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Abstract

High quality photographs of astronomical objects require a photographic device to remain

steady relative to the sky. Because Earth rotates, the telescope has to follow a circular

trajectory as precisely as possible. The machinery built for this purpose is never absolutely

perfect: Imprecisions in the worm drives of standard telescope mounts cause a periodic error

in the pointing direction, resulting in image blur. Because the dynamics that lead to this

error are often not known in advance, they cannot be modelled explicitly. Therefore, this

problem is normally addressed with a model-free controller. In this work, Gaussian process

regression with a periodic kernel is employed to identify the unknown dynamical system.

As a nonparametric method, this regressor can learn even complicated nonlinearities and

does not require the user to provide a parametric model. Experiments in simulation and

hardware show improvements over standard approaches to autoguiding and periodic error

correction. Beyond the application to telescopes, this study serves as an example for the

utility of Gaussian processes in providing a flexible modelling class for various types of

hardware.
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Zusammenfassung

Um hochwertige photographische Aufnahmen astronomischer Objekte anfertigen zu können,

sind Teleskope nötig, die sich relativ zum Himmel nicht bewegen. Weil die Erde sich dreht,

muss das Teleskop einer kreisförmigen Trajektorie möglichst genau folgen. Die mechanischen

Apparate, die für diesen Zweck konstruiert werden, sind nie perfekt: Ungenauigkeiten in

den Schneckengetrieben, welche in den meisten Teleskop-Montierungen benutzt werden,

führen zu einem periodischen Fehler in der Ausrichtung. Dies äußert sich dann in Form

von verschwommenen Bildern. Weil die dem Fehler zugrundeliegende Dynamik oftmals

nicht vorab bekannt ist, kann sie nicht explizit modelliert werden. Daher begegnet man

diesem Problem normalerweise mit einem modellfreien Regler. In dieser Arbeit wird ein

Gauß-Prozess mit einem periodischen Kern benutzt, um das unbekannte dynamische System

zu identifizieren. Mit dieser nichtparametrischen Methode können auch komplizierte Nicht-

linearitäten gelernt werden, der Benutzer muss dazu kein parametrisches Modell entwickeln.

Experimente sowohl in simulierter als auch in realer Umgebung zeigen Verbesserungen

gegenüber den normalen Ansätzen für die automatische Nachführung und die Korrektur des

periodischen Fehlers. Neben der Anwendung auf Teleskope ist diese Arbeit ein Beispiel für

die Anwendbarkeit von Gauß-Prozessen für die flexible Modellierung verschiedener Arten

von Hardware.
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“It is cool to use Gaussian processes

for what Gauss used to do once:

Tracking objects in the sky.”

NEIL LAWRENCE, APRIL 2012
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Chapter 1

Introduction

1.1 The Telescope Guiding Problem

Aside from the optical fidelity of the telescope, the main challenge in astronomical photogra-

phy is to achieve a stable image over the time of exposure. This problem is more challenging

than one might think at first sight: To counteract Earth’s rotation, the telescope has to

follow a circular path across the sky. Otherwise, the light of the stars gets distributed to

circular trails like in Figure 1.1.

Even for amateur-class telescopes and cameras, the precision of this path has to be on

the order of a thousandth of a degree for several minutes, if individual stars should not be

blurred over several pixels in the resulting image. Mechanical imprecisions in the drives

used to create this motion make it hard to achieve this level of fidelity at a reasonable price.

The worm drives that are used in most of the telescope mounts to provide the needed gear

reduction show an error which recurs on every rotation of the worm. This error can be seen

on long exposure images, as for example in Figure 1.2.

1.2 Traditional Autoguiding and

Periodic Error Correction

Traditional approaches to this problem mostly rely on tedious adjustment protocols per-

formed by the user: The error of the worm drive has to be measured over several periods

and post-processed accurately. The processed error curve is used for open-loop-control and

has to be stored in the telescope mount’s software or firmware. It needs to be carefully

1



2 1 Introduction

Figure 1.1: Star Trails

This figure shows a combined image of several long time exposures with a still standing camera. Image
printed with kind permission of Robert Vanderbei1.

synchronized to get good results. Because this is a lot of work, many amateur astronomers

do not use the information about the periodic error at all and control their telescopes only

on the measured error with an autoguiding system: A second camera is used to measure

the error and a simple controller acts on the telescope’s motors to keep the error small.

1.3 Controlling Unknown Dynamical Systems

Classic control relies on prior knowledge about the controlled system. An open-loop-

controller needs the system’s full dynamics and error inputs to work well. It fails if the

system behaves nondeterministically or is affected by unmeasured errors. A closed-loop-

controller in contrast is more robust: Because it uses the system’s output for control, it can

also handle certain nondeterministic effects. But also the closed-loop-controller works only

with a sufficient amount of information about the system.

Controlling completely unknown dynamical systems is a hard problem. Every controller

has to be based on assumptions about its environment. Even a learning controller has to

assume that it is possible to learn at all. If it is impossible to learn anything from the past

about the future, trying to do so is pointless.

To achieve good control performance, the system’s parameters have to be known. This

1https://www.princeton.edu/~rvdb/images/other/LaPalma.html

https://www.princeton.edu/~rvdb/images/other/LaPalma.html
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Figure 1.2: Visualized Gear Error

The periodic gear error (vertical) is visualized through slow horizontal drift. This image was combined from
several 20 s exposures. It corresponds to 15 min overall exposure time and was made with the experimental
setup described in Chapter 6.

involves a lot of accurate measuring before the controller can be designed. What happens if

those parameters are not known or cannot easily be measured?

Most controllers only work well if the step time is short enough and the measurements

can be made with a high temporal resolution. This gets even more problematic if high

control precision is needed. What can be done if a fast measurement is not possible?

One answer to such problems is to identify the system’s behaviour by a regression

method and control upon it. The advantage over a classic controller is that this approach

generalizes: Not only one known system can be controlled, but also other systems that show

similar behaviour with different parameters. Thus, this kind of controller can save a lot of

design time: The controller can be constructed for a whole class of systems and can learn

the individual parameters, it does not have to be newly designed for each single system.

In this work, a controller is built upon this idea: Creating a controller that learns about

the system while controlling it and that uses the learned information to improve the control

performance. This is done by working on a real problem, control of the pointing direction

of a telescope. This application shows some problems which are hard to solve with simple

controllers: The dynamics of the mechanical system are not fully known, the measurements

are relatively slow and high precision is needed.



4 1 Introduction

1.4 The Research Paradigm of this Work

This thesis presents a new approach to cope with this problem: After modelling the telescope

system (Chapter 2), a light-weight and precise image registration method is developed to

measure the error from star images (Chapter 3). Having a working measurement, a periodic

kernel is used with Gaussian process regression to construct an effective nonparametric

system identification method for periodic error correction problems (Chapter 4). This

provides a model for a nonlinear predictive control algorithm (Chapter 5). While an

experimental evaluation on an astronomical setup is offered (Chapter 6), the results of this

work generalize to other control problems with periodic errors in which parametric models

are not readily available.



Chapter 2

Problem Setting

2.1 The Telescope System

Telescopes for astrophotography are normally attached to a mechanical device, a telescope

mount. The mount is used to hold the telescope still for photography or to move the

telescope when the user wants it to point to another direction. As shown in Figure 2.1,

such a mount normally has two electrically movable axes: right ascension and declination.

Two axes are necessary to be able to point in any desired direction. If the telescope is

aligned properly, there is no coupling between these two axes. It is therefore possible to

consider them as separate systems. In this work, the focus lies only on one axis, the right

D
e
cl

in
a
ti

o
n

Right Ascension

Figure 2.1: An Exemplary Telescope Mount

A telescope mount has two electrically movable axes, marked in red in the image. These axes are orthogonal.

5



6 2 Problem Setting

ascension, which compensates for Earth’s rotation. This axis has to move one full turn in

approximately 24 hours, which is called sidereal speed. Because this is much movement, the

right ascension axis is affected by the periodic error of the worm drive.

Even if this compensation is active, an imperfect alignment of the “right ascension” axis

with Earth’s rotation axis often causes drift effects. With sufficient effort for the alignment,

those effects get small and slow compared to the periodic error. Hence, they are omitted

for the modelling.

2.1.1 Overview & Sub-Systems

Figure 2.2 gives a schematic overview on components of a standard telescope system. It

consists of four main parts:

M W T C
v0

u

vin vm vw

ve

−
vd

η

e+ η

ξ

e′

Figure 2.2: Overview of the Uncontrolled Telescope System

This figure shows the relationships between the four sub-systems motor (M), worm drive (W), telescope
(T) and camera (C). For details on the sub-systems and meaning of the symbols, see page 6f..

