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HOW THE RESULT OF GRAPH CLUSTERING METHODS DEPENDS

ON THE CONSTRUCTION OF THE GRAPH

Markus Maier1, Ulrike von Luxburg2 and Matthias Hein3

Abstract. We study the scenario of graph-based clustering algorithms such as spectral
clustering. Given a set of data points, one first has to construct a graph on the data
points and then apply a graph clustering algorithm to find a suitable partition of the
graph. Our main question is if and how the construction of the graph (choice of the
graph, choice of parameters, choice of weights) influences the outcome of the final clus-
tering result. To this end we study the convergence of cluster quality measures such as
the normalized cut or the Cheeger cut on various kinds of random geometric graphs as
the sample size tends to infinity. It turns out that the limit values of the same objective
function are systematically different on different types of graphs. This implies that clus-
tering results systematically depend on the graph and can be very different for different
types of graph. We provide examples to illustrate the implications on spectral clustering.
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1. Introduction

Nowadays it is very popular to represent and analyze statistical data using random graph or
network models. The vertices in such a graph correspond to data points, whereas edges in the
graph indicate that the adjacent vertices are “similar” or “related” to each other. In this paper
we consider the problem of data clustering in a random geometric graph setting. We are given
a sample of points drawn from some underlying probability distribution on a metric space. The
goal is to cluster the sample points into “meaningful groups”. A standard procedure is to first
transform the data to a neighborhood graph, for example a k-nearest neighbor graph. In a second
step, the cluster structure is then extracted from the graph: clusters correspond to regions in the
graph that are tightly connected within themselves and only sparsely connected to other clusters.

There already exist a couple of papers that study statistical properties of this procedure in a
particular setting: when the true underlying clusters are defined to be the connected components
of a density level set in the underlying space. In his setting, a test for detecting cluster structure and
outliers is proposed in Brito et al. (1997). In Biau et al. (2007) the authors build a neighborhood
graph in such a way that its connected components converge to the underlying true clusters in the
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mmaier@tuebingen.mpg.de
2 Corresponding author: Max Planck Institute for Biological Cybernetics, Tübingen, Germany,
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data. Maier et al. (2009a) compare the properties of different random graph models for identifying
clusters of the density level sets.

While the definition of clusters as connected components of level sets is appealing from a theoretical
point of view, the corresponding algorithms are often too simplistic and only moderately successful
in practice. From a practical point of view, clustering methods based on graph partitioning algo-
rithms are more robust. Clusters do not have to be perfectly disconnected in the graph, but are
allowed to have a small number of connecting edges between them. Graph partitioning methods
are widely used in practice. The most prominent algorithm in this class is spectral clustering,
which optimizes the normalized cut (NCut) objective function (see below for exact definitions,
and von Luxburg (2007) for a tutorial on spectral clustering). It is already known under what
circumstances spectral clustering is statistically consistent (von Luxburg et al., 2008). However,
there is one important open question. When applying graph-based methods to given sets of data
points, one obviously has to build a graph first, and there are several important choices to be
made: the type of the graph (for example, k-nearest neighbor graph, the r-neighborhood graph or
a Gaussian similarity graph), the connectivity parameter (k or r or σ, respectively) and the weights
of the graph. Making such choices is not so difficult in the domain of supervised learning, where
parameters can be set using cross-validation. However, it poses a serious problem in unsupervised
learning. While different researchers use different heuristics and their “gut feeling” to set these
parameters, neither systematic empirical studies have been conducted (for example, how sensitive
the results are to the choice of graph parameters), nor do theoretical results exist which lead to
well-justified heuristics.

In this paper we study the question if and how the results of graph-based clustering algorithms
are affected by the graph type and the parameters that are chosen for the construction of the
neighborhood graph. We focus on the case where the best clustering is defined as the partition
that minimizes the normalized cut (Ncut) or the Cheeger cut.

Our theoretical setup is as follows. In a first step we ignore the problem of actually finding
the optimal partition. Instead we fix some partition of the underlying space and consider it as
the “true” partition. For any finite set of points drawn from the underlying space we consider the
clustering of the points that is induced by this underlying partition. Then we study the convergence
of the NCut value of this clustering as the sample size tends to infinity. We investigate this question
on different kinds of neighborhood graphs. Our first main result is that depending on the type of
graph, the clustering quality measure converges to different limit values. For example, depending
on whether we use the kNN graph or the r-graph, the limit functional integrates over different
powers of the density. From a statistical point of view, this is very surprising because in many
other respects, the kNN graph and the r-graph behave very similar to each other. Just consider
the related problem of density estimation. Here, both the k-nearest neighbor density estimate
and the estimate based on the degrees in the r-graph converge to the same limit, namely the
true underlying density (cf. Loftsgaarden and Quesenberry (1965) for the consistency of the kNN
density estimate). So it is far from obvious that the NCut values would converge to different limits.

In a second step we then relate these results to the setting where we optimize over all partitions
to find the one that minimizes the NCut. We can show that the results from the first part can
lead to the effect that the minimizer of NCut on the kNN graph is different from the minimizer
of NCut on the r-graph or on the complete graph with Gaussian weights. This effect can also be
studied in practical examples. First, we give examples of well-clustered distributions (mixtures
of Gaussians) where the optimal limit cut on the kNN graph is different from the one on the
r-neighborhood graph. The optimal limit cuts in these examples can be computed analytically.
Next we can demonstrate that this effect can already been observed on finite samples from these
distributions. Given a finite sample, running normalized spectral clustering to optimize Ncut leads
to systematically different results on the kNN graph than on the r-graph. This shows that our
results are not only of theoretical interest, but that they are highly relevant in practice.

In the following section we formally define the graph clustering quality measures and the neighbor-
hood graph types we consider in this paper. Furthermore, we introduce the notation and technical
assumptions for the rest of the paper. In Section 3 we present our main results on the convergence
of NCut and the CheegerCut on different graphs. In Section 4 we show that our findings are
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not only of theoretical interest, but that they also influence concrete algorithms such as spectral
clustering in practice. All proofs are deferred to Section 6. Note that a small part of the results of
this paper has already been published in Maier et al. (2009b).

2. Definitions and assumptions

Given a directed graph G = (V,E) with weights w : E → R and a partition of the nodes V into
(U, V \ U) we define

cut(U, V \ U) =
∑

u∈U,v∈V \U
(w(u, v) + w(v, u)) ,

and vol(U) =
∑
u∈U,v∈V w(u, v). If G is an undirected graph we replace the ordered pair (u, v)

in the sums by the unordered pair {u, v}. Note that by doing so we count each edge twice in the
undirected graph. This introduces a constant of two in the limits but it has the advantage that
there is no need to distinguish in the formulation of our results between directed and undirected
graphs.

Intuitively, the cut measures how strong the connection between the different clusters in the clus-
tering is, whereas the volume of a subset of the nodes measures the “weight” of the subset in terms
of the edges that originate in it. An ideal clustering would have a low cut and balanced clusters,
that is clusters with similar volume. The graph clustering quality measures that we use in this
paper, the normalized cut and the Cheeger cut, formalize this trade-off in slightly different ways:
The normalized cut is defined by

NCut(U, V \ U) = cut(U, V \ U)

(
1

vol(U)
+

1

vol(V \ U)

)
, (1)

whereas the Cheeger cut is defined by

CheegerCut(U, V \ U) =
cut(U, V \ U)

min{vol(U), vol(V \ U)}
. (2)

These definitions are useful for general weighted graphs and general partitions. As was said in
the beginning we want to study the values of NCut and CheegerCut on neighborhood graphs on
sample points in Euclidean space and for partitions of the nodes that are induced by a hyperplane
S in Rd. The two halfspaces belonging to S are denoted by H+ and H−. Having a neighborhood
graph on the sample points {x1, . . . , xn}, the partition of the nodes induced by S is ({x1, . . . , xn}∩
H+, {x1, . . . , xn} ∩ H−). In the rest of this paper for a given neighborhood graph Gn we set
cutn = cut({x1, . . . , xn} ∩ H+, {x1, . . . , xn} ∩ H−). Similarly, for H = H+ or H = H− we set
voln(H) = vol({x1, . . . , xn} ∩H+). Accordingly we define NCutn and CheegerCutn.

In the following we introduce the different types of neighborhood graphs and weighting schemes
that are considered in this paper. The graph types are:

• The k-nearest neighbor (kNN) graphs, where the idea is to connect each point to its k
nearest neighbors. However, this yields a directed graph, since the k-nearest neighbor
relationship is not symmetric. If we want to construct an undirected kNN graph we can
choose between the mutual kNN graph, where there is an edge between two points if
both points are among the k nearest neighbors of the other one, and the symmetric kNN
graph, where there is an edge between two points if only one point is among the k nearest
neighbors of the other one. In our proofs for the limit expressions it will become clear
that these do not differ between the different types of kNN graphs. Therefore, we do not
distinguish between them in the statement of the theorems, but rather speak of “the kNN
graph”.
• The r-neighborhood graph, where a radius r is fixed and two points are connected if their

distance does not exceed the threshold radius r. Note that due to the symmetry of the
distance we do not have to distinguish between directed and undirected graphs.
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• The complete weighted graph, where there is an edge between each pair of distinct nodes
(but no loops). Of course, in general we would not consider this graph a neighborhood
graph. However, if the weight function is chosen in such a way that the weights of edges
between nearby nodes are high and the weights between points far away from each other are
almost negligible, then the behavior of this graph should be similar to that of a neighbor-
hood graph. One such weight function is the Gaussian weight function, which we introduce
below.

The weights that are used on neighborhood graphs usually depend on the distance of the end
nodes of the edge and are non-increasing. That is, the weight w(xi, xj) of an edge (xi, xj) is given
by w(xi, xj) = f(dist(xi, xj)) with a non-increasing weight function f . The weight functions we
consider here are the unit weight function f ≡ 1, which results in the unweighted graph, and the
Gaussian weight function

f(u) =
1

(2πσ2)d/2
exp

(
−1

2

u2

σ2

)
with a parameter σ > 0 defining the bandwidth.

