasarian. Feature selection via concave minimization and
support vector machines. In J. Shavlik, editor, Proc. Intl. Conf. Machine Learn-
ing, pages 82–90, San Francisco, California, 1998. Morgan Kaufmann Publishers.
ftp://ftp.cs.wisc.edu/math-prog/tech-reports/98-03.ps.Z.

M. Brown, W. Grundy, D. Lin, N. Cristianini, C. Sugnet, T. Furey, M. Ares, and D. Haus-
sler. Knowledge-based analysis of microarray gene expression data by using support
vector machines. Proc. Natl. Acad. Sci., 97:262–267, 2000.

L. Bullinger, K. Dohner, E. Bair, S. Frohling, R. F. Schlenk, R. Tibshirani, H. Dohner, and
J. R. Pollack. Use of gene-expression profiling to identify prognostic subclasses in adult
acute myeloid leukemia. New England Journal of Medicine, 350(16):1605–1616, Apr 2004.

35

Song, Smola, Gretton, Borgwardt, and Bedo

M. Collins and N. Duffy. Convolution kernels for natural language. In T. G. Dietterich,
S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Sys-
tems 14, pages 625–632, Cambridge, MA, 2001. MIT Press.

N. Cristianini, J. Kandola, A. Elisseeff, and J. Shawe-Taylor. On optimizing kernel align-
ment. Technical report, UC Davis Department of Statistics, 2003.

S. M. Dhanasekaran, T. R. Barrette, D. Ghosh, R. Shah, S. Varambally, K. Kurachi, K. J.
Pienta, M. A. Rubin, and A. M. Chinnaiyan. Delineation of prognostic biomarkers in
prostate cancer. Nature, 412(6849):822–826, Aug 2001.

G. Dornhege, B. Blankertz, G. Curio, and K. Müller. Boosting bit rates in non-invasive
EEG single-trial classifications by feature combination and multi-class paradigms. IEEE
Trans. Biomed. Eng., 51:993–1002, 2004.

G. Dornhege, B. Blankertz, M. Krauledat, F. Losch, G. Curio, and K. Müller. Optimizing
spatio-temporal filters for improving BCI. In Advances in Neural Information Processing
Systems 18, 2006.

L. Ein-Dor, O. Zuk, and E. Domany. Thousands of samples are needed to generate a
robust gene list for predicting outcome in cancer. Proc. Natl. Acad. Sci. USA, 103(15):
5923–5928, Apr 2006.

Andrey Feuerverger. A consistent test for bivariate dependence. International Statistical
Review, 61(3):419–433, 1993.

S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representation.
Technical report, IBM Watson Research Center, New York, 2000.

K. Fukumizu, F. R. Bach, and M. I. Jordan. Dimensionality reduction for supervised
learning with reproducing kernel hilbert spaces. Journal of Machine Learning Research,
5:73–99, 2004.

G. Fung, O. L. Mangasarian, and A. J. Smola. Minimal kernel classifiers. Journal of
Machine Learning Research, 3:303–321, 2002.

T. Gärtner, P.A. Flach, and S. Wrobel. On graph kernels: Hardness results and efficient
alternatives. In B. Schölkopf and M. K. Warmuth, editors, Proc. Annual Conf. Compu-
tational Learning Theory, pages 129–143. Springer, 2003.

T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller,
M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S. Lander. Molecular
classification of cancer: Class discovery and class prediction by gene expression monitor-
ing. Science, 286(5439):531–537, Oct 1999.

A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf, and A. Smola. A kernel method for the
two sample problem. Technical Report 157, MPI for Biological Cybernetics, 2007.

A. Gretton, O. Bousquet, A. Smola, and B. Schölkopf. Measuring statistical dependence
with Hilbert-Schmidt norms. In Proc. Intl. Conf. on Algorithmic Learning Theory, pages
63–78, 2005.