Motor (M), an actuator.

vm = g(vin) = g(v0 + u(t)) (2.1)

The motor speed vm is dependent on the input vin. The function g(·) represents the

motor’s characteristic curve. It can be nonlinear, but has to be monotonic. v0 is the

input that is meant to compensate for Earth’s rotation. u is the control input of the

system, it slows down or speeds up the motor.

Worm Drive (W), a nonlinear dynamical system with one internal state.

vw = kw · (1 + f(x)) · vm = kw ·

1 + f

 t∫
0

vm(τ) · dτ

 · vm (2.2)

The output-speed of the gear vw is ideally the motor speed vm multiplied by the gear’s

transmission ratio kw, but it is additionally affected by the periodic error f(x). This
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effect has its origin in the worm gear: The transmission ratio is proportional to the

lead of the worm, which is never perfectly constant. f(x) is a nonlinear and unknown

function of the worm position x, but it is nevertheless periodic with an upper and

lower bound. The function f(x) is a central part of this work: In Chapter 4 it is

subject to a regression method in order to reach better control performance.

Telescope-Mount (T), an integrator.

e =

t∫
0

vd(τ) · dτ + η =

t∫
0

(vw(τ)− ve) · dτ + η (2.3)

As the telescope detects only the difference between Earth’s real movement ve and

the movement of the gear vw, the mount is an integrator for the difference speed vd.

Because the absolute difference between telescope and sky should ideally be zero, this

integration directly leads to the error e. There is also random atmospheric movement

η in the signal, which complicates further considerations.

Camera (C), a sensor for the pointing direction.

e′ = e+ ξ (2.4)

Although the measurement is involved (as shown in Chapter 3), its effects can be

modelled as noise, which will be approximated as Gaussian.

Figure 2.3 shows the complete system with controller K and the mathematical description

for each block. Both noise terms η and ξ are combined to a new term ζ for simplification.

2.1.2 Simplifications to the Model

In order to simplify the system’s description, the difference speed vd needs further investi-

gation: With Equations 2.1 and 2.2, the complete term for vd is

vd = kw ·

1 + f

 t∫
0

g(v0 + u(τ)) · dτ

 · g(v0 + u(t))− ve (2.5)

The telescope mount already has a constant motor input v0 to compensate for the effect

of ve. Assuming the standard speed v0 was chosen correctly, the difference speed should be
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Worm Drive

g(vin) vm · (1 + f(x)) · kw

∫

∫

ku

vm

x

vw

ve

−
vd e

ζ

e′

u

v0

vin

Figure 2.3: Overview of the Controlled Telescope System

This block diagram shows the mathematical background of the functional blocks. For details to the functions
and the meanings of the signals, see text.

zero (vd = 0) when no periodic error is present (f(x) = 0) and without any control input

(u = 0). This results in

ve = kw · g(v0) (2.6)

which can be inserted into Equation 2.5 to obtain

vd = kw · (1 + f (x)) · g(v0 + u(t))− kw · g(v0) (2.7)

A first order Taylor expansion of g(v0 + u) is used to get

vd ≈ kw · g(v0)︸ ︷︷ ︸
constant

·f(x) + kw · (1 + f(x)) · kg · u︸ ︷︷ ︸
linear term

(2.8)

where kg is the slope dg(v0+u)
du

∣∣∣
u=0

of the linear term.

Note that the gear function f depends on the control signal u, but at the same time acts

as a scaling factor on u. This would create a recursion in the control algorithm, which makes

the calculation of the optimal solution intractable. To ease this problem, the periodicity of

f is taken into account. From the periodicity follows

E[f(x)] = 0 (2.9)

where E[f(x)] is the expected value of the function f(x) at a random location. This implies

that also E[kg · u] is zero, because kg · u is meant to compensate for the effect of f(x).

Because the periodic error is usually small compared to the nominal speed g(v0), f(x)� 1
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g(v0) · f(t) kw
∫

kg

ku

g(v0) vd e

ζ

e′

u

Figure 2.4: Overview of the Simplified Telescope System

From Figure 2.3: The effects of v0 and ve cancel each other out. The feedback path with controller K is
isolated from f(t).

can be considered. This gives

vd = kw · g(v0) · f(t) + kw · kg · u (2.10)

This simpler model is depicted in Figure 2.4. It shows the decoupling of the gear function

f(·) from the controller. The resulting feedback-loop has a simple structure, which makes

it easy to design a controller.

2.2 Pointing Accuracy & Error Sources

2.2.1 Hardware Limits

In order to build a reasonable control system, the hardware has to be checked for limitations.

It is sensible to keep them in mind when defining a desired accuracy for the controller.

The Telescope has an optical resolving power of 0.38 arcs. [Mea]

The Imaging Camera in this setting has a resolution of 0.43 arcs1. [Canb]

The Guiding Camera has usually lower resolution and a smaller telescope as the main

camera. In this setting it has a resolution of 2.40 arcs1. [The]

Of course, these values are specific to the used hardware, but other setups in the same

price range (upper amateur class) should show numbers of the same order of magnitude.

1See Chapter 6 for derivations of these numbers.
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0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200

−2

0

2

time / s

er
ro

r
/

ar
cs

Figure 2.5: The Uncontrolled System’s Error

This figure shows a typical measurement of the error in the uncontrolled system. The static drift is corrected
for by subtracting the linear component.

The strongest limitation in resolution is the overall limit for the whole setup. As

described in Chapter 3, the measuring resolution of the guiding camera can be increased

using post-processing. This resolution enhancement cannot be used for the main camera,

because the intended use is imaging, which works directly on the pixel information. Thus,

the limiting factor in this setup is the resolution of the used imaging camera. Therefore,

the objective for the controller is to keep the error below 0.43 arcs.

2.2.2 Error Sources

The Worm Drive shows errors as for example in Figure 2.5. Three turns of the worm

are visible and show the periodic structure of the data. The amplitude is around

2.5 arcs, therefore the peak-to-peak error of the mount is approximately 5 arcs.

The Atmosphere is constantly in motion. Therefore, the light that travels through it,

is subject to distortions. The magnitude of this effect, the seeing, is around 1 arcs

under good conditions. Only a few places show better conditions [MVV97].

The Measurement adds noise to the real error. This noise has a mean of 0.02 pixel with

a standard deviation of 0.01 pixel. For further details, see Chapter 3.

2.3 Conclusion

Because the Earth is rotating, the stars are moving – from the observers point of view –

with a constant velocity around the sky. This is compensated in modern telescope mounts,
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but the mechanical part is not perfect: It shows periodic pointing errors.

In order to analyse the telescope system, a block diagram of the uncontrolled system

was created, consisting of the functional blocks and the signals between them. The block

diagram shows how the different parts of the system – motor, worm drive, mount and

camera – work together.

The mathematical modelling includes two nonlinearities: The worm drive is modelled

as a proportional element with time-dependent gain and the motor can have a nonlinear

input function. For the ease of system identification, the system was simplified by omitting

weak relationships.

The outcome of this procedure is a clearer representation of the telescope system and

the mathematical background. With the simplifications, the two coupled nonlinearities

are independent. One was further simplified by a linearisation approach, the other has a

constantly changing working point and therefore cannot be easily linearised. This is why a

sophisticated approach for the system identification is needed.
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Chapter 3

Image Registration

3.1 Measuring the Tracking-Error from

Camera Images

A controller needs an accurate measurement of the system’s output. In this application,

the error is the distance between the actual and the desired pointing direction. As not

only mechanical problems but also atmospheric aberrations have an effect on this, it is

reasonable to measure the error directly through an optical system.

This optical system is often a second telescope, the guiding scope. It is mounted next to

the main telescope. Therefore it always points – disregarding small deformations in the

telescope tube – in the same direction as the main telescope. With a second camera, the

guiding camera, the movement of the pointing direction relative to the sky can be measured

in terms of displacement in the consecutive images from the guiding camera.

A reference image is taken at the beginning of the experiment. In order to measure,

the translation between reference and current image is calculated. This is known as image

registration.