Of course, not every weighting scheme is suitable for every graph type. For example, as mentioned
above, we would hardly consider the complete graph with unit weights a neighborhood graph.
Therefore, we only consider the Gaussian weight function for this graph. On the other hand, for
the kNN graph and the r-neighborhood graph with Gaussian weights there are two “mechanisms”
that reduce the influence of far-away nodes: first the fact that far-away nodes are not connected
to each other by an edge and second the decay of the weight function. In fact, it turns out that
the limit expressions we study depend on the interplay between these two mechanisms. Clearly,
the decay of the weight function is governed by the parameter σ. For the r-neighborhood graph
the radius r limits the length of the edges. Asymptotically, given sequences (σn)n∈N and (rn)n∈N
of bandwidths and radii we distinguish between the following two cases:

• the bandwidth σn is dominated by the radius rn, that is σn/rn → 0 for n→∞,
• the radius rn is dominated by the bandwidth σn, that is rn/σn → 0 for n→∞.

For the kNN graph we cannot give a radius up to which points are connected by an edge, since this
radius for each point is a random variable that depends on the positions of all the sample points.
However, it is possible to show that for a point in a region of constant density p the kn-nearest
neighbor radius is concentrated around d

√
kn/((n− 1)ηdp), where ηd denotes the volume of the unit

ball in Euclidean space Rd. This is plausible, considering that, by a standard result on density
estimation, kn/((n − 1)ηdr̂

d), where r̂ is the empirical kn-nearest neighbor radius, is an estimate

of the density at the point. That is, the kNN radius decays to zero with the rate d
√
kn/n. In

the following it is convenient to set for the kNN graph rn = d
√
kn/n, noting that this is not the

k-nearest neighbor radius of any point but only its decay rate. Using this “radius” we distinguish
between the same two cases of the ratio of rn and σn as for the r-neighborhood graph.

For the sequences (rn)n∈N and (σn)n∈N we always assume rn → 0, σn → 0 and nrn →∞, nσn →∞
for n→∞. Furthermore, for the parameter sequence (kn)n∈N of the kNN graph we always assume
kn/n→ 0, which corresponds to rn → 0, and kn/ log n→∞.

In the rest of this paper we denote by Ld the Lebesgue measure in Rd. Furthermore, let B(x, r)
denote the closed ball of radius r around x and ηd = Ld(B(0, 1)), where we set η0 = 1.

We make the following general assumptions in the whole paper:

• The data points x1, ..., xn are drawn independently from some density p on Rd. The measure
on Rd that is induced by p is denoted by µ; that means, for a measurable set A ⊆ Rd we
set µ(A) =

∫
A
p(x) dx.

• The density p is bounded from below and above, that is 0 < pmin ≤ p(x) ≤ pmax. In
particular, it has compact support C.
• In the interior of C, the density p is twice differentiable and ‖∇p(x)‖ ≤ p′max for a p′max ∈ R

and all x in the interior of C.
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• The cut hyperplane S splits the space Rd into two halfspaces H+ and H− (both including
the hyperplane S) with positive probability masses, that is µ(H+) > 0, µ(H−) > 0. The
normal of S pointing towards H+ is denoted by nS.
• If d ≥ 2 the boundary ∂C is a compact, smooth (d− 1)-dimensional surface with minimal

curvature radius κ > 0, that is the absolute values of the principal curvatures are bounded
by 1/κ. We denote by nx the normal to the surface ∂C at the point x ∈ ∂C. Furthermore,
we can find constants γ > 0 and rγ > 0 such that for all r ≤ rγ we have Ld(B(x, r)∩C) ≥
γLd(B(x, r)) for all x ∈ C.
• If d ≥ 2 we can find an angle α ∈ (0, π/2) such that |〈nS , nx〉| ≤ cosα for all x ∈ S ∩ ∂C.

If d = 1 we assume that (the point) S is in the interior of C.

The assumptions on the lower and upper bounds of the density are necessary to find lower and
upper bounds on the k-nearest neighbor radii of points in C. The assumptions on differentiability
are used to show concentration of the k-nearest neighbor radius for points in the “interior” of C,
that is, points not within a boundary strip of C.

The assumptions on the boundary ∂C are necessary in order to bound the influence of points that
are close to the boundary. The problem with these points is that the density is not approximately
uniform inside small balls around them. Therefore, we cannot find a good estimate of their kNN
radius and on their contribution to the cut and the volume. Furthermore, in the case of the r-
neighborhood graph we cannot control the number of edges originating in these points. Under the
assumptions above we can neglect these points.

The last assumption on the minimum angle between the normal of S and the normal of ∂C in
S ∩ ∂C is used to ensure, that the intersection of the “boundary strip” of C, where we cannot
control the kNN radii and the number of edges to other points, and S converges to zero sufficiently
fast. Therefore, we can find a bound on the influence of the boundary points in our results and
how fast this influence vanishes.

Appendix 6.4 contains a table of the notation used throughout the paper.

3. Main results: Limits of the quality measures NCut and CheegerCut

As we can see in Equations (1) and (2) the definitions of NCut and CheegerCut rely on the cut
and the volume. Therefore, in order to study the convergence of NCut and CheegerCut it seems
reasonable to study the convergence of the cut and the volume first. In Section 6 the Corollaries 1-3
and the Corollaries 4-6 state the convergence of the cut and the volume on the kNN graphs. The
Corollaries 7-10 state the convergence of the cut on the r-graph and the complete weighted graph,
whereas the Corollaries 11-14 state the convergence of the volume on the same graphs.

These corollaries show that there are scaling sequences (scutn )n∈N and (svoln )n∈N that depend on n,
rn and the graph type such that, under certain conditions, almost surely(

scutn

)−1
cutn → CutLim and

(
svoln

)−1
voln(H)→ V olLim(H)

for n→∞, where CutLim ∈ R≥0 and V olLim(H+), V olLim(H−) ∈ R>0 are constants depending
only on the density p and the hyperplane S.

Having defined these limits we define, analogously to the definitions in Equations (1) and (2), the
limits of NCut and CheegerCut as

NCutLim =
CutLim

V olLim (H+)
+

CutLim

V olLim (H−)
(3)

and

CheegerCutLim =
CutLim

min {V olLim (H+) , V olLim (H−)}
. (4)
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The cut in the kNN-graph and the r-graph
Weighting scutn CutLim kNN-graph CutLim r-graph

unweighted n2rd+1
n

2ηd−1

(d+1)η
1+1/d
d

∫
S
p1−1/d(s) ds 2ηd−1

d+1

∫
S
p2(s) ds

weighted rn/σn →∞ n2σn
2√
2π

∫
S
p2(s) ds 2√

2π

∫
S
p2(s) ds

weighted rn/σn → 0 σ−dn n2rd+1
n

2ηd−1η
−1−1/d
d

(d+1)(2π)d/2

∫
S
p1−1/d(s) ds 2ηd−1

(d+1)(2π)d/2

∫
S
p2(s) ds

The cut in the complete weighted graph
Weighting scutn CutLim in complete weighted graph

weighted n2σn
2√
2π

∫
S
p2(s) ds

The volume in the kNN-graph and the r-graph
Weighting svoln V olLim(H) kNN-graph V olLim(H) r-graph

unweighted n2rdn
∫
H
p(x) dx ηd

∫
H
p2(x) dx

weighted, rn/σn →∞ n2
∫
H
p2(x) dx

∫
H
p2(x) dx

weighted, rn/σn → 0 σ−dn n2rdn
1

(2π)d/2

∫
H
p(x) dx ηd

(2π)d/2

∫
H
p2(x) dx

The volume in the complete weighted graph
Weighting svoln V olLim in complete weighted graph

weighted n2
∫
H
p2(x) dx

Table 1. The scaling sequences and limit expression for the cut and the volume
in all the considered graph types. In the limit expression for the cut the integral
denotes the (d− 1)-dimensional surface integral along the hyperplane S, whereas
in the limit expressions for the volume the integral denotes the Lebesgue integral
over the halfspace H = H+ or H = H−.

In our following main theorems we show the conditions under which we have for n → ∞ almost
sure convergence of

svoln

scutn

NCutn → NCutLim and
svoln

scutn

CheegerCutn → CheegerCutLim.

Furthermore, for the unweighted r-graph and kNN-graph and for the complete weighted graph
with Gaussian weights we state the optimal convergence rates, where “optimal” means the best
trade-off between our bounds for different quantities derived in Section 6. Note that we will not
prove the following theorems here. Rather the proof of Theorem 1 can be found in Section 6.2.4,
whereas the proofs of Theorems 2 and 3 can be found in Section 6.3.3.

Theorem 1 (NCut and CheegerCut on the kNN-graph). For a sequence (kn)n∈N with kn/n→ 0
for n→∞ let Gn be the kn-nearest neighbor graph on the sample x1, . . . , xn. Set XCut = NCut or
XCut = CheegerCut and let XCutLim denote the corresponding limit as defined in Equations (3)
and (4). Set

∆n =

∣∣∣∣ svoln

scutn

XCutn−XCutLim
∣∣∣∣ .

• Let Gn be the unweighted kNN graph. If kn/
√
n log n → ∞ in the case d = 1 and

kn/ log n → ∞ in the case d ≥ 2 we have ∆n → 0 for n → ∞ almost surely. The

optimal convergence rate is achieved for kn = k0
4
√
n3 log n in the case d = 1 and kn =

k0n
2/(d+2)(log n)d/(d+2) in the case d ≥ 2. For this choice of kn we have ∆n = O( d+4

√
log n/n)

in the case d = 1 and ∆n = O( d+2
√

log n/n) for d ≥ 2.
• Let Gn be the kNN-graph with Gaussian weights and suppose rn ≥ σαn for an α ∈ (0, 1).

Then we have almost sure convergence of ∆n → 0 for n → ∞ if kn/ log n → ∞ and
nσd+1

n / log n→∞.
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• Let Gn be the kNN-graph with Gaussian weights and rn/σn → 0. Then we have almost
sure convergence of ∆n → 0 for n → ∞ if kn/

√
n log n → ∞ in the case d = 1 and

kn/ log n→∞ in the case d ≥ 2.

Theorem 2 (NCut and CheegerCut on the r-graph). For a sequence (rn)n∈N ⊆ R>0 with rn → 0
for n → ∞ let Gn be the rn-neighborhood graph on the sample x1, . . . , xn. Set XCut = NCut or
XCut = CheegerCut and let XCutLim denote the corresponding limit as defined in Equations (3)
and (4). Set

∆n =

∣∣∣∣ svoln

scutn

XCutn−XCutLim
∣∣∣∣ .