36

Feature Selection via Dependence Maximization

S. Gruvberger, M. Ringner, Y. Chen, S. Panavally, L. H. Saal, A. Borg, M. Ferno, C. Pe-
terson, and P. S. Meltzer. Estrogen receptor status in breast cancer is associated with
remarkably distinct gene expression patterns. Cancer Res, 61(16):5979–5984, Aug 2001.

C. Guestrin, A. Krause, and A. Singh. Near-optimal sensor placements in gaussian processes.
In International Conference on Machine Learning ICML’05, 2005.

I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of
Machine Learning Research, 3:1157–1182, March 2003.

I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification
using support vector machines. Machine Learning, 46:389–422, 2002.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer,
New York, 2001.

Wassily Hoeffding. A class of statistics with asymptotically normal distribution. The Annals
of Mathematical Statistics, 19(3):293–325, 1948.

N. Iizuka, M. Oka, H. Yamada-Okabe, et al. Oligonucleotide microarray for prediction of
early intrahepatic recurrence of hepatocellular carcinoma after curative resection. Lancet,
361:923–929, 2003.

K. Kira and L. Rendell. A practical approach to feature selection. In Proc. 9th Intl.
Workshop on Machine Learning, pages 249–256, 1992.

S. Lemm, B. Blankertz, G. Curio, and K.-R. Mülller. Spatio-spectral filters for improving
the classification of single trial EEG. IEEE Trans. Biomed. Eng., 52:1541–1548, 2005.

C. Leslie, E. Eskin, J. Weston, and W. S. Noble. Mismatch string kernels for SVM protein
classification. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural
Information Processing Systems 15, volume 15, Cambridge, MA, 2002. MIT Press.

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text classification
using string kernels. Journal of Machine Learning Research, 2:419–444, February 2002.

Ingrid Lönnstedt and Terry Speed. Replicated microarray data. Statistica Sinica, 12:31–46,
2002.

Radford M. Neal. Assessing relevance determination methods using delve. In Neural Net-
works and Machine Learning, pages 97–129. Springer, 1998.

I Nemenman, F Shafee, and W Bialek. Entropy and inference, revisited. In Neural Infor-
mation Processing Systems, volume 14, Cambridge, MA, 2002. MIT Press.

J. Neumann, C. Schnörr, and G. Steidl. Combined SVM-based feature selection and clas-
sification. Machine Learning, 61:129–150, 2005.

A. Rosenwald, G. Wright, G. Chan, et al. The use of molecular profiling to predict survival
after chemotherapy for diffuse large-b-cell lymphoma. N. Engl. J. Med., 346:1937–1947,
2002.

37

Song, Smola, Gretton, Borgwardt, and Bedo

B. Schölkopf. Support Vector Learning. R. Oldenbourg Verlag, Munich, 1997. Download:
http://www.kernel-machines.org.

B. Schölkopf, P. L. Bartlett, A. J. Smola, and R. C. Williamson. Shrinking the tube: a new
support vector regression algorithm. In M. S. Kearns, S. A. Solla, and D. A. Cohn, editors,
Advances in Neural Information Processing Systems 11, pages 330–336, Cambridge, MA,
1999. MIT Press.

B. Schölkopf and A. Smola. Learning with Kernels. MIT Press, Cambridge, MA, 2002.

B. Schölkopf, K. Tsuda, and J.-P. Vert. Kernel Methods in Computational Biology. MIT
Press, Cambridge, MA, 2004.

R. Serfling. Approximation Theorems of Mathematical Statistics. Wiley, New York, 1980.

G.K. Smyth. Linear models and empirical bayes methods for assessing differential ex-
pressionin microarray experiments. Statistical Applications in Genetics and Molecular
Biology, 3, 2004.

I. Steinwart. On the influence of the kernel on the consistency of support vector machines.
J. Mach. Learn. Res., 2:67–93, 2002.