3.2 Standard Methods for Image Registration

Normally, planar image registration is done with cross-correlation

ccq,r(i, j) =
1

M ·N

M−1∑
m=0

N−1∑
n=0

(q(m+ i, n+ j) · r(m,n)) (3.1)

13
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between images q and r, where M ·N is the image size. The translation is the coordinate

with highest correlation, argmax
(i,j)

ccq,r(i, j). This procedure gets a lot faster if done in

the frequency domain, because the mathematical operation is simpler: Since the form of

Equation 3.1 is closely related to the form of convolution, it can be done with a single

matrix multiplication

F(ccq,r) = Q ·R∗ , (3.2)

where Q is the Fourier-transform of q and R∗ is the complex conjugated Fourier-transform

of r. [Tö05]

As motivated in Chapter 2, the goal for the controller is an accuracy of 0.43 arcs. With

respect to the image sensor on the guiding camera, the accuracy for the image registration

needs to be in the order of 10−2 pixel. Normal cross-correlation only provides an accuracy

of 1 pixel.

More accuracy for the cross-correlation approach can be reached by upsampling the

used images, but then the procedure gets time consuming and memory intensive1. There

are already algorithms that handle the upsampling and registration in an efficient way, for

example [GSTF08]. But for the use in this work, they are comparably slow, which is shown

in Section 3.3.5. Because of these limitations, most software for autoguiding only use a

small window around one star for the error measurement.

3.3 A Triangulation Method for Image Registration

Because the use of only one star means not using all available information and cross-

correlation is too slow at the required resolution, the image registration in this work is done

with a specifically developed technique.

3.3.1 Related Work

The development of the presented method was inspired by the idea behind astrometry.net.

It is a software to infer the pointing direction of an image of the sky by finding star

constellations. A short overview of the method and what it is used for, can be found in

[HBL+08].

1If upscaled by factor 100, a black and white image of resolution 1280×960 pixel would need approximately
11.4 GB of memory.
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The basic idea is to take the positions of the stars (which are easy to detect) and

generate geometric features from the positions relative to each other. astrometry.net uses a

set of four stars to generate four measures. These form a kind of “hash”, what means these

constellations can be recognized by comparing those four numbers. This hash is then used

to find a certain constellation from an image in a huge catalogue of known constellations.

The setting in this thesis is similar: The stars from one image have to be found in

the other. Therefore, a comparison of geometric features is sensible. On the other hand,

the setting differs: No catalogue with millions of constellations has to be searched, only

the constellations in the second image. Also, the computing power is limited and fast

measurements are needed, why smaller geometric structures are used.

3.3.2 Finding Stars

As it is generally not possible to determine the complete geometric transformation between

two images, a common approach is to use the spatial relocation of tie points for an

approximation [GW02]. First, a set of suitable tie points has to be found. As this algorithm

is applied to star-images, it searches for the stars’ centres.

The procedure begins with a noisy image s of the night sky, Figure 3.1 shows an example.

The noise is reduced by subtracting the mean s̄ and γ times the standard deviation σs from

the intensity values si,j

s′i,j = si,j − s̄− γ · σs (3.3)

The parameter γ controls the aggressiveness of the noise reduction: With a too small γ,

there will be a lot of noise left, with a too big γ the dim stars will vanish. As the pixel

values cannot drop below zero, this serves as a threshold. The result of this operation is an

image that is mostly black and has only some regions left with intensity values above zero.

These regions contain the stars, if γ was chosen right.

Because of blurring in atmosphere and optics, the stars are not mapped to one single

pixel each. They are mapped to a small region consisting of a number of neighbouring

pixels on the camera’s sensor. An image with applied threshold and resulting regions is

shown in Figure 3.2.

From a region of interest, there is one more step to obtain the centre of the star, which

afterwards represents one tie point. A weighted centroid of the connected pixels is an
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Figure 3.1: Raw Image from the Guiding Camera

This figure shows a raw image from the guiding camera. The original image size is 1280× 960 pixel.

Figure 3.2: Isolated Stars

From Figure 3.1: A threshold is applied. The grey area is below the threshold. The black-and-white patches
are the star-regions. For better visibility, the stars are artificially enlarged.
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Figure 3.3: Isolated Stars with Centroids

From Figure 3.2: The weighted centroids of the stars are calculated and marked with a red cross. For
better visibility, the stars are artificially enlarged.

approximation for the star’s position

C =
1

Nk

si,j∈Rk∑
i,j

(i, j) · si,j (3.4)

where Rk is the set of pixels in the region, Nk is the number of elements in Rk and si,j is

the intensity value of the pixel. An example for the position of the centroids with respect

to the star image is shown in Figure 3.3.

3.3.3 Matching Triangles

With the star centres, tie points are available to infer the transformation between the

images. But before this can be done, the points of both images have to be matched. To do

the matching, the idea of geometric measures is useful: After building a set of triangles

from the points, their similarity can be used to find corresponding triangles. This provides

the matched tie points.

To find the same triangles in both the reference frame and the current frame, all

pairwise unique triplets of points are used to construct triangles. If less triangles are used,

experiments showed that the matching often fails. One set of constructed triangles is shown

in Figure 3.4.
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Figure 3.4: Stars with All Triangles

From Figure 3.3: For the eleven brightest stars, all triangles between the centroids are calculated and
visualized. For better visibility, the stars are artificially enlarged.

For the recognition of the triangles, the right geometric similarity measures have to be

chosen. Because this algorithm runs on star images, the scale of the images does not change,

but there might be a rotation in it. Therefore, a rotation invariant but scale variant measure

is used. One such measure is the equal oriented congruence of triangles (side-side-side)

[BSMM05]: Two triangles are matched, if the ordered lengths of their sides are equal.

Figure 3.5 shows the used features of the triangles. The features f1, f2 and f3 are the

length of the sides of the triangle in descending order. In addition, the positions of the

vertices V{1,2,3} and the angle δ between the triangle’s base and the coordinate system are

stored. This is useful for calculating the transformation later on.

For every pair of triangles from the reference frame and the current frame, the elementwise

`2-distance of their features f{1,2,3} is calculated. For example the distance of the first

feature

df1 = |f1(tr)− f1(tc)| (3.5)

where tr denotes one triangle from the reference frame and tc one from the current frame.

If all distances are below a threshold, the triangles are assumed to belong to the same stars

in both images. For each found triangle, the vertices can be matched from one image to

the other to get a set of corresponding tie points. This process can be seen in Figure 3.6,

where ten out of eleven stars are matched. It also shows an advantage of this method: Its
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Figure 3.5: The Triangle-Features

This figure shows an overview of the triangle-features. The dashed line shows the zero angle of the coordinate
system.

robustness against lost or covered stars, which can be seen in the inset. If, for example, a

small cloud disrupts the measurement, a single-star autoguiding would be lost, while this

version can stay on track.

To prevent the association of wrong triangles or of the right triangle in the wrong

orientation, it is useful to drop triangles when there are other triangles with similar features

or triangles which are self-similar (isosceles or equilateral). Although it is possible to lose

too many triangles in this way, experiments showed that this practice does not lead to

problems.

In the triangle-matching with the complete set of triangles lies the main computational

limitation of this method: With growing number of points, the set of triangles to compare

increases exponentially. Therefore, the number of points registered has to be limited. We

consider eleven points to be a good compromise between accuracy and computation time.

3.3.4 Inferring the Image Displacement

With a list of corresponding tie points, the planar transformation between the current and

the reference image can be inferred. As any planar transformation between two points

with a given translation can be constructed from a rotation around an arbitrary centre and

a corresponding translation, there is no single solution. The explanation used here is a

rotation around the image-centre, which then defines the translation.

The rotation can be computed by calculating the difference

dδ = δ(tr)− δ(tc) (3.6)
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Figure 3.6: Matching Triangles in Two Images

This figure shows the triangle matching for two different images with 12 s time difference. The green
triangles are matched from the upper to the lower image. The blue triangles are not matched. In the inset
one can see that two stars have swapped because of variations in measured brightness. To see the effect,
not all triangles are shown in this image. For better visibility, the stars are artificially enlarged.



3.4 Conclusion 21

for each pair of matched triangles (tr, tc), where δ is the angle of the triangle with respect to

the coordinate system. The tie points from the current frame can then be rotated back with

the mean angle d̄δ. This leaves the points and their correspondences with only a translation

between them.

From the the vertices’ translations

dVi = Vi(tr)− Vi(tc) (3.7)

for each pair of matched triangles (tr, tc), the overall translation is the mean d̄V .

This procedure requires only one step, no iterations are needed as with other techniques

like the iterative closest point algorithm [BM92]. Therefore, it is reliably fast.

3.3.5 Empirical Evaluation

The presented triangulation-based image registration technique was tested against a highly

engineered cross-correlation approach from [GSTF08] that uses the fast Fourier transform

[CT65] for reasons of speed. A randomly picked image from a set of night-sky images

was shifted with sub-pixel accuracy to a random translation between −1 and +1 for each

direction. Then, the image was registered with both the triangulation and the cross-

correlation method. The error measure is the difference between true translation and the

result from the image registration.