• Let Gn be unweighted. Then ∆n → 0 almost surely for n→∞ if nrd+1
n / log n→∞. The

optimal convergence rate is achieved for rn = r0
d+3
√

log n/n for a suitable constant r0 > 0.

For this choice of rn we have ∆n = O( d+3
√

log n/n).
• Let Gn be weighted with Gaussian weights with bandwidth σn → 0 and rn/σn → ∞ for
n→∞. Then ∆n → 0 almost surely for n→∞ if nσd+1

n / log n→∞.
• Let Gn be weighted with Gaussian weights with bandwidth σn → 0 and rn/σn → 0 for
n→∞. Then ∆n → 0 almost surely for n→∞ if nrd+1

n / log n→∞.

The following theorem presents the limit results for NCut and CheegerCut on the complete weighted
graph. One result that we need in the proof of this theorem is Corollary 8 on the convergence of
the cut. Note that in Narayanan et al. (2007) a similar cut convergence problem is studied for
the case of the complete weighted graph, and the scaling sequence and the limit differ from ours.
However, the reason is that in that paper the weighted cut is considered, which can be written as
f ′Lnormf , where Lnorm denotes the normalized graph Laplacian matrix and f is an n-dimensional
vector with fi = 1 if xi is in one cluster and fi = 0 if xi is in the other cluster. On the other hand,
the standard cut, which we consider in this paper, can be written (up to a constant) as f ′Lunnormf ,
where Lunnorm denotes the unnormalized graph Laplacian matrix. (For the definitions of the graph
Laplacian matrices and their relationship to the cut we refer the reader to von Luxburg (2007).)
Therefore, the two results do not contradict each other.

Theorem 3 (NCut and CheegerCut on the complete weighted graph). Let Gn be the complete
weighted graph with Gaussian weights and bandwidth σn on the sample points x1, . . . , xn. Set
XCut = NCut or XCut = CheegerCut and let XCutLim denote the corresponding limit as defined
in Equations (3) and (4). Set

∆n =

∣∣∣∣ svoln

scutn

XCutn−XCutLim
∣∣∣∣ .

Under the conditions σn → 0 and nσd+1
n / log n → ∞ we have almost surely ∆n → 0 for n → ∞.

The optimal convergence rate is achieved setting σn = σ0
d+3
√

log n/n with a suitable σ0 > 0. For

this choice of σn the convergence rate is in O(((log n)/n)α/(d+3)) for any α ∈ (0, 1).

Let us decrypt these results and for simplicity focus on the cut value. When we compare the limits
of the cut (cf. Table 1) it is striking that, depending on the graph type and the weighting scheme,
there are two substantially different limits: the limit

∫
S
p2(s) ds for the unweighted r-neighborhood

graph, and the limit
∫
S
p1−1/d(s) ds for the unweighted k-nearest neighbor graph.

The limit of the cut for the complete weighted graph with Gaussian weights is the same as the
limit for the unweighted r-neighborhood graph. There is a simple reason for that: On both graph
types the weight of an edge only depends on the distance between its end points, no matter where
the points are. This is in contrast to the kNN-graph, where the radius up to which a point is
connected strongly depends on its location: If a point is in a region of high density there will be
many other points close by, which means that the radius is small. On the other hand, this radius
is large for points in low-density regions. Furthermore, the Gaussian weights decline very rapidly
with the distance, depending on the parameter σ. That is, σ plays a similar role as the radius r
for the r-neighborhood graph.
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Density example 2 
(informative dimension only)

Figure 1. Densities in the examples. In the two-dimensional case, we plot the
informative dimension (marginal over the other dimensions) only. The dashed blue
vertical line depicts the optimal limit cut of the r-graph, the solid red vertical line
the optimal limit cut of the kNN graph.

The two types of r-neighborhood graphs with Gaussian weights have the same limit as the un-
weighted r-neighborhood graph and the complete weighted graph with Gaussian weights. When
we compare the scaling sequences scutn it turns out that in the case rn/σn →∞ this sequence is the
same as for the complete weighted graph, whereas in the case rn/σn → 0 we have scutn = n2rd+1

n /σdn,
which is the same sequence as for the unweighted r-graph corrected by a factor of σ−dn . In fact,
these effects are easy to explain: If rn/σn →∞ then the edges which we have to remove from the
complete weighted graph in order to obtain the rn-neighborhood graph have a very small weight
and their contribution to the value of the cut can be neglected. Therefore this graph behaves like
the complete weighted graph with Gaussian weights. On the other hand, if rn/σn → 0 then all the
edges that remain in the rn-neighborhood graph have approximately the same weight, namely the
maximum of the Gaussian weight function, which is linear in σ−dn .

Similar effects can be observed for the k-nearest neighbor graphs. The limits of the unweighted
graph and the graph with Gaussian weight and rn/σn → 0 are identical (up to constants) and the
scaling sequence has to correct for the maximum of the Gaussian weight function. However, the
limit for the kNN-graph with Gaussian weights and rn/σn →∞ is different: In fact, we have the
same limit expression as for the complete weighted graph with Gaussian weights. The reason for
this is the following: Since rn is large compared to σn at some point all the k-nearest neighbor
radii of the sample points are very large. Therefore, all the edges that are in the complete weighted
graph but not in the kNN graph have very low weights and thus the limit of this graph behaves
like the limit of the complete weighted graph with Gaussian weights.

Finally, we would like to discuss the difference between the two limit expressions, where as examples
for the graphs we use only the unweighted r-neighborhood graph and the unweighted kNN-graph.
Of course, the results can be carried over to the other graph types. For the cut we have the limits∫
S
p1−1/d(s) ds and

∫
S
p2(s) ds. In dimension 1 the difference between these expressions is most

pronounced: The limit for the kNN graph does not depend on the density p at all, whereas in the
limit for the r-graph the exponent of p is 2, independent of the dimension. Generally, the limit for
the r-graph seems to be more sensitive to the absolute value of the density. This can also be seen
for the volume: The limit expression for the kNN graph is

∫
H
p(x) dx, which does not depend on

the absolute value of the density at all, but only on the probability mass in the halfspace H. This
is different for the unweighted r-neighborhood graph with the limit expression

∫
H
p2(x) dx.

4. Examples where different limits of Ncut lead to different
optimal cuts

In Theorems 1-3 we have proved that the limit expressions for NCut and CheegerCut are different
for different kinds of neighborhood graphs. In fact, apart from constants there are two limit
expressions: that of the unweighted kNN-graph, where the exponent of the density p in the limit
integral for the cut is 1− 1/d and for the volume is 1, and that of the unweighted r-neighborhood
graph, where the exponent in the limit of the cut is 2 and in the limit of the vol is 1. Therefore,
we consider here only the unweighted kNN-graph and the unweighted r-neighborhood graph.
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Figure 2. Results of spectral clustering in two dimensions, for the unweighted
r-graph (left) and the unweighted kNN graph (right)

In this section we show that the difference between the limit expressions is more than a mathemat-
ical subtlety without practical relevance: If we select an optimal cut based on the limit criterion
for the kNN graph we can obtain a different result than if we use the limit criterion based on the
r-neighborhood graph.

Consider Gaussian mixture distributions in one (Example 1) and in two dimensions (Example 2)

of the form
∑3
i=1 αiN([µi, 0, . . . , 0], σiI) which are set to zero where they are below a threshold θ

and properly rescaled. The specific parameters in one and two dimensions are

dim µ1 µ2 µ3 σ1 σ2 σ3 α1 α2 α3 θ

1 0 0.5 1 0.4 0.1 0.1 0.66 0.17 0.17 0.1
2 −1.1 0 1.3 0.2 0.4 0.1 0.4 0.55 0.05 0.01

Plots of the densities of Example 1 and 2 can be seen in Figure 1. We first investigate the theoretic
limit cut values, for hyperplanes which cut perpendicular to the first dimension (which is the
“informative” dimension of the data). For the chosen densities, the limit NCut expressions from
Theorems 1 and 2 can be computed analytically and optimized over the chosen hyperplanes. The
solid red line in Figure 1 indicates the position of the minimal value for the kNN-graph case,
whereas the dashed blue line indicates the the position of the minimal value for the r-graph case.

Up to now we only compared the limits of different graphs with each other, but the question
is, whether the effects of these limits can be observed even for finite sample sizes. In order to
investigate this question we applied normalized spectral clustering (cf. von Luxburg (2007)) to
sample data sets of n = 2000 points from the mixture distribution above. We used the unweighted
r-graph and the unweighted symmetric k-nearest neighbor graph. We tried a range of reasonable
values for the parameters k and r and the results we obtained were stable over a range of parameters.
Here we present the results for the 30- (for d = 1) and the 150-nearest neighbor graphs (for d = 2)
and the r-graphs with corresponding parameter r, that is r was set to be the mean 30- and 150-
nearest neighbor radius. Different clusterings are compared using the minimal matching distance:

dMM (Clust1,Clust2) = min
π

1

n

n∑
i=1

1Clust1(xi)6=π(Clust2(xi))

where the minimum is taken over all permutations π of the labels. In the case of two clusters,
this distance corresponds to the 0-1-loss as used in classification: a minimal matching distance of
0.35, say, means that 35% of the data points lie in different clusters. In our spectral clustering
experiment, we could observe that the clusterings obtained by spectral clustering are usually very
close to the theoretically optimal hyperplane splits predicted by theory (the minimal matching
distances to the optimal hyperplane splits were always in the order of 0.03 or smaller). As predicted
by theory, the two types of graph give different cuts in the data. An illustration of this phenomenon
for the case of dimension 2 can be found in Figure 2. To give a quantitative evaluation of this
phenomenon, we computed the mean minimal matching distances between clusterings obtained by
the same type of graph over the different samples (denoted dkNN and dr), and the mean difference
dkNN−r between the clusterings obtained by different graph types:
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Figure 3. The Example 3 with the sum of two Gaussians, that is two modes of
the density. In the left figure the density with the optimal limit cut of the r-graph
(dashed blue vertical line) and the optimal limit cut of the kNN graph (the solid
red vertical line) is depicted. The two figures on the right show the histograms of
the cluster boundary over 100 iterations for the unweighted r-neighborhood and
kNN-graphs.