R. Tibshirani, T. Hastie, B. Narasimhan, and G. Chu. Diagnosis of multiple cancer types
by shrunken centroids of gene expression. In National Academy of Sciences, volume 99,
pages 6567–6572, 2002.

R. Tibshirani, T. Hastie, B. Narasimhan, and G. Chu. Class prediction by nearest shrunken
centroids, with applicaitons to dna microarrays. Stat Sci, 18:104–117, 2003.

Kari Torkkola. Feature extraction by non-parametric mutual information maximization. J.
Mach. Learn. Res., 3:1415–1438, 2003.

P. J. Valk, R. G. Verhaak, M. A. Beijen, C. A. Erpelinck, S. Barjesteh van Waalwijk van
Doorn-Khosrovani, J. M. Boer, H. B. Beverloo, M. J. Moorhouse, P. J. van der Spek,
B. Lowenberg, and R. Delwel. Prognostically useful gene-expression profiles in acute
myeloid leukemia. New England Journal of Medicine, 350(16):1617–1628, Apr 2004.

M. J. van de Vijver, Y. D. He, L. J. van ’t Veer, et al. A gene-expression signature as a
predictor of survival in breast cancer. N. Engl. J. Med., 247:1999–2009, 2002.

L. J. van’t Veer, H. Dai, M. J. van de Vijver, Y. D. He, A. A. M. Hart, et al. Gene expression
profiling predicts clinical outcome of breast cancer. Nature, 415:530–536, 2002.

S. V. N. Vishwanathan and A. J. Smola. Fast kernels for string and tree matching. In
S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information Pro-
cessing Systems 15, pages 569–576. MIT Press, Cambridge, MA, 2003.

S. V. N. Vishwanathan, A. J. Smola, and R. Vidal. Binet-Cauchy kernels on dynamical
systems and its application to the analysis of dynamic scenes. International Journal of
Computer Vision, 73(1):95–119, 2007.

38

Feature Selection via Dependence Maximization

Y. Wang, J. G. Klijn, Y. Zhang, et al. Gene-expression profiles to predict distant metastasis
of lymph-node-negative primary breast cancer. Lancet, 365:671–679, 2005.

P. Warnat, R. Eils, and B. Brors. Cross-platform analysis of cancer microarray data im-
proves gene expression based classification of phenotypes. BMC Bioinformatics, 6:265,
Nov 2005.

J. B. Welsh, L. M. Sapinoso, A. I. Su, S. G. Kern, J. Wang-Rodriguez, C. A. Moskaluk,
J. r. Frierson HF, and G. M. Hampton. Analysis of gene expression identifies candidate
markers and pharmacological targets in prostate cancer. Cancer Res, 61(16):5974–5978,
Aug 2001.

M. West, C. Blanchette, H. Dressman, E. Huang, S. Ishida, R. Spang, H Zuzan, J.A. Olson
Jr, J.R.Marks, and J.R.Nevins. Predicting the clinical status of human breast cancer by
using gene expression profiles. PNAS, 98(20), 2001.

J. Weston, A. Elisseeff, B. Schölkopf, and M. Tipping. Use of zero-norm with linear models
and kernel methods. Journal of Machine Learning Research, 3:1439–1461, 2003.

J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vapnik. Feature
selection for SVMs. In Advances in Neural Information Processing Systems 13, pages
668–674, 2000.

A.L. Yuille and A. Rangarajan. The concave-convex procedure. Neural Computation, 15:
915–936, 2003.

M. Zaffalon and M. Hutter. Robust feature selection using distributions of mutual in-
formation. In A. Darwiche and N. Friedman, editors, Proceedings of the 18th Interna-
tional Conference on Uncertainty in Artificial Intelligence (UAI-2002), pages 577–584,
San Francisco, CA., 2002. Morgan Kaufmann.

Acknowledgments We thank Vishy Vishwanathan and Bernhard Schölkopf for helpful
discussions. NICTA is funded through the Australian Government’s Baking Australia’s
Ability initiative, in part through the Australian Research Council.

39