From 500 random shifts and registrations, the mean error for the cross-correlation setup

was 0.0245 pixel with a standard deviation of 0.0159 pixel. The triangulation-based setup

showed a mean error of 0.0196 pixel with a standard deviation of 0.0141 pixel. The mean

runtime of the cross-correlation method was 1598 ms per image registration, compared to

373 ms with the triangulation-based method.

In Figure 3.7 the scatter plot of the error is shown. The error distribution of the cross-

correlation shows artefacts in attenuating the bisectrices, whereas the error distribution of

the triangulation-based method looks more Gaussian.

3.4 Conclusion

For the application in astrophotography, measuring the pointing error with an optical device

is practical. Because the error is measured as shift between two images, image registration
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Figure 3.7: Scatter Plots of the Image Registration Evaluation

Panel (a) shows the measurement error of the cross-correlation method, Panel (b) shows the same for the
triangulation method. Each point marks the registration error for a randomly shifted star image.

is employed for this. Unfortunately, standard methods like cross-correlation are too slow at

the required resolution.

After presenting inspiring related work, a new method for registering star images was

developed step-by-step: First, interesting regions are extracted by applying a threshold on

the pixel intensity. Second, the star positions are estimated by calculating the weighted

centroid for each region. After knowing the stars’ positions, a set of triangles is constructed

and geometric measures are calculated.

With the geometric measures, the triangles from one image can be compared to those

from the other. If the similarity is high enough, the vertices of the triangles are matched.

These matched points serve as tie points for the reconstruction of the translation between

the images.

With the algorithm presented in this chapter, the pointing error of a telescope can

accurately be measured. As shown in the experimental comparison, the presented algorithm

is faster and more accurate than a comparable cross-correlation approach.



Chapter 4

System Identification

4.1 Context: System Identification Methods

System identification is the huge field of building mathematical models from measured data.

This is useful because with more information about it, a certain system can be controlled

better. Although there is a distinction between different kinds of systems (linear/nonlinear),

almost all physical systems are nonlinear [Lju10]. More important is the distinction between

linear and nonlinear models.

Another classification is into parametric and nonparametric methods: Parametric models

have a fixed set of basis functions (for example polynomials) that are parametrized by

a set of parameters. These parameters are subject to the system identification and are

adjusted during the process to best fit to the system. Nonparametric models have an infinite-

dimensional space of basis functions, for example the Gaussian bell (see Section 4.2.2).

There is also a classification in different shades of grey for the type of system identification

method, reaching from pure physical models (white) to models that are “just flexible function

surfaces” (black-box) [Lju10].

In this work, the identified system is nonlinear. For the identification, a nonparametric

framework is used, but the function class is not completely flexible, because some physical

information is encoded in the basis functions (see Section 4.2.2 for more detail). Therefore,

it can be seen as almost black box model. Note that this system identification is only used

for one part of the model (the gear function). Other parts are identified through a physical

model.

23
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4.2 Background: Gaussian Process Regression

Gaussian process regression is a general framework for nonparametric, nonlinear regression.

It is based on calculating probabilities according to Bayes’ theorem. A comprehensive

introduction can be found in [RW06].

The Bayesian View

This is just a brief recall of Bayes’ theorem, based on [Bis06]. A full introduction can also

be found there or elsewhere (for example in [RN03] or [Bar11]).

The theory of Gaussian processes uses the Bayesian framework, which is a way of

thinking about and calculating uncertainties. Assume there is an observed dataset D and a

set of possible models M to produce the data. In most cases, the question is, which latent

model produced the measured data. To answer this question, the probability distribution

over the models given the data p(M|D) is needed. This conditional probability (posterior)

can be represented with Bayes’ theorem

p(M|D) =
p(D|M) · p(M)

p(D)
(4.1)

where p(M) is the prior distribution over the models, p(D|M) is the likelihood for the data

to be produced by the models, and p(D) is the normalization constant (marginal).

This can be seen as follows: Before the inference system gets measured data, the belief

over the models is distributed according to the prior. When measured data comes in, those

parts of the prior distribution are emphasized that are consistent with the data. This gives

the belief over the distribution of models after the data was taken into account, which is

called posterior :

posterior ∝ likelihood · prior (4.2)

The Gaussian Process

A Gaussian process GP(f ;µ, k) is an infinite-dimensional probability measure over functions

f : X _ R over a metric space X, such that every finite, D−dimensional linear restriction

to function values f(x) : XD _ RD is a Gaussian distribution N (f(x);µ(x), k(x,x)). It

is parametrized by two objects: A mean function µ : X _ R, and a covariance function

k : X× X _ R. The mean has a relatively straightforward role; it simply shifts predictions.
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The covariance function’s responsibility is more intricate. It can be interpreted as a similarity

measure over function values in X and controls the shape of the Gaussian process belief

in the space of functions. It has to be chosen such that the finite-dimensional matrix

k(x, x′) ∈ R|x|×|x′| is positive definite for all x, x′ ∈ X and is also known as the kernel.

The main utility of Gaussian process priors arises from the closure of the Gaussian

exponential family under multiplication: If data points y are observed at locations x with

Gaussian noise ε

yi = f(xi) + ε ε ∼ N (0, σ2) (4.3)

then the posterior distribution under the Gaussian process prior and the Gaussian likelihood

encoding this observation is also a Gaussian process, with the posterior mean and covariance

µ(x∗) = kᵀ
x∗xK

−1
xxy (4.4)

Σ(x∗, x∗) = kx∗x∗ − kᵀ
x∗xK

−1
xxkxx∗ (4.5)

where kx∗x = k(x∗,x) ∈ R|x∗|×|x| is the kernel projection of the observations’ effect at the

evaluation location(s) x∗, and Kxx = k(x,x) ∈ R|x|×|x| is the kernel Gram matrix. [RW06]

4.2.1 Inference & Prediction

One property of Gaussian processes is that it is actually possible to see “what is going on”.

Consider an example of a Gaussian process with a squared exponential covariance function.

This is standard, there is more information about it in the next section. The mean function

is zero, which is also common.

In Figure 4.1(a), a Gaussian process before doing inference (prior distribution) is shown.

The mean is zero as expected, the variance is constant everywhere. The randomly sampled

functions illustrate how functions from this prior can look like.

Figure 4.1(b) shows the posterior distribution. This shows the effect of Equations 4.4

and 4.5 on the distribution: With the inference, the mean is “pulled” towards the measured

value at locations near the measurement (Equation 4.4). The uncertainty, which is expressed

as covariance kx∗x∗ , is reduced near the measurements (Equation 4.5). This is a sensible

view on this – where more information is available, the uncertainty is lower.

According to Equation 4.2, the prior defines the space of functions that is considered to
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Figure 4.1: Samples from Prior and Posterior of a Gaussian Process

Panel (a) shows the prior distribution of a Gaussian process and three randomly drawn samples from it.
Panel (b) shows the posterior distribution and three samples after observing two data points. In both plots
the mean prediction is shown as blue line and twice the pointwise standard deviation is shown as shading.
Figure adopted from [RW06].

be suitable for the problem. During the inference, this space gets restricted in those regions

where data was seen. From the prior space of functions, only those functions with a high

likelihood for having produced the data are considered to be consistent with it. This gives

the posterior distribution.

4.2.2 Kernel Engineering

Before a Gaussian process can be used to learn a specific function, the right kernel for the

problem has to be chosen.

The most widely used kernel is the “squared exponential” (sometimes also “Gaussian”

or “radial basis function (rbf)”) kernel, even if this name is misleading because it is an

exponential quadratic. In the space X = R1 it is of the form

kSE(xi, xj; θSE, `SE) = θ2
SE exp

(
−(xi − xj)2

2 · `SE

)
(4.6)

where θSE and `SE are the hyperparameters. Those parameters have the following roles:

• `SE is the characteristic length scale. It is proportional to the expected number of

zero crossings of the function values [RW06] and can be seen as complexity measure:
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Functions with a short length scale are flexible and can encode much information,

functions with a longer length scale are less flexible.

• θSE is the signal variance. It defines how strongly the function values with a certain

input-distance can differ from each other. This can be seen as the amplitude of the

function.

The squared exponential kernel induces a Gaussian process belief whose uncertainty

rises with Euclidean distance from observation locations up to a bound. Samples from the

corresponding Gaussian process have only one unique length scale controlled by the scaling

parameter `SE [RW06].