Example dkNN dr dkNN−r
1 dim 0.0005± 0.0006 0.0003± 0.0004 0.346± 0.063
2 dim 0.005± 0.0023 0.001± 0.001 0.49± 0.01

We can see that for the same graph, the clustering results are very stable (differences in the
order of 10−3) whereas the differences between the kNN graph and the r-neighborhood graph are
substantial (0.35 and 0.49, respectively). This difference is exactly the one induced by assigning
the middle mode of the density to different clusters, which is the effect predicted by theory.

It is tempting to conjecture that in Example 1 and 2 the two different limit solutions and their
impact on spectral clustering might arise due to the fact that the number of Gaussians and the
number of clusters we are looking for do not coincide. Yet the following Example 3 shows that
this is not the case: for a density in one dimension as above but with only two Gaussians with
parameters

µ1 µ2 σ1 σ2 α1 α2 θ

0.2 0.4 0.05 0.03 0.8 0.2 0.1

the same effects can be observed. The density is depicted in the left plot of Figure 3.

In this example we draw a sample of 2000 points from this density and compute the spectral
clustering of the points, once with the unweighted kNN-graph and once with the unweighted r-
graph. In one dimension we can compute the place of the boundary between two clusters, that is
the middle between the rightmost point of the left cluster and the leftmost point of the right cluster.
We did this for 100 iterations and plotted histograms of the location of the cluster boundary. In
the middle and the right plot of Figure 3 we see that these coincide with the optimal cut predicted
by theory.

5. Outlook

In this paper we have investigated the influence of the graph construction on the graph-based
clustering measures normalized cut and Cheeger cut. We have seen that depending on the type of
graph and the weights, the clustering quality measures converge to different limit results.

This means that ultimately, the question about the “best NCut” or “best Cheeger cut” clustering,
given infinite amount of data, has different answers, depending on which underlying graph we
use. This observation opens Pandora’s box on clustering criteria: the “meaning” of a clustering
criterion does not only depend on the exact definition of the criterion itself, but also on how the
graph on the finite sample is constructed. This means that one graph clustering quality measure is
not just “one well-defined criterion” on the underlying space, but it corresponds to a whole bunch
of criteria, which differ depending on the underlying graph. More sloppy: A clustering quality
measure applied to one neighborhood graph does something different in terms of partitions of the
underlying space than the same quality measure applied to a different neighborhood graph. This
shows that these criteria cannot be studied isolated from the graph they are applied to.



TITLE WILL BE SET BY THE PUBLISHER 11

From a theoretical side, there are several directions in which our work can be improved. In
this paper we only consider partitions of Euclidean space that are defined by hyperplanes. This
restriction is made in order to keep the proofs reasonably simple. However, we are confident that
similar results could be proven for arbitrary smooth surfaces.

Another extension would be to obtain uniform convergence results. Here one has to take care that
one uses a suitably restricted class of candidate surfaces S (note that uniform convergence results
over the set of all partitions of Rd are impossible, cf. Bubeck and von Luxburg (2009)). This
result would be especially useful, if there existed a practically applicable algorithm to compute the
optimal surface out of the set of all candidate surfaces.

For practice, it will be important to study how the different limit results influence clustering results.
So far, we do not have much intuition about when the different limit expressions lead to different
optimal solutions, and when these solutions will show up in practice. The examples we provided
above already show that different graphs indeed can lead to systematically different clusterings in
practice. Gaining more understanding of this effect will be an important direction of research if
one wants to understand the nature of different graph clustering quality measures.

6. Proofs

In many of the proofs that are to follow in this section a lot of technique is involved in order to
come to terms with problems that arise due to effects at the boundary of our support C and to the
non-uniformity of the density p. However, if these technicalities are ignored, the basic ideas of the
proofs are simple to explain and they are similar for the different types of neighborhood graphs.
In Section 6.1 we discuss these ideas without the technical overhead and define some quantities
that are necessary for the formulation of our results.

In Section 6.2 we present the results for the k-nearest neighbor graph and in Section 6.3 we present
those for the r-graph and the complete weighted graph. Each of these sections consists of three
parts: the first is devoted to the cut, the second is devoted to the volume, and in the third we
proof the main theorem for the considered graphs using the results for the cut and the volume.

The sections on the convergence of the cut and the volume always follow the same scheme: First,
a proposition concerning the convergence of the cut or the volume for general monotonically de-
creasing weight functions is given. Using this general proposition the results for the specific weight
functions we consider in this paper follow as corollaries.

Since the basic ideas of our proofs are the same for all the different graphs, it is not worth repeating
the same steps for all the graphs. Therefore, we decided to give detailed proofs for the k-nearest
neighbor graph, which is the most difficult case. The r-neighborhood graph and the complete
weighted graph can be treated together and we mainly discuss the differences to the proof for the
kNN graph.

The limits of the cut and the volume for general weight function are expressed in terms of certain
integrals of the weight function over “caps” and “balls”, which are explained later. For a specific
weight function these integrals have to be evaluated. This is done in the lemmas in Section 6.4.
Furthermore, this section contains a technical lemma that helps us to control boundary effects.

6.1. Basic ideas

In this section we present the ideas of our convergence proofs non-formally. We focus here on
NCut, but all the ideas can easily be carried over to the Cheeger cut.

First step: Decompose NCutn into cutn and voln
For sequences an, bn that converge to the limits a > 0 and b > 0, the convergence of an−bn, an/bn
can be expressend in terms of the convergence speed of an and bn. Therefore, under our general
assumptions, there exist constants c1, c2, c3, which may depend on the limit values of the cut and
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the volume, such that for sufficiently large n∣∣∣∣ svoln

scutn

(
cutn

voln (H+)
+

cutn
voln (H−)

)
− CutLim

V olLim (H+)
+

CutLim

V olLim (H−)

∣∣∣∣
≤ c1

∣∣∣∣cutn
scutn

− CutLim
∣∣∣∣︸ ︷︷ ︸

cut term

+c2

∣∣∣∣voln(H+)

svoln

− V olLim(H+)

∣∣∣∣︸ ︷︷ ︸
volume-term

+c3

∣∣∣∣voln(H−)

svoln

− V olLim(H−)

∣∣∣∣︸ ︷︷ ︸
volume-term

.

This decomposition is used in order to proof the main theorems, Theorems 1 – 3; the goal of the
following steps is to find bounds on the terms on the right hand side of this equation.

Second step: Bias/variance decomposition of cut and volume terms
In order to show the convergence of the cut-term we do a bias/variance decomposition∣∣∣∣cutn

scutn

− CutLim
∣∣∣∣ ≤ ∣∣∣∣cutn

scutn

− E
(

cutn
scutn

)∣∣∣∣︸ ︷︷ ︸
variance term

+

∣∣∣∣E(cutn
scutn

)
− CutLim

∣∣∣∣︸ ︷︷ ︸
bias term

and show the convergence to zero of these terms separately. Clearly, the same decomposition can
be done for the volume terms. In the following we call these terms the “bias term of the cut” and
the “variance term of the cut” and similarly for the volume.

In Propositions 1 and 6 bounds on the bias term and the variance term of the cut are shown for
the k-nearest neighbor graph and the r-graph, respectively, for rather general weight functions.
Similarly in Propositions 4 and 7 for the bias and the variance term of the volume. The following
steps in this section show the ideas that are used in the proofs of these propositions.

Third step: Use concentration of measure inequalities for the variance term
Bounding the deviation of a random variable from its expectation is a well-studied problem in
statistics and there are a couple of so-called concentration of measure inequalities that bound
the probability of a large deviation from the mean. In this paper we use McDiarmid’s inequality
for the kNN graphs and a concentration of measure result for U -statistics by Hoeffding for the
r-neighborhood graph and the complete weighted graph. The reason for this is that each of the
graph types has its particular advantages and disadvantages when it comes to the prerequisites for
the concentration inequalities: The advantage of the kNN graph is that we can bound the degree
of a node linearly in the parameter k, whereas for the r-neighborhood graph we can bound the
degree only by the trivial bound (n − 1) and for the complete graph this bound is even attained.
Therefore, using the same proof as for the kNN-graph is suboptimal for the latter two graphs. On
the other hand, in these graphs the connectivity between points is not random given their position
and it is always symmetric. This allows us to use a U -statistics argument, which cannot be applied
to the kNN-graph, since the connectivity there may be unsymmetric (at least for the directed one)
and the connectivity between each two points depends on all the sample points.

Note that these results are of a probabilistic nature, that is we obtain results of the form

Pr

(∣∣∣∣cutn
scutn

− E
(

cutn
scutn

)∣∣∣∣ > ε

)
≤ pn,

for a sequence (pn) of non-negative real numbers. If for all ε > 0 the sum
∑∞
i=1 pi is finite, then

we have almost sure convergence of the variance term to zero by the Borel-Cantelli lemma.

Formal proofs of probabilistic bounds on the variance terms can be found in the proofs of Propo-
sitions 1 and 6 for the cut, and in the proofs of Propositions 4 and 7 for the volume.

Fourth step: Bias of the cut term
While all steps so far were pretty much standard, this part is the technically most challenging
part of our convergence proof. We have to prove the convergence of E(cutn /s

cut
n ) to CutLim

(and similarly for the volume). Omitting all technical difficulties like boundary effects and the
variability of the density, the basic ideas can be described in a rather simple manner. The formal
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proofs can be found in the proofs of Proposition 1 for the k-nearest neighbor graph, and in the
proof of Proposition 6 for the r-neighborhood and the complete graph.

The first idea is to break the cut down into the contributions of each single edge. We define a
random variable Wij that attains the weight of the edge between xi and xj , if these points are
connected in the graph and on different sides of the hyperplane S, and zero otherwise. By the
linearity of the expectation and the fact that the points are sampled i.i.d.

E (cutn) =

n∑
i=1

n∑
j=1

j 6=i

EWij = n(n− 1)EW12.

Now we fix the positions of the points x1 = x and x2 = y. In this case Wij can attain only two
values: fn(dist(x, y)) if the points are connected and on different sides of S, and zero otherwise.
We first consider the r-neighborhood graph with parameter rn, since here the existence of an edge
between two points is determined by their distance, and is not random as in the kNN graph. Two
points are connected if their distance is not greater than rn and thus Wij = 0 if dist(x, y) > rn.
Furthermore, Wij = 0 if x and y are on the same side of S. That is, for a point x ∈ H+ we have

E(W12 | x1 = x, x2 = y) =

{
fn(dist(x, y)) if y is in the cap B(x, rn) ∩H−

0 otherwise.

By integrating over Rd we obtain

E(W12 | x1 = x) =

∫
B(x,rn)∩H−

fn(dist(x, y))p(y) dy

and denote the integral on the right hand side in the following by g(x).

Integrating the conditional expectation over all possible positions of the point x in Rd gives

E (W12) =

∫
Rd
g(x) p(x) dx =

∫
H+

g(x) p(x) dx+

∫
H−

g(x) p(x) dx.

We only consider the integral over the halfspace H+ here, since the other integral can be treated
analogously. The important idea in the evaluation of this integral is the following: Instead of
integrating over H+, we initially integrate over the hyperplane S and then, at each point s ∈ S,
along the normal line through s, that is the line s+ tnS for all t ∈ R≥0. This leads to∫

H+

g(x) p(x) dx =

∫
S

∫ ∞
0

g(s+ tnS) p(s+ tnS) dt ds.

S

H−

H+

s

s+ tnS

rn

Figure 4. Integration along the normal line through s. Obviously, for t ≥ rn
the intersection B(s + tnS , rn) ∩H− is empty and therefore g(s + tnS) = 0. For
0 ≤ t < rn the points in the cap are close to s and therefore the density in the cap
is approximately p(s).
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This integration is illustrated in Figure 4. It has two advantages: First, if x is far enough from S
(that is, dist(x, s) > rn for all s ∈ S), then g(x) = 0 and the corresponding terms in the integral
vanish. Second, if x is close to s ∈ S and the radius rn is small, then the density on the ball B(x, rn)
can be considered approximately uniform, that is we assume p(y) = p(s) for all y ∈ B(x, rn). Thus,∫ ∞

0

g(s+ tnS) p(s+ tnS) dt =

∫ rn

0

g(s+ tnS) p(s+ tnS) dt

= p(s)

∫ rn

0

g(s+ tnS) dt = p2(s)

∫ rn

0

∫
B(x,rn)∩H−

fn(dist(x, y)) dy dt

= ηd−1

∫ rn

0

udfn(u) du p2(s)

where the last step follows with Lemma 3.

Since this integral of the weight function fn over the “caps” plays such an important role in the
derivation of our results we introduce a special notation for it: For a radius r ∈ R≥0 and q = 1, 2
we define

F
(q)
C (r) = ηd−1

∫ r

0

udfqn(u) du.

Although these integrals also depend on n we do not make this dependence explicit. In fact, the
parameter r is replaced by the radius rn in the case of the r-neighborhood graph or by a different
graph parameter depending on n for the other neighborhood graphs. Therefore the dependence

of F
(q)
C (rn) on n will be understood. Note that we allow the notation F

(q)
C (∞), if the indefinite

integral exists. The integral F
(q)
C for q = 2 is needed for the following reason: For the U -statistics

bound on the variance term we do not only have to compute the expectation of Wij , but also their
variance. But the variance can in turn be bounded by the expectation of W 2

ij , which is expressed

in terms of F
(2)
C (rn).

In the r-neighborhood graph points are only connected within a certain radius rn, which means
that to compute E(W12 | x1 = x) we only have to integrate over the ball B(x, rn), since all other
points cannot be connected to x1 = x. This is clearly different for the complete graph, where every
point is connected to every other point. The idea is to fix a radius rn in such a way as to make sure
that the contribution of edges to points outside B(x, rn) can be neglected, because their weight is
small. Since W12 = fn(dist(x1, x2)) if the points are on different sides of S we have for x ∈ H+

E(W12 | x1 = x) =

∫
B(x,rn)∩H−

fn(dist(x, y)) p(y) dy +

∫
B(x,rn)c∩H−

fn(dist(x, y)) p(y) dy

≤ g(x) + pmax

∫
B(x,rn)c

fn(dist(x, y)) dy.

For the Gaussian weight function the integral converges to zero very quickly, if rn/σn → ∞ for
n→∞. Thus we can treat the complete graph almost as the r-neighborhood graph.

For the k-nearest neighbor graph the connectedness of points depends on their k-nearest neighbor
radii that is, the distance of the point to its k-th nearest neighbor, which is itself a random variable.
However, one can show that with very high probability the k-nearest neighbor radius of a point in
a region with uniform density p is concentrated around (kn/((n− 1)ηdp)

1/d. Since we assume that
kn/n → 0 for n → ∞ the expected kNN radius converges to zero. Thus the density in balls with
this radius is close to uniform and the estimate becomes more accurate. Upper and lower bounds
on the k-nearest neighbor radius that hold with high probability are given in Lemma 2. The idea
is to perform the integration above for both, the lower bound on the kNN radius and the upper
bound on the kNN radius. Then it is shown that these integrals converge to the same limit.

Fifth step: Bias of the volume terms
The bias of the volume term, which is dealt with in in Propositions 4 for the k-nearest neighbor
graph and in Proposition 7 for the r-neighborhood and the complete graph, can be treated similarly
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to that of the cut term. We define Wij = fn(dist(xi, xj) if xi and xj are connected in the graph
and Wij = 0 otherwise. Note that we do not need the condition that the points have to be on
different sides of the hyperplane S as for the cut. Then, for a point x ∈ C if we assume that the
density is uniform within distance rn around x

E(W12 | x1 = x) =

∫
B(x,rn)

fn(dist(x, y))p(y) dy = p(x)

∫
B(x,rn)

fn(dist(x, y)) dy

= dηd

∫ rn

0

ud−1fn(u) du p(x),

where the last integral transform follows with Lemma 5. Integrating over Rd we obtain

E(W12) =

∫
Rd

E(W12 | x1 = x)p(x) dx = dηd

∫ rn

0

ud−1fn(u) du

∫
Rd
p2(x) dx.

Since the integral over the balls is so important in the formulation of our general results we often
call it the “ball integral” and introduce the notation

F
(q)
B (r) = dηd

∫ r

0

ud−1fn(u) du

for a radius r > 0 and q = 1, 2. The remarks that were made on the “cap integral” FC(r) above
also apply to the “ball integral” FB(r).

Sixth step: Plugging in the weight functions
Having derived results on the bias term of the cut and volume for general weight functions, we can
now plug in the specific weight functions in which we are interested in this paper. This boils down
to the evaluation of the “cap” and “ball” integrals FC(rn) and FB(rn) for these weight functions.
For the unit weight function the integrals can be computed exactly (Lemma 8), whereas for the
Gaussian weight function we study the asymptotic behavior of the “cap” and “ball” integral in the
cases rn/σn → 0 (Lemma 9) and rn/σn →∞ for n→∞ (Lemma 10).

6.2. Proofs for the k-nearest neighbor graph

As we have already mentioned we will give the proofs of our general propositions in detail here
and then discuss in Section 6.3 how they have to be adapted to the r-neighborhood graph and the
complete weighted graph. This means, that Lemmas 3 and 5 that are necessary for the proof of
the general propositions can be found in this section, although they are also needed for the r-graph
and the complete graph with Gaussian weights.

This section consists of four subsections: In Section 6.2.1 we define some quantities that help us
to deal with the fact that the connectivity between two points is random even if we know their
distance. These quantities will play an important role in the succeeding sections. Section 6.2.2
presents the results for the cut term, whereas Section 6.2.3 presents the results for the volume term.
Finally, these results are used to proof Theorem 1, the main theorem for the k-nearest neighbor
graph in Section 6.2.4.

In the subsections on the cut-term and the volume term we always present the proposition for
general weight functions first. Then the lemmas follow that are used in the proof of the proposition.
Finally, we show corollaries that apply these general results to the specific weight functions we
consider in this paper. An overview of the proof structure is given in Figure 5.

6.2.1. k-nearest neighbor radii

As we have explained in Section 6.1 the basic ideas of our convergence proofs are similar for all
the graphs. However, there is one major technical difficulty for the k-nearest neighbor graph: The
existence of an edge between two points depends on all the other sample points and it is random,
even if we know the distance between the points. However, each sample point xi is connected to
its k nearest neighbors, that means to all points with a distance not greater than that of the k-th
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Proposition 4Proposition 1
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Figure 5. The structure of the proofs in this section. Proposition 1 and 4 state
bounds for general weight functions on the bias and the variance term of the
cut and the volume, respectively. Lemma 2 shows the concentration of the kNN
radii, Lemma 11 is needed to bound the influence of points close to the boundary.
Lemma 3 and 5 perform the integration of the weight function over “caps” and
“balls”. In Lemmas 8-10 the general “ball” and “cap” integrals are evaluated for
the specific weight functions we use. Using these results, Corollaries 1-3 dealing
with the cut and Corollaries 4-6 dealing with the volume are proved. Finally, in
Theorem 1 the convergence of NCut and CheegerCut are analyzed using the result
of these corollaries.

nearest neighbor. This distance is called the k-nearest neighbor radius of point xi. Unfortunately,
given a sample point we do not know this radius without looking at all the other points. The idea
to overcome this difficulty is the following: Given the position of a sample point we give lower and
upper bounds on the kNN radius that depend on the density around the point and show that with
high probability the true radius is between these bounds. Then we can replace the integration
over balls of a fixed radius with the integration over balls with the lower and upper bound on the
kNN radius in the proof for the bias term and then show that these integrals converge towards
each other. Furthermore, under our assumptions the radius of all the points can be bounded from
above, which helps to bound the influence of far-away points.

In this section we define formally the bounds on the k-nearest neighbor radii, since these will
be used in the statement of the general proposition. In Lemma 2 we state the bounds on the
probabilities that the true kNN radius is between our bounds for the cases we need in the proofs.

We first introduce the upper bound rmax
n on the maximum k-nearest neighbor radius of a point

not depending on its position. Second, we use that given a point x (far enough) in the interior of
C the conditional kNN radius of a sample point at x is highly concentrated around a radius rn(x).
Formally, we define

rmax
n = d

√
4

γpminηd

kn
n− 1

, and rn(x) = d

√
kn

(n− 1)p(x)ηd
for all x ∈ C.