One way of checking if a chosen kernel is the right kernel for a certain application, is

to sample from the prior. This corresponds to picking functions randomly from the space

of functions that is defined by the prior. The samples should look like data from the real

system – then the data can be explained by the prior. Trying this with the data from

the telescope system and a squared exponential kernel (with different length scales) brings

samples like in Figure 4.2:

• Long length scale, Figure 4.2(a): The function values cannot change fast enough, they

could not follow the data.

• Short length scale, Figure 4.2(b): The function values change too quickly. Large scale

structure would not be captured.

• Medium length scale, Figure 4.2(c): The samples have a similar shape as the measured

data. It looks like the right length scale.

When the right length scale is determined, the next step is to infer the posterior from

the prior and the data to see if predictions are possible. Figure 4.3 shows that the posterior

mean follows the rough structure around the training points. But after the last training

point, the mean drops back to zero. A prediction of the periodic structure upon this kernel

is not possible.

This means, it is not ideally suited for modelling a periodic function. The squared

exponential only predicts well in areas where enough data is already available. But as with

all control problems, since measurements in the future are not causal, only data from the

past is available. The convenient property of periodic functions is that their future does

indeed resemble the past.
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Figure 4.2: Samples for kSE with Different Length Scales

Panel (a) shows three samples from a Gaussian process with squared exponential kernel and long length
scale. Panel (b) shows three samples with short length scale. Panel (c) shows three samples with medium
length scale. In all plots the grey data points are measured data from a real system.
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Figure 4.3: Posterior distribution for kSE

This figure shows the posterior distribution with a squared exponential covariance function after observing
measured data. The black points are training data, the grey points are test data. The mean prediction is
shown as blue line and twice the pointwise standard deviation is shown as shading.
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This aspect is captured with a periodic kernel function. The idea of mapping Euclidean

distances through a periodic function to construct periodic beliefs was first described by

MacKay [Mac98], and further studied by Rasmussen and Williams [RW06]. They propose

a kernel on one-dimensional input spaces X = R of the form

kperiodic(xi, xj; θp, `p, p) = θ2
p exp

(
−

2 sin2(π
p
(xi − xj))
`2

p

)
(4.7)

The parameters θp, `, p of this kernel have nicely interpretable, though non-trivial roles:

• θ2
p is the signal variance.

• p is the period length.

• `p controls the length scale of samples, similarly to the length scale of the squared

exponential kernel. For `p _ 0, samples are periodic, but function values at points

other than multiples of p apart are completely uncorrelated. For `p _∞, samples

have the same value everywhere.

Equation (4.7) is still a relatively restrictive kernel. It assumes that the true function is

perfectly periodic over all times. The effect is visible in Figure 4.4(a): The points that are

one period length apart from each other have exactly the same value.

Since this is not true for the real physical system (see Figure 4.4(b)), this property needs

to be relaxed. To address this issue, the fact that kernels form semirings is used: sums and

products of kernels are also kernels [RW06]. Therefore, a composite kernel is constructed

by setting

kcomp(xi, xj) = kSE(xi, xj; θSE, `SE) · kperiodic(xi, xj; θp, `p, p) (4.8)

This kernel considers two input locations similar if they are similar under both the squared

exponential and the periodic kernel. If `SE > p, this allows encoding a decay in the periodic

behaviour over several oscillations. This means that the kernel puts higher weight on the

most recent observations than on older ones. This effect can be seen in Figure 4.5.

What is still left unmodelled are the small nonperiodic variations on top of the periodic

structure. Because they are not periodic, they cannot be modelled with a short length scale

of the periodic term in Equation 4.8. They cannot be modelled with a short length scale in

the squared exponential term either, because this would encode a too strong decay in the

periodicity. Therefore, a third part is needed in the composite kernel. Because the length
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Figure 4.4: Samples and Posterior Distribution for kperiodic

Panel (a) shows three samples from a Gaussian process with periodic covariance function, the red marks
are one period apart from each other. The grey data points are measured data from a real system. Panel
(b) shows the posterior distribution with a periodic covariance function after observing measured data. The
black points are training data, the grey points are test data. The mean prediction is shown as blue line and
twice the pointwise standard deviation is shown as shading.

scale of these variations is not known exactly, we chose a rational quadratic term for these

effects:

kRQ(xi, xj; θRQ, `RQ, α) = θ2
RQ

(
1 +

(xi − xj)2

2`2
RQα

)−α
(4.9)

It was proposed by Matérn [Mat60] and can be seen as generalized version of the squared

exponential kernel with a mixture of characteristic length scales, controlled by the parameter

α [RW06].

The complete kernel that is used for the modelling is then

k?(xi, xj) = kSE(xi, xj; θSE, `SE) · kperiodic(xi, xj; θp, `p, p) + kRQ(xi, xj; θRQ, `RQ, α) (4.10)

Samples from this kernel and the inference on the telescope data are shown in Figure 4.6.

4.2.3 Hyperparameter-Optimization

The kernel from Equation 4.10 has eight hyperparameters. To get a good prediction for the

learned function, those parameters need to have sensible values. Some parameters cannot
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Figure 4.5: Samples and Posterior Distribution for kcomp

Panel (a) shows three samples from a Gaussian process with the composite covariance function kcomp. The
grey data points are measured data from a real system. Panel (b) shows the posterior distribution with the
composite covariance function after observing measured data. The black points are training data, the grey
points are test data. The mean prediction is shown as blue line and twice the pointwise standard deviation
is shown as shading.

be chosen beforehand, because they are dependent on the used hardware. They have to be

learned at runtime. The period-length of the function is an example for this: Because the

type of the telescope mount is not known in advance, the period length cannot be set to a

fixed, known value.

To adjust the hyperparameters at runtime, the negative likelihood for data to be produced

by these hyperparameters has to be minimized over the parameter space. This can be done

with a numerical optimizer, for example minimize.m1, which is an implementation of the

conjugate gradient optimizer [HS52]. Problematic is that the space of hyperparameters is

not likely to be convex. There are a lot of local minima and the optimizer often converges

to a point in the space where the result, in terms of the resulting space of functions, is

not desired. For example, one local minimum could be a set of hyperparameters where

the posterior mean is zero everywhere and the noise is so high that every variation in the

measurements is explained to be noise. Another local minimum could be a very short length

scale and a high signal variance on one covariance function, so that the posterior mean goes

1Implemented by Rasmussen, available online:
http://www.gaussianprocess.org/gpml/code/matlab/util/minimize.m

http://www.gaussianprocess.org/gpml/code/matlab/util/minimize.m
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Figure 4.6: Samples and Posterior Distribution for k?

Panel (a) shows three samples from a Gaussian process with the complete covariance function k?. The grey
data points are measured data from a real system. Panel (b) shows the posterior distribution with k? after
observing measured data. The black points are training data, the grey points are test data. The mean
prediction is shown as blue line and twice the pointwise standard deviation is shown as shading.

through every single measured value but does not predict anything into the future but a

zero mean.

The problem of unwanted local minima can be addressed with priors on the hyperpa-

rameters. Even when they cannot solve all such problems, the priors help by making the

likelihood function “more convex”. The priors can be seen as a penalization for hyperpa-

rameters which leave the region of sensible values for them. For example, a Gaussian prior

can be used for the period-length: It is not sensible to assume the complete range of R+

to be equally likely for it. A human would know that a period length of 1 s or 2 h is not

that kind of function that is addressed here. If a sensible range for a hyperparameter is

known, a prior can be used to encode this knowledge. There should be much prior mass on

the expected ranges of the hyperparameters, but also put some mass on everything that is

possible.

In the case of the telescope system, a Gaussian prior of the form

1√
2π · σh

· exp

[(
h− µh
σh

)2
]

(4.11)



4.3 Conclusion 33

is used, where h denotes the current value of the hyperparameter, µh the mean and σh the

standard deviation.

4.3 Conclusion

System identification is the idea of inferring from measurements to a system’s underlying

model. Because it is hard to provide a mathematical description for the error function of

the telescope gear, a nonparametric regression method is used: Gaussian process regression.

The regression depends strongly on the used covariance function (or “kernel”) and its

hyperparameters. In this setting, the most common squared exponential kernel does not

work, because its predictions are weak. Therefore, a more uncommon kernel is used, a

periodic one.

Because the purely periodic kernel is too strict, the mathematical properties of kernel

functions are used to form a composite kernel with weakened strictness. It captures the

periodic effects but can also handle nonperiodic long term effects.

Not every hyperparameter can be chosen in advance. Therefore, they have to be

adjusted during runtime. This can lead to problematic effects due to the nonconvexity of

the parameter space. By the use of priors on the hyperparameters, this problems can be

eased.