As to the concentration we state sequences of lower and upper bounds, r−n (x) and r+n (x) that
converge to rn(x) such that for all x ∈ C that are not in a small boundary strip the probability
that a point in x is connected to a point in y becomes small if the distance between x and y exceeds
r+n (x) and becomes large if the distance is smaller than r−n (x).

Clearly, the accuracy of the bounds depends on how much the density can vary around x. Setting
ξn = 2p′maxr

max
n /pmin the density in the ball of radius 2rmax

n around x can vary between (1−ξn)p(x)
and (1 + ξn)p(x). Furthermore, we have to “blow up” or shrink the radii a bit in order to be sure
that the true kNN radius is between them. To this end we introduce a sequence (δn)n∈N with
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δn → 0 and δnkn →∞ for n→∞. Then we can define

r−n (x) = d
√

(1− 2ξn)(1− δn)rn(x) and r+n (x) = d
√

(1 + 2ξn)(1 + δn)rn(x).

Note that ξn converges to zero, since rmax
n converges to zero as d

√
kn/n. The sequence δn is chosen

such that it converges to zero reasonably fast, but that with high probability r+n (x) and r−n (x) are
bounds on the kNN radius of a point at x.

In order to quantify the probability of connections, which we seek to bound, we define the function
c : Rd × Rd → [0, 1] by

c(x, y) =

{
Pr (C12 | x1 = x, x2 = y) if x ∈ C and y ∈ C
0 otherwise,

where C12 denotes the event that there is an edge between the sample points x1 and x2 in the
(directed or undirected) k-nearest neighbor graph.

6.2.2. The cut term in the kNN graph

Proposition 1. Let Gn be the directed, symmetric or mutual k-nearest neighbor graph with a
monotonically decreasing weight function fn. Set δn =

√
(8δ0 log n)/kn for some δ0 ≥ 2 in the

definition of r−n (x). Then we have for the bias term∣∣∣∣E( cutn
n(n− 1)

)
− 2

∫
S∩C

p2(s)F
(1)
C (rn(s)) ds

∣∣∣∣ = O

(
F

(1)
C (rmax

n )
d

√
kn
n

)

+O

(
min

{
n−δ0fn

(
inf
x∈C

rn(x)

)
, F

(1)
B (∞)− F (1)

B

(
inf
x∈C

rn(x)

)})
+O

(
min

{(
d

√
kn
n

+

√
log n

kn

)
fn

(
inf
x∈C

r−n (x)

)(
kn
n

)1+1/d

, F
(1)
C (∞)− F (1)

C ( inf
x∈C

r−n (x))

})
.

Furthermore, we have for the variance term for a suitable constant C̃

Pr
(∣∣∣cutn−E

(
cut(i)n

)∣∣∣ > ε
)
≤ 2 exp

(
− C̃ε2

nk2nf
2
n(0)

)
.

Proof. We define for i, j ∈ {1, . . . , n}, i 6= j the random variable Wij as

Wij =

{
fn(dist(xi, xj) if xi ∈ H+, xj ∈ H− and (xi, xj) edge in Gn

0 otherwise.

For both, a directed and an undirected graph we have

cutn =

n∑
i=1

n∑
j=1

j 6=i

Wij ,

and by the linearity of expectation and the fact that the points are independent and identically
distributed, we have

E
(

cutn
n(n− 1)

)
=

1

n(n− 1)

n∑
i=1

n∑
j=1

j 6=i

E(Wij) =
1

n(n− 1)
n(n− 1)E(W12) = E(W12).

In the convergence proof for the variance term of the cut for the r-neighborhood graph in Propo-
sition 6 we need a bound on E(W 2

12). Since this can be derived similarly to E(W12) we state the
following for E(W q

12) for q = 1, 2.
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We define C12 to be the event that the sample points x1 and x2 are connected in the graph.
Conditioning on the location of the points x1 ∈ C and x2 ∈ C we obtain W12 = 0 if x1 and x2 on
the same side of the hyperplane S, otherwise

W12 =

{
fn(dist(x1, x2)) if C12 = 1

0 otherwise.

Therefore, if x1 ∈ C and x2 ∈ C are on different sides of S

E (W q
12 | x1 = x, x2 = y) = fqn(dist(x, y)) Pr (C12 | x1 = x, x2 = y) .

With c(x, y) as above we have

E(W q
12) =

∫
C

∫
C

E(W q
12 | x1 = x, x2 = y)p(y) dy p(x) dx

=

∫
H+∩C

∫
H−∩C

fqn(dist(x, y)) Pr (C12 | x1 = x, x2 = y) p(y) dy p(x) dx

+

∫
H−∩C

∫
H+∩C

fqn(dist(x, y)) Pr (C12 | x1 = x, x2 = y) p(y) dy p(x) dx

=

∫
H+

∫
H−

fqn(dist(x, y))c(x, y)p(y) dy p(x) dx

+

∫
H−

∫
H+

fqn(dist(x, y))c(x, y)p(y) dy p(x) dx.

Setting

g(x) =

{∫
H−

fqn(dist(x, y))c(x, y)p(y) dy if x ∈ H+∫
H+ f

q
n(dist(x, y))c(x, y)p(y) dy if x ∈ H−

we obtain

E(W q
12) =

∫
Rd
g(x)p(x) dx =

∫
H+

g(x)p(x) dx+

∫
H−

g(x)p(x) dx.

We only deal with the first integral here, the second can be computed analogously. By a simple
transformation of the coordinate system we can write this integral as an integral along the hyper-
plane S, and for each points s in S we integrate over the normal line through s. In the following
we find lower and upper bounds on the integral∫

S

∫ ∞
0

g(s+ tnS)p (s+ tnS) dtds =

∫
S

hn(s)ds,

where we have set

hn(s) =

∫ ∞
0

g (s+ tnS) p (s+ tnS) dt.

We set In = {x ∈ C | dist(x, ∂C) ≥ 2rmax
n } and use the following decomposition of the integral∣∣∣∣∫

S

hn(s) ds−
∫
S

p2(s)F
(q)
C (rn(s)) ds

∣∣∣∣ ≤ ∣∣∣∣∫
S

hn(s) ds−
∫
S∩In

hn(s) ds

∣∣∣∣ (5)

+

∣∣∣∣∫
S∩In

hn(s) ds−
∫
S∩In

p2(s)F
(q)
C (rn(s)) ds

∣∣∣∣ (6)

+

∣∣∣∣∫
S∩In

p2(s)F
(q)
C (rn(s)) ds−

∫
S∩C

p2(s)F
(q)
C (rn(s)) ds

∣∣∣∣ . (7)
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We first give a bound on the right hand side of Equation (5). SettingRn = {x ∈ Rd | dist(x, ∂C) <
2rmax
n } and An = Rd\(In∪Rn), we have (considering that the integrand is positive and S∩In ⊆ S)

∣∣∣∣∫
S

hn(s) ds−
∫
S∩In

hn(s) ds

∣∣∣∣ =

∫
S∩Rn

hn(s) ds+

∫
S∩An

hn(s) ds,

that is, we have to derive upper bounds on the two integrals on the right hand side.

First let s ∈ S ∩ An, that is s /∈ C and dist(s, C) ≥ 2rmax
n . Consequently p(s + tnS) = 0 for

t < 2rmax
n . On the other hand, if t ≥ 2rmax

n we have dist(s + tnS , y) ≥ 2rmax
n for all y ∈ H−.

Setting cn = 2 exp(−kn/8) we have with Lemma 2 c(s+ tnS , y) ≤ cn for all y ∈ H−. Hence

g(s+ tnS) ≤
∫
B(s+tnS ,rmax

n )∩H−
fqn(dist(s+ tnS , y))c(s+ tnS , y)p(y) dy

+

∫
B(s+tnS ,rmax

n )c∩H−
fqn(dist(s+ tnS , y))c(s+ tnS , y)p(y) dy

≤ fqn (rmax
n )

∫
H−

c(s+ tnS , y)p(y) dy ≤ cnfqn (rmax
n ) ,

since B(s + tnS , r
max
n ) ∩H− = ∅ for t > rmax

n and fn is monotonically decreasing. Therefore, for
all s ∈ S ∩ An

hn(s) =

∫ ∞
0

g (s+ tnS) p (s+ tnS) dt ≤
∫ ∞
2rmax
n

g(s+ tnS)p (s+ tnS) dt

≤ cnfqn (rmax
n )

∫ ∞
0

p (s+ tnS) dt,

and thus

∫
S∩An

hn(s) ds ≤
∫
S∩An

cnf
q
n (rmax

n )

∫ ∞
0

p (s+ tnS) dt ds

≤ cnfqn (rmax
n )

∫
S

∫ ∞
0

p (s+ tnS) dt ds ≤ cnfqn (rmax
n ) .

Now let s ∈ S ∩Rn. Then

g(s+ tnS) =

∫
H−

fqn(dist(s+ tnS , y))c(s+ tnS , y)p(y) dy

≤
∫
B(s+tnS ,rmax

n )∩H−
fqn(dist(s+ tnS , y))c(s+ tnS , y)p(y) dy

+

∫
B(s+tnS ,rmax

n )c∩H−
fqn(dist(s+ tnS , y))c(s+ tnS , y)p(y) dy

≤ pmax

∫
B(s+tnS ,rmax

n )∩H−
fqn(dist(s+ tnS , y)) dy + cnf

q
n (rmax

n ) .
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Considering that B(s+ tnS , r
max
n ) ∩H− = ∅ for t > rmax

n and therefore the first integral vanishes
in this case, we have for all s ∈ S ∩Rn

hn(s) =

∫ ∞
0

g (s+ tnS) p (s+ tnS) dt

≤
∫ rmax

n

0

pmax

∫
B(s+tnS ,rmax

n )∩H−
fqn(dist(s+ tnS , y)) dy p (s+ tnS) dt

+ cnf
q
n (rmax

n )

∫ ∞
0

p (s+ tnS) dt

≤ p2max

∫ rmax
n

0

∫
B(s+tnS ,rmax

n )∩H−
fqn(dist(s+ tnS , y)) dy dt

+ cnf
q
n (rmax

n )

∫ ∞
0

p (s+ tnS) dt

≤ p2maxF
(q)
C (rmax

n ) + cnf
q
n (rmax

n )

∫ ∞
0

p (s+ tnS) dt,

and thus ∫
S∩Rn

hn(s) ds ≤
∫
S∩Rn

p2maxF
(q)
C (rmax

n ) + cnf
q
n (rmax

n )

∫ ∞
0

p (s+ tnS) dt ds

≤ p2maxF
(q)
C (rmax

n )Ld−1 (S ∩Rn) + cnf
q
n (rmax

n ) .