With the right kernel, Gaussian process regression is a powerful tool to infer certain

nonlinear effects of the telescope system. In the next chapter this is used to obtain better

control performance.
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Chapter 5

Control Engineering

Short Notation

Note that in this chapter a short notation for discrete time signals is used:

• Values that are measured or calculated at time t are denoted with subscript T

e(t) = eT

• A time difference of one finite time step ∆t corresponds to 1 in the subscript notation

e(t−∆t) = eT−1

e(t+ ∆t) = eT+1

• The measurement marks the beginning of a control period. Thus, the control signal

uT is calculated with the measurement eT and influences the next measurement eT+1.

5.1 Control Configuration

The used controller is a state feedback controller in the setup from Figure 2.4. Disregarding

the noise, it is of the form

u = ku · e (5.1)

For the closed loop follows

ė = −ku · kg · kw · e (5.2)

35
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which leads to a characteristic polynomial λ+ kukgkw = 0. In continuous time, the closed

loop is stable for all values of ku > 0, if the input gain kg and gear reduction kw are

restricted to be positive [LW05].

Nevertheless, care has to be taken when choosing the controller gain ku. Because the

controller operates in discrete time steps, ku cannot be chosen arbitrarily high. If the value

is too high, the system will overshoot and become unstable.

The discrete-time state-equation of the system is

eT+1 = eT + uT ·∆t = eT − ku · kg · kw · eT ·∆t (5.3)

The value for ku that puts the error back to zero in one step is 1
kg ·kw·∆t , which is also called

dead beat control [LW05].

To use this result, kg and kw have to be known. At first, assume that the product kg · kw
is known to be ≈ 1. This is reasonable, because the telescope vendors try to provide this

normalization by scaling the input accordingly.

As the system is constantly disturbed by the effect of f(t), the P-controller is permanently

tracking behind the error that is created by f(t). If the effect of f(t) could be predicted, it

would be possible to increase the control performance by correcting the error beforehand.

This is possible with the regression and prediction from Chapter 4.

5.2 Control with Prediction of the Error

One option for the controller is to use the direct prediction of the error. The basic idea is

that the controller builds a model for the error to “look up” the future error. This would

be the error that would happen if u was kept at zero. With this information about the

future error, it is possible to construct the value of u that minimizes the future error.

First, the previous effects of the controller on the system have to be added to the

measured error:

ẽT = eT +
T−1∑
τ=0

uτ ·∆t (5.4)

where ẽ is the estimate for the uncorrected error. For the next time step

ẽT+1 = eT+1︸︷︷︸
_0

+
T∑
τ=0

uτ ·∆t (5.5)
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the error eT+1 is set to be zero. The estimate ẽT+1 in this equation is the mean prediction

from the Gaussian process. Extracting the last element from the sum gives

ẽT+1 =
T−1∑
τ=0

uτ ·∆t+ uT ·∆t (5.6)

This can be solved for the next control signal uT

uT =
1

∆t

(
ẽT+1 −

T−1∑
τ=0

uτ ·∆t

)
(5.7)

which is also a dead beat controller, but for the future error.

This controller works, the results are discussed in Chapter 6. As expected, the control

performance of the controller with prediction is better than the performance of a controller

without prediction.

However, note that if there is a flaw in the model of the control dynamics, this approach

introduces an error which will accumulate over time (see the sum in Equation 5.7). Such a

model error could be an assumed system gain kg that differs from the real value. The effect

of the controller on the system is then not known perfectly, and therefore the error ẽ cannot

be reconstructed reliably. This leads to a discrepancy between the real and the expected

effect of the controller. Because this difference accumulates, the gap between model and

reality increases over time, giving bad control performance.

To avoid this problem, a second approach is presented in the next section.

5.3 Control with Prediction of the

Derivative of the Error

To address the problems of the error-based control, instead of the error, the derivative of

the error is considered for the regression. This can be done, because the number of available

data points is high enough. The model is expanded to contain the motor function g(u) in

the feedback path of the system. Thus, a sum over the control signal is no longer necessary

and the input function g(u) can be learned as well as the system gain kw.
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f̃(t)
∫

g̃(u)
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ζ

e′

u

Figure 5.1: The Corrected Telescope System

This figure shows the corrected version of the telescope system according to Equation 5.8.

5.3.1 Correcting the Model

Some simplifications from Chapter 2 are too strong. When Equation 2.10 is changed to

contain the complete remainder ĝ(u) of the Taylor expansion, the term for the dynamics is

ė(t, u) = d(t, u) = kw · g(v0) · f(t)︸ ︷︷ ︸
f̃(t)

+ kw · ĝ(u)︸ ︷︷ ︸
g̃(u)

(5.8)

This representation can capture a nonlinear function g and an unknown kw. Nevertheless,

the property of f̃(t) and g̃(u) being isolated is kept, which is important for the control

structure. The block diagram for the corrected model is shown in Figure 5.1.

5.3.2 Extending the Kernel

In order to identify both the free dynamics f̃(t) and the input-function g̃(u), a Gaussian

process with two-dimensional input is needed. Because both parts contribute to the

measured movement of the mount, they have to be learnt jointly. A covariance function

k(ti, tj, ui, uj) with two-dimensional input space X2 is needed. It should produce the same

results as the original covariance function when the input u is zero and should model an

input function g̃(u) when t is fixed. This can be achieved by taking the sum of two distinct

covariance functions

k(ti, tj, ui, uj) = k?(ti, tj) + kSEu(ui, uj) (5.9)

where k? is the periodic kernel presented in Equation 4.10 and kSEu is a second squared

exponential kernel, in u-space. This is possible because both parts that contribute to the
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tu

y

Figure 5.2: A Sample from the Extended Kernel

This figure shows the shape of a sample from a Gaussian process with the extended kernel according to
Equation 5.9. For a better view, the smoother kernel kcomp is used instead of k?. The variables t and u
form the input space, y denotes the function value.

dynamics are separable.

The meaning of such a construct of covariance functions is that two points in input space

are considered similar, if they are similar under one or the other kernel. One sample of this

combined covariance function is shown in Figure 5.2. The function values are plotted over

t-u-space. The sample is approximately periodic in t-dimension and a nonlinear function in

u-dimension.

5.3.3 Control Algorithm

The updated model allows inference on the complete the dynamics d(t, u). Re-consider the

definition of the dynamics

ė(t, u) = d(t, u) (5.10)

whose finite difference approximation is

d(t, u) ≈ eT+1 − eT
∆t

(5.11)
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which vanishes if

eT+1︸︷︷︸
=0

= d(t, u) ·∆t+ eT (5.12)

A local linearisation of d(t, u) in u gives

0 = ∆t · (d(t, u0) + ∇ud(t, u)|u0∆u) + eT (5.13)

This can be solved for ∆u

∆u = − 1

∇u d(t, u)|u0

(
d(t, u0) +

1

∆t
eT

)
(5.14)

which is a step of Newton-Raphson optimization towards the control signal u minimizing

the mean predicted error. Iterative application of this rule asymptotically approaches the

solution at quadratic rate [BSMM05].

Note that the term eT is measured, whereas d(t, u0) and ∇u d(t, u)|u0 are predicted

by the Gaussian process regressor. d(t, u0) is calculated according to Equation 4.4, the

derivative ∇ud(t, u) is obtained by derivating ku∗,u,x∗,x with respect to u∗

∇ud(t, u) =

(
∂

∂u∗
ku∗,u,x∗,x

)ᵀ

K−1
u,u,x,x · y (5.15)

The experiments showed that this controller does not improve markedly on the first one

(see Chapter 6 for details), at least not in the standard case with known kw. The qualities

of this controller lie somewhere else: It is robust in terms of changing the system gain kw or

the input function g(u). This function can be nonlinear, because the controller calculates

the proper control signal with the Newton-Raphson method. It even can handle a negative

input response: The user of this system could swap the motor’s movement direction or the

camera orientation and would nevertheless achieve good results.

5.4 Conclusion

This chapter proposed two different controllers for the telescope system. Both are based on

the state feedback controller. In the continuous case, the controllers are always stable, but

not in the discrete case: The control-gain has to be chosen with respect to the system gain,

which might be unknown.
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The first controller uses an estimate for the error of the uncontrolled system to predict

the future error with Gaussian process regression. It works, but runs into problems when

some parameters of the system are changed or unknown.