For some weight functions, for example the Gaussian, it is preferable to use that for all x ∈ Rd
and all radii r∫

B(x,r)c∩H−
fqn(dist(x, y))c(x, y)p(y) dy ≤ pmax

∫
B(x,r)c

fqn(dist(x, y)) dy

= pmax

(∫
Rd
fqn(dist(x, y)) dy −

∫
B(x,r)

fqn(dist(x, y)) dy

)
= pmax

(
F

(q)
B (∞)− F (q)

B (r)
)
.

We have according to Lemma 11 Ld−1 (S ∩Rn) = O(rmax
n ). Consequently, using rmax

n = O( d
√
kn/n)

and plugging in cn∣∣∣∣∫
S

hn(s) ds−
∫
S∩In

hn(s) ds

∣∣∣∣
= O

(
F

(q)
C (rmax

n )
d

√
kn
n

+ min

{
exp (−kn/8) fqn

(
inf
x∈C

rn(x)

)
,
(
F

(q)
B (∞)− F (q)

B (rmax
n )

)})
.

Now we consider the term in Equation (6). In the following, note that with ξn = 2p′maxr
max
n /pmin

we have for all x ∈ C with B(x, 2rmax
n ) ⊆ C and y ∈ B(x, 2rmax

n )

(1− ξn)p(x) ≤ p(y) ≤ (1 + ξn)p(x).

We assume that n is sufficiently large such that ξn < 1/2.

For any s ∈ S ∩ In and any t ≥ 0 we have

g(s+ tnS) =

∫
H−

fqn(dist(s+ tnS , y))c(s+ tnS , y)p(y) dy

≥
∫
B(s+tnS ,r

−
n (s))∩H−

fqn(dist(s+ tnS , y))c(s+ tnS , y)p(y) dy.
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If t > r−n (s) we use the trivial bound g(s + tnS) ≥ 0. Otherwise we have with Lemma 2 for
all y ∈ B(s + tnS , r

−
n (s)) ∩ H− that c(s + tnS , y) ≥ 1 − an with an = 6 exp

(
−δ2nkn/3

)
. Using,

furthermore, the bound p(y) ≥ (1− ξn)p(s) we obtain

g(s+ tnS) ≥
∫
B(s+tnS ,r

−
n (s))∩H−

fqn(dist(s+ tnS , y))(1− an)(1− ξn)p(s) dy

= (1− an)(1− ξn)p(s)

∫
B(s+tnS ,r

−
n (s))∩H−

fqn(dist(s+ tnS , y)) dy.

That is, we obtain for s ∈ In

hn(s) =

∫ ∞
0

g (s+ tnS) p (s+ tnS) dt ≥
∫ r−n (s)

0

g (s+ tnS) p (s+ tnS) dt

≥ (1− ξn)p(s)

∫ r−n (s)

0

g (s+ tnS) dt

≥ (1− an)(1− ξn)2p2(s)

∫ r−n (s)

0

∫
B(s+tnS ,r

−
n (s))∩H−

fqn(dist(s+ tnS , y)) dy dt

≥ (1− an)(1− ξn)2p2(s)F
(q)
C

(
r−n (s)

)
.

where in the last inequality we have applied Lemma 3.

Therefore ∫
S∩In

hn(s) ds ≥ (1− an)(1− ξn)2
∫
S∩In

p2(s)F
(q)
C

(
r−n (s)

)
ds

≥ (1− an)(1− ξn)2
∫
S∩In

p2(s)F
(q)
C (rn(s)) ds

−
∫
S∩In

p2(s)
(
F

(q)
C (rn(s))− F (q)

C

(
r−n (s)

))
ds

≥
∫
S∩In

p2(s)F
(q)
C (rn(s)) ds− (an + ξn)

∫
S∩In

p2(s)F
(q)
C (rn(s)) ds

− p2max

∫
S∩In

(
F

(q)
C (rn(s))− F (q)

C

(
r−n (s)

))
ds,

and thus ∫
S∩In

hn(s) ds−
∫
S∩In

p2(s)F
(q)
C (rn(s)) ds

≥ −(an + ξn)

∫
S∩In

p2(s)F
(q)
C (rn(s)) ds

− p2maxLd−1(S ∩ C) sup
s∈S∩In

(
F

(q)
C

(
r+n (s)

)
− F (q)

C (rn(s))
)
. (8)

Now, we want to find an upper bound on g(s+ tnS) for s ∈ S ∩ In, that is B(s, 2rmax
n ) ⊆ C. We

use the following decomposition

g(s+ tnS) =

∫
H−

fqn(dist(s+ tnS , y))c(s+ tnS , y)p(y) dy

≤
∫
B(s+tnS ,r

+
n (s))∩H−

fqn(dist(s+ tnS , y))c(s+ tnS , y)p(y) dy

+

∫
B(s+tnS ,r

+
n (s))c∩H−

fqn(dist(s+ tnS , y))c(s+ tnS , y)p(y) dy.
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We use in the first term the trivial bound c(s+tnS , y) ≤ 1 and in the second term the monotonicity
of fn and the bound bn = 6 exp(−δ2nkn/4) on the probability of connectedness when the distance
is greater than r+n (s) from Lemma 2 to obtain

g(s+ tnS) ≤
∫
B(s+tnS ,r

+
n (s))∩H−

fqn(dist(s+ tnS , y))p(y) dy

+ bnf
q
n

(
r+n (s)

) ∫
B(s+tnS ,r

+
n (s))c∩H−

p(y) dy

≤
∫
B(s+tnS ,r

+
n (s))∩H−

fqn(dist(s+ tnS , y))p(y) dy + bnf
q
n

(
r+n (s)

)
.

Using a bound on the density in the balls B(s+ tnS , r
+
n (s)) we obtain

g(s+ tnS) ≤ (1 + ξn)p(s)

∫
B(s+tnS ,r

+
n (s))∩H−

fqn(dist(s+ tnS , y)) dy + bnfn
(
r+n (s)

)
,

and observe that g(s+tnS) ≤ bnfqn(r+n (s)) if t > r+n (s) since in this case B(s+tnS , r
+
n (s))∩H− = ∅.

That is,

hn(s) =

∫ ∞
0

g (s+ tnS) p (s+ tnS) dt

≤
∫ r+n (s)

0

(1 + ξn)p(s)

∫
B(s+tnS ,r

+
n (s))∩H−

fqn(dist(s+ tnS , y)) dy p (s+ tnS) dt

+

∫ ∞
0

bnf
q
n

(
r+n (s)

)
p (s+ tnS) dt

≤ (1 + ξn)2p2(s)

∫ r+n (s)

0

∫
B(s+tnS ,r

+
n (s))∩H−

fqn(dist(s+ tnS , y)) dy dt

+ bnf
q
n

(
r+n (s)

) ∫ ∞
0

p (s+ tnS) dt

= (1 + ξn)2p2(s)F
(q)
C

(
r+n (s)

)
+ bnf

q
n

(
r+n (s)

) ∫ ∞
0

p (s+ tnS) dt

Therefore, considering that ξn < 1/2

∫
S∩In

hn(s) ds ≤ (1 + ξn)2
∫
S∩In

p2(s)F
(q)
C

(
r+n (s)

)
ds

+ bn

∫
S∩In

fqn
(
r+n (s)

) ∫ ∞
0

p (s+ tnS) dt ds

≤ (1 + 3ξn)

∫
S∩In

p2(s)F
(q)
C (rn(s)) ds

+ 3

∫
S∩In

p2(s)
(
F

(q)
C

(
r+n (s)

)
− F (q)

C (rn(s))
)

ds

+ bnf
q
n

(
inf

s∈S∩C
r+n (s)

)
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Consequently, ∫
S∩In

hn(s) ds−
∫
S∩In

p2(s)F
(q)
C (rn(s)) ds

≤ 3p2max sup
s∈S∩In

(
F

(q)
C

(
r+n (s)

)
− F (q)

C (rn(s))
)
Ld−1(S ∩ C)

+ 3ξn

∫
S∩In

p2(s)F
(q)
C (rn(s)) ds+ bnf

q
n

(
inf

s∈S∩C
r+n (s)

)
(9)

Similarly to the remark above, using the boundedness of the density p, we can replace bnf
q
n (infs∈S∩C r+n (s))

by

pmax

(
F

(q)
B (∞)− F (q)

B ( inf
s∈S∩C

rn(s))

)
,

which gives a better bound for some weight functions, especially the Gaussian.

Combining Equation (8) and Equation (9), using the monotonicity of F
(q)
C and f we obtain∣∣∣∣∫

S∩In
hn(s) ds−

∫
S∩In

p2(s)F
(q)
C (rn(s)) ds

∣∣∣∣
= O

(
sup

s∈S∩In

(
F

(q)
C

(
r+n (s)

)
− F (q)

C

(
r−n (s)

)))
+O

(
(an + ξn)F

(q)
C (rmax

n ) + min

{
bnf

q
n

(
inf
x∈C

rn(s)

)
, F

(q)
B (∞)− F (q)

B ( inf
x∈C

rn(x))

})
.

We still have to bound the first term. For some weight functions, especially the Gaussian, we have

sup
s∈S∩In

(
F

(q)
C

(
r+n (s)

)
− F (q)

C

(
r−n (s)

))
≤ F (q)

C (∞)− F (q)
C

(
inf
x∈C

r−n (x)

)
.

For the other weight functions we use

F
(q)
C

(
r+n (s)

)
− F (q)

C

(
r−n (s)

)
=

∫ r+n (s)

0

udfqn(u) du−
∫ r−n (s)

0

udfqn(u) du

≤ fqn
(
r−n (s)

) ∫ r+n (s)

r−n (s)

ud du =
1

d+ 1
fqn
(
r−n (s)

) ((
r+n (s)

)d+1 −
(
r−n (s)

)d+1
)

=
1

d+ 1
fqn
(
r−n (s)

)
rd+1
n (s)

((
r+n (s)

rn(s)

)d+1

−
(
r−n (s)

rn(s)

)d+1
)
.