The second controller setup fixes this. In order to use it, the model of the system was

corrected and the kernel extended to a two-dimensional input. With these changes, a second

controller was built. It uses the Gaussian process regression to predict the future dynamics

and uses Newton-Raphson optimization for calculating the control signal. This controller

can adapt to different systems as not only the free dynamics but also the input function

and the system gain are learned. It is a self-tuning P-controller that shows robustness, even

in cases that would normally require the user to flip a switch.
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Chapter 6

Experiments

6.1 Simulation

Because the telescope system moves slowly, tests on real hardware are time consuming. To

accomplish a 30 minute test-run with three different controller-setups, the sky has to be

perfectly clear for at least 2 hours. Perfect nights for astronomical observations are rare

in Southern Germany. So, to allow rapid software prototyping, a simulation of the entire

system was developed.

6.1.1 Simulink Setup

The simulation built for this purpose was built in Matlab/Simulink. The basis is a

Simulink version of the block diagram in Figure 2.3. Where possible, built-in function-

blocks were used for efficiency. Complicated parts like the controller were implemented in

m-files that are called from Simulink-blocks.

The function g̃(u) was implemented as a linear function with variable slope kg. The

nonlinear gear function f̃(x) was implemented as a one-dimensional lookup-table with

linear interpolation. To make the problem realistic, the gear function was not sampled

from a Gaussian process but was taken from a real measurement. The telescope mount

is an integrator with initial value of zero. The simulated measurement is done by adding

zero mean Gaussian noise with a standard deviation of 0.12 arcs. In the simulation, the

measurement sample time of 3 s was chosen according to the real system. The used solver

is ode45 (based on Dormand-Prince [DP80]).

The simulation was created with the goal to produce data that looks similar to real

43
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Figure 6.1: Measured Data from Simulation and Reality

These plots contain error data of the telescope system. One dataset is measured with the real telescope
setup, the other is simulated.

data. Figure 6.1 shows the results for one real and one simulated run.

6.1.2 Experimental Setup

Four different controllers were compared in the simulation:

• The error based controller according to Section 5.2

• The derivative based controller according to Section 5.3

• Two basic P-controller as reference, optimized for two different settings

All controllers have a limited output −1 ≤ u ≤ 1.

The optimal control gain ku for the P-controllers was determined with a grid search for

different system gains kg. ku = 1.05 is optimal for kg = 0.5 and ku = 0.5 is optimal for

kg = 1.0.

To check if the controllers behave well under changes of kg, each controller was tested

with seven different values for kg, including large and negative gain.
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6.1.3 Simulation Results

Each experiment was run three times with different seed for the noise generator, but all

experiments had the same set of seeds. The result of this tests is shown in Table 6.1.

Note that the error values from the simulation are the error between telescope mount and

reference position before adding measurement noise.

kg P (ku = 1.05) P (ku = 0.50) GPC-1 GPC-2

0.2 0.3483± 0.0064 0.6260± 0.0078 0.4684± 0.0066 0.2225± 0.0197
0.5 0.2255± 0.0060 0.3053± 0.0061 0.2805± 0.0115 0.2195± 0.0082
1.0 0.2982± 0.0070 0.2256± 0.0059 0.1993± 0.0108 0.2233± 0.0075
2.0 1.6126± 0.0487 0.2879± 0.0069 0.1983± 0.0090 0.2324± 0.0072
5.0 5.0864± 0.0899 4.8624± 0.0075 0.4117± 0.0058 0.2693± 0.0082

−1.0 unstable unstable unstable 0.2328± 0.0168
100.0 unstable unstable unstable 0.2841± 0.0074

Table 6.1: Simulation Results for Different Controllers

The table shows mean ± standard deviation of the root-mean-squared error [arcs] from three runs of
the simulation. The left column shows the used system gain kg, the controller type is denoted by the
abbreviations in the top row: simple P-controllers (P) with different gain ku, one-dimensional Gaussian
process controller (GPC-1), two-dimensional Gaussian process controller (GPC-2). To give the controllers
time for learning, the error values are taken from t = 200 s until t = 1200 s.

The controllers with the Gaussian process prediction show better control performance.

This is sensible, as they use more information about the system than the other controllers.

Interesting is the robustness under variations of the system gain kg. All controllers which

rely on a fixed and known gain have problems and become unstable on large or negative

values for the input gain.

In contrast, the Gaussian process controller with two-dimensional input can adapt to

large changes in the system gain. Especially the way the system reacts to negative gains

is valuable: When a negative gain can be learned, the system is robust against issues like

mounting the camera the other way round or accidentally swapping the turning direction

of the motors. It also does not need any form of switch the user has to flip or a subroutine

to determine the moving direction.

6.1.4 The Effect of Different Gear Functions

To analyse the effect of the prediction and the gear function further, different kinds of

known gear functions were used for the simulation. As shown in Table 6.2, there are almost
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no differences. If the function is known beforehand and the controller uses the Gaussian

process only for interpolation and not for extrapolation, the performance hardly differs.

The performance itself is a lot better when the function is known, but that is not really

surprising.

f(x) known unknown

constant 0.1126± 0.0063 0.2050± 0.0124
sine wave 0.1126± 0.0062 0.2073± 0.0119
real gear 0.1140± 0.0062 0.2233± 0.0075

Table 6.2: Simulation Results for Different Gear Functions

The table shows mean ± standard deviation of the root-mean-squared the error [arcs] from three runs of
the simulation. The used gear function is shown in the left column, the top row denotes whether the gear
function was known in advance or not. Note that the flexible composite kernel is used for all simulations.
Therefore, the results for simple gear functions are not as good as one might think. To give the controllers
time for learning, the error values are taken from t = 200 s until t = 1200 s.

6.2 Hardware

The goal of this thesis is that the provided concepts work on real hardware. Consequently,

a full telescope setup for astronomical imaging was used to test the built controller in a

realistic setting. The used setup is shown in Figure 6.2.

6.2.1 Hardware Specifications

The telescope setup used for the experiments consists of the following hardware:

Telescope: Meade LX200 ACF 12”: Schmidt-Cassegrain mirror telescope, 305 mm aper-

ture, 3048 mm focal length (f/10 focal ratio), 0.380 arcs resolving power. [Mea]

Mount: Astro-Physics Mach1GTO German Equatorial Mount: Motors and gears included,

±3.5 arcs typical periodic error. [Ast]

Imaging Camera: Canon EOS 5D Mark II: Approximately 6.4µm pixel size. [Canb]

Guiding Telescope: Canon EF 400 DO: Camera lens, 400 mm focal length. [Cana]

Guiding Camera: The Imaging Source DMK 41AU02.AS: 4.65µm pixel size. [The]



6.2 Hardware 47

Main Telescope

Guiding Telescope

Telescope Mount

Figure 6.2: The Telescope Setup

This figure shows the mechanical and optical parts of the used hardware setup.

The pixel resolution of the telescope/camera combinations can be determined via

calculating the ratio of the translation on the chip and the focal length. With the small-

angle approximation, this is

resolution

[
rad

m

]
≈ translation

focal-length
(6.1)

With the pixel size and 1 rad ≈ 206 265 arcs

resolution

[
arcs

pixel

]
≈ 206 265 arcs ·

pixel-size [ m
pixel

]

focal-length [m]
(6.2)

which results in a resolution of 2.40 arcs
pixel

for the guiding camera and accordingly 0.43 arcs
pixel

for the imaging camera.
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6.2.2 Hardware Setup

The telescope mount is located in a dome, on a stable rack on the roof of a building. The

main telescope is attached to the mount and the guiding telescope is mounted “piggyback”

on top of it. The complete system is balanced with counterweights and precisely aligned to

the celestial north pole.

The interfaces between the parts of the system are more complicated, Figure 6.3 gives an

overview. Matlab connects to the guiding camera through Ascom, which is a hardware

driver layer for astronomical devices (both mounts and cameras). It can be used directly

from Matlab. In Matlab, the pointing error is calculated from the image and the model

is updated with the measurement. After that, the control algorithm is invoked to compute

the next control signal.

The mount does not provide the ability to adjust the movement speed in a continuous

way. It allows only to change the speed by a fixed amount, like half the sidereal speed. To

move with an arbitrary speed, the mount therefore needs pulses of variable length. This

can not be provided by Matlab, since it requires a second thread. A script was written

in Python that creates those pulses. Matlab sends the desired speed via user datagram

protocol (udp) to the Python-script. This calculates the corresponding pulse-width, adjusts

the speed of the mount and resumes the original speed after the pulse-width is reached.

The speed adjustment is done with a small piece of hardware (gpusb) that can be

accessed with Ascom and produces a signal on the 6-wire autoguiding port (ST-4), which

is available on many telescope mounts.

Matlab Camera

Python gpusb Mount

Ascom

udp

Ascom ST-4

Figure 6.3: Hardware Overview

Connections between different hardware and software components in the controlled system. The boxes are
the used components, the arrows show the used information channel.
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6.2.3 Experimental Setup

The hardware was used to make images of an astronomical object: Messier 3, a globular

cluster of stars at a distance of approximately 33 871 lightyears. After 10 min for settling of

the system, every 30 seconds a 20-second-exposure was done, 30 in total per run.

Parallel to the exposures with the imaging camera, all images from the guiding camera

were stored. From these images, the pointing error of the telescope could be re-calculated

after the run was complete. With a runtime 1200 s and a measurement cycle of 3 s, this

makes a total of 400 measurement points per run.

This was done for three different controller setups:

• Without active controller

• The error-prediction based controller according to Section 5.2

• A P-controller with Kalman-filter

6.2.4 Field Test Results

The set of experiments were run several times, but only once the external conditions (clouds,

mechanical behaviour, seeing) were stable enough for direct comparison. Because it is not

possible to measure without noise, the numbers in this section are from measurements with

noise (as opposed to the simulation results in Section 6.1.3).

The results are shown in Table 6.3. The root-mean-squared error of the Gaussian

process controller is 75 % smaller than without a controller and 22 % smaller than with the

Kalman-filtered P-controller.

None KF-P GPC-1

1.4845 0.4842 0.3775

Table 6.3: Experimental Results of the Field Test

The table shows the root-mean-squared error [arcs] for different controller types, measured with the telescope
system. To give the controllers time for learning, the error values are taken from t = 200 s until t = 1200 s.

The plots of the error during the experiments are shown in Figure 6.4. They show little

residual structure for the Gaussian process controller.

The images from the main camera provide an alternative, more qualitative means of

comparison, Figure 6.5 compares these images. The image from the uncontrolled system
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(a) Kalman-filtered P-controller
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(b) Gaussian process controller, 1-D

Figure 6.4: Error Plots from the Hardware Experiments

Panel (a) shows the measured error of the telescope system with Kalman-filtered P-controller. Panel (b)
shows the same, but with the one-dimensional Gaussian process based controller. In both plots, the error
of the uncontrolled system is shown in grey.
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shows the periodic movement: Instead of as points, stars appear as wavy lines. The

difference between Gaussian process controller and Kalman-filtered P-controller is small

but noticeable.

6.3 Conclusion

To test if the controllers built in the last chapter work, a simulation was developed in

Simulink as direct implementation of the block diagram of the system. The simulation

was built upon measured values for the gear function, so that a simulated run looks similar

to a real experiment.

After introducing the used controllers, the results from the experiments were presented.

The improvements of the Gaussian process based controllers over basic controllers was

shown. Also, the effect of different gear functions and prediction levels was presented: If

the function is known in advance, the performance is good, no matter what gear function is

used.

The improvements of the Gaussian process based controller do not only hold for the

simulation case. The controllers were also tested on a set of hardware, a complete setup for

astrophotography. The setup is involved, and explained in detail in the section. The results

from the test in the real environment showed that the Gaussian process based controller

also works in hardware. Furthermore, it was employed to make images of an interesting

astronomical object, which is the intended use of such a setup.
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(a) Without Controller

(b) P-Controller

(c) GP-Controller

Figure 6.5: Images of Messier 3 with Different Controllers

All images show Messier 3, the used controller differs. Panel (a) shows the result without controller, Panel
(b) shows the result with a Kalman-filtered P-controller and Panel (c) shows the result with the Gaussian
process based controller. The images show the summed-up pixel intensity values of 30 subframes (Panel
(a)) respectively 15 subframes (Panels (b) + (c)) with 20 s exposure time each. The images are inverted
and reduced to black and white for better comparison. The drift is not fully compensated, so that the
movement of the right ascension axis is easier to see.
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Summary & Conclusions

For long exposure images of faint objects in the sky it is crucial that the stars do not move

with respect to the telescope. Because Earth rotates, from the observers point of view the

stars follow a circular trajectory around the sky. Thus, machinery is required that moves

the telescope along this path. The mechanical part always has limited precision. This leads

to a periodic error in the pointing direction, resulting in blurred star images.

Although closed-loop-controllers that rely on a guide star are standard in astrophotogra-

phy, the periodic error itself is mostly addressed with time-consuming error recording and

adjustment protocols. Because this is complicated, it is often omitted. We chose another

way and asked the question: Is it feasible to use Gaussian process regression to infer a

model of the periodic error during runtime?

Summary

System identification is a general problem in control. In this work, a method popular in

the machine learning community, Gaussian process regression, was employed for system

identification. The application is a realistic problem, correcting the gear error of a telescope.

Interesting aspects are that the error shows a periodic structure and that the system

identification is done while the controller is already active.

A mathematical model of the telescope mount was developed. The nonlinear parts were

isolated during the modelling to work them out separately. One nonlinear function was

linearised for simplification, the other one could not be linearised because of a constantly

changing working point. We used a black box system identification method for that part.

The system identification for the nonlinear gear function is done with Gaussian process

53



54 7 Summary & Conclusions

regression during runtime. Because the standard setup only gives weak predictions for the

future, a specialized kernel function was developed. Based on a periodic kernel, a composite

kernel was built that can capture periodic effects, changes in the periodicity over the time

and small nonperiodic effects.

With the prediction from the Gaussian process, a state-feedback controller was built to

keep the error small. Because the first approach did not work as expected, the model of

the system was changed. The kernel was extended to be able to model gear function and

input function jointly. Experiments in Simulink showed that this extension is more robust.

Furthermore, the performance of the designed controller is better than the performance

of a compared P-controller with optimized gain. Hardware experiments showed that this

controller design with nonparametric system identification during runtime is feasible.

Aside of the control part, an image registration technique was developed for fast

measurement of the error. This was necessary because the standard approach is too slow at

the needed resolution. The developed method is based on finding tie points in the images

by means of geometric measures. Experiments showed that it is faster and more accurate

than the standard technique, but it is specialized to a certain kind of images.

The goal of this work was to build a controller that learns about the system while

controlling and that uses the learned information to improve the control performance. This

was successfully done, and also the goal of keeping the pointing error of the telescope system

below the camera’s resolution of 0.43 arcs was achieved. In the field test, the Gaussian

process based controller had only a root-mean-squared error of 0.38 arcs.

Conclusions & Personal Remarks

This thesis shows that it is not only possible to build a controller upon a nonparametric

model, but also that the performance of the resulting controller is respectable. It improves

upon an optimized P-controller and is self-tuning on a wide range of unknown input gains.

This shows the benefit of Gaussian process regression for system identification on unknown

hardware. Due to the flexible model and the feasibility of regression and prediction during

runtime it is possible to design a controller for a whole class of hardware.
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The key ingredients that helped achieve this are:

Gaussian process regression: Serves as a flexible modelling class for nonlinear problems

but also allows the explicit encoding of prior knowledge like the periodicity of the

learned function.

Kernel engineering: With a standard kernel it would not be possible to make strong

predictions in this setup, and with merely a periodic kernel the predictions would

not be sensible. It is a valuable insight that choosing the right kernel (or kernel

combination) for a certain problem leads to better results than taking a classic kernel

“off the shelf”.

Image registration by triangle matching: Can be used as an extension for almost all

autoguiding software in astronomy. Because the widely used software for autoguiding

use only one star measurements, they tend to be fragile. Finding the position by

geometric measures and several stars is more robust and works even when the field of

view is partly covered (with a cloud, for example).

This work is also of practical use: With more time for engineering we can build

an autoguiding system that is robust against many kinds of technical flaws, like wrong

parameters for the guiding speed or inverse motor movement. This is a convenient feature,

because setting up and debugging a telescope system is a time-consuming activity. With a

system that is simple to set up, there is more time to capture the beauty of the universe,

like the star cluster Messier 3 in Figure 7.1.

Besides the use for telescopes, we are looking forward to use methods from machine

learning for all kinds of control problems. Much work remains to be done until the control

and communities are connected as they should be.
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1http://www.astronomie.be/registax/
2http://cyanogen.com/maxim_main.php
3http://www.gimp.org/

http://www.astronomie.be/registax/
http://cyanogen.com/maxim_main.php
http://www.gimp.org/
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(a) Inverted Monochrome Image

(b) Full Colour Image

Figure 7.1: Messier 3 in all its Beauty

This image (once inverted, once in colour) shows Messier 3. The image was combined from 15 sub-frames
with 20 s exposure time each. The guiding during the exposures was done with the Gaussian process
based controller. The raw images were post processed in several steps: Stacking and wavelet filtering with
RegiStax1; denoising and deconvolution with MaxIm DL2; colour balance and contrast/brightness with
GIMP3.
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