Since, with ξn < 1/2 and δn < 1,(
r+n (s)

rn(s)

)d+1

=

(
(1 + 2ξn)(1 + 2δn)kn

(n− 1)p(s)ηd

(n− 1)p(s)ηd
kn

)1+1/d

= ((1 + 2ξn)(1 + 2δn))
1+1/d ≤ 1 + 54ξn + 8δn

and a similar bound holds for the other quotient we have

F
(q)
C

(
r+n (s)

)
− F (q)

C

(
r−n (s)

)
= O

(
(ξn + δn)fqn

(
inf
x∈C

r−n (x)

)
(rmax
n )

d+1

)
.

With our choice of δn we have, considering that δ0 ≥ 2,

an = 6 exp
(
−δ2nkn/3

)
= 6 exp (−(8δ0 log n)/3) ≤ 6 exp (−5 log n) = 6/n5,



24 TITLE WILL BE SET BY THE PUBLISHER

that is, for n sufficiently large such that 6/n5 ≤ ξn, considering that ξn = O( d
√
kn/n and plugging

in bn we have∣∣∣∣∫
S∩In

hn(s) ds−
∫
S∩In

p2(s)F
(q)
C (rn(s)) ds

∣∣∣∣
= O

(
min

{(
d

√
kn
n

+ δn

)
fqn

(
inf
x∈C

r−n (x)

)
(rmax
n )

d+1
, F

(q)
C (∞)− F (q)

C

(
inf
x∈C

r−n (x)

)})

+O

(
d

√
kn
n
F

(q)
C (rmax

n ) + min

{
exp

(
−δ2n

kn
4

)
fqn

(
inf
x∈C

rn(s)

)
, F

(q)
B (∞)− F (q)

B ( inf
x∈C

rn(x))

})

Finally, we bound the term in Equation (7). Setting R′n = C \ In we have∣∣∣∣∫
S∩In

p2(s)F
(q)
C (rn(s)) ds−

∫
S∩C

p2(s)F
(q)
C (rn(s)) ds

∣∣∣∣ =

∫
S∩R′n

p2(s)F
(q)
C (rn(s)) ds

≤ p2maxF
(q)
C

(
max
x∈C

rn(x)

)
Ld−1 (S ∩R′n) ≤ p2maxF

(q)
C

(
max
x∈C

rn(x)

)
Ld−1 (S ∩Rn) .

Using Lemma 11 we have Ld−1 (S ∩Rn) = O(rmax
n ), and thus∣∣∣∣∫

S∩In
p2(s)F

(q)
C (rn(s)) ds−

∫
S∩C

p2(s)F
(q)
C (rn(s)) ds

∣∣∣∣ = O

(
F

(q)
C

(
max
x∈C

rn(x)

)
d

√
kn
n

)
.

Deriving the same bounds for the other halfspace and collecting the three bounds we obtain the
result, considering that kn/8 ≥ δ2nkn/8, δ2nkn/4 ≥ δ2nkn/8 and rmax

n ≥ maxx∈C rn(x) due to the

monotonicity of F
(1)
C .

Finally, we discuss the choice of δn. With this choice of δn we have exp
(
−δ2nkn/8

)
= n−δ0 . Note

that this is the fastest convergence rate of δn for which the exponential term converges polynomially
in 1/n, which we will need in the proof of the following corollaries. In all the other terms above
δn has to be chosen as small as possible, so this is the best convergence rate for δn. Note further
that for this choice of δn we require kn/ log n→∞, since δn has to converge to zero.

Now we proof the bound for the variance term. According to Corollary 3.2.3 from Miller et al.
(1997) the maximum degree of the symmetric kn-nearest neighbor graph is bounded by (τd +
1)kn, where τd denotes the kissing number in dimension d, that is, the maximum number of unit
hypershpheres that touch another unit hypersphere without any intersections.

Thus, removing a point from the graph and inserting it in a different place the number of (undi-
rected) edges in the cut can change by at most 2(τd + 1). Since we count undirected edges twice
we obtain for all types of k-nearest neighbor graphs∣∣∣cutn− cut(i)n

∣∣∣ ≤ 4(τd + 1)knfn(0),

where cut
(i)
n denotes the value of the cut in a graph where exactly one point has been moved to a

different place. Thus by McDiarmid’s inequality for a suitable constant C̃ > 0

Pr
(∣∣∣cutn−E

(
cut(i)n

)∣∣∣ > ε
)
≤ 2 exp

(
− 2ε2

n (4(τd + 1)knfn(0))
2

)
= 2 exp

(
− C̃ε2

nk2nf
2
n(0)

)
.

�

The following lemma states bounds on c(x, y), that is the probability of edges between points at x
and y, in the cases that we need in the convergence proofs for the cut and the volume.
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Lemma 2 (kNN radii). Let Gn be the directed, mutual or symmetric kn-nearest neighbor graph.
Let kn/n be sufficiently small such that rmax

n ≤ rγ . Then, if x, y ∈ Rd and dist(x, y) ≥ rmax
n we

have c(x, y) ≤ 2 exp (−kn/8).

Set ξn = 2p′maxr
max
n /pmin and define In = {s ∈ C | B(s, 2rmax

n ) ⊆ C}. Let n be sufficiently large
such that ξn < 1/2 and let δn ∈ (0, 1) with δn → 0 for n → ∞ and knδn > 1 for sufficiently large
n.

Let x = s+tnS with s ∈ In∩S. If t ∈ R≥0 and y ∈ H− or t ∈ R≤0 and y ∈ H+, and, furthermore,
dist(x, y) ≥ r+n (s) then c(x, y) ≤ 6 exp

(
−δ2nkn/4

)
. The same holds for x ∈ In and y ∈ C with

dist(x, y) ≥ r+n (x).

Let x = s+tnS with t ∈ [0, r−n (s)] and y ∈ H− or t ∈ [−r−n (s), 0] and y ∈ H+. If dist(x, y) ≤ r−n (s)
then c(x, y) ≥ 1− 6 exp

(
−δ2nkn/3

)
. The same holds for x ∈ In and y ∈ C with dist(x, y) ≤ r−n (x).

Proof. We first show bounds on the probability of connectedness for the directed k-nearest neighbor
graph. These are used in the second part of this proof in order to show bounds for the undirected
graph as well. Let Dij denote the event that there exists an edge between xi and xj in the directed
k-nearest neighbor graph.

First we show the statement concerning the maximal k-nearest neighbor radius. For any x ∈ C we
have, plugging in the definition of rmax

n , and using the assumptions that the density p is bounded
from below on C and that for balls of a sufficiently small radius around points in C at least a
proportion of γ of the volume of the ball is within C,

µ(B(x, rmax
n ) = µ

(
B

(
x, d

√
4

γpminηd

kn
n− 1

))
≥ pminLd

(
B

(
x, d

√
4

γpminηd

kn
n− 1

)
∩ C

)

≥ pminγLd

(
B

(
x, d

√
4

γpminηd

kn
n− 1

))
= pminγ

4

γpminηd

kn
n− 1

ηd =
4kn
n− 1

.

Now suppose we fix x1 and x2 with dist(x1, x2) ≥ rmax
n . If U denotes the random variable that

counts the number of points x3, . . . , xn in B(x1, r
max
n ) we have U ∼ Bin(n − 2, µ(B(x1, r

max
n ))).

Setting V ∼ Bin(n − 2, 4kn/(n − 1)), we certainly have 0 < kn/(n − 2) < 4kn/(n − 1) for n ≥ 3
and thus we obtain with a tail bound for the binomial distribution from Srivastav and Stangier
(1996), which was first proved in Angluin and Valiant (1979),

Pr (D12) = Pr (U < kn) ≤ Pr (V < kn) ≤ exp

−1

2

(
(n− 2) 4kn

n−1 − kn
)2

(n− 2) 4kn
n−1

 ≤ exp

(
−kn

8

)
.

In the following we show the statements concerning the upper bound r+n (s) on the k-nearest
neighbor radii of points in regions of relatively homogeneous density. The proof for the lower
bound r−n (s) is similar and is therefore omitted. Note, however, that the technical condition
δnkn > 1 is needed for this case.

First we show how we can bound the density in the balls B(s, 2rmax
n ): For any z ∈ B(s, 2rmax

n ) we
have by Taylor’s theorem, using the assumptions on differentiability of p,

p(s)− 2p′maxr
max
n ≤ p(y) ≤ p(s) + 2p′maxr

max
n ,

and thus, with ξn = 2p′maxr
max
n /pmin,

(1− ξn)p(s) ≤ p(y) ≤ (1 + ξn)p(s).

These bounds are used below to bound the probability mass of balls within B(s, 2rmax
n ).



26 TITLE WILL BE SET BY THE PUBLISHER

Now, we bound the probability mass in B(x,dist(x, y)) and B(y,dist(x, y)) from below, when
dist(x, y) ≥ r+n (s). We first observe that, for ξn < 1/2, δn < 1, and using the lower bound on p,

r+n (s) = d

√
(1 + 2ξn)(1 + δn)kn

(n− 1)p(s)ηd
≤ d

√
4kn

(n− 1)γpminηd
= rmax

n .

Suppose t = dist(x, s) ≤ r+n (s). Then

µ (B(x, dist(x, y))) ≥ µ
(
B(x, r+n (s))

)
with B(x, r+n (s)) ⊆ B(s, 2rmax

n ). If t = dist(x, s) > r+n (s) we know that dist(x, y) > dist(x, s),
since x and y are on different sides of the hyperplane S. We set x′ = s + r+n (s)nS , that is
the point on the line connecting s and x with distance r+n (s) from s. Then, by construction,
B(x′, r+n (s)) ⊆ B(s, 2rmax

n ) and B(x′, r+n (s)) ⊆ B(x, dist(x, s)). Thus

µ (B(x, dist(x, y))) ≥ µ (B(x,dist(x, s))) ≥ µ
(
B(x′, r+n (s))

)
.

Now we consider balls around the other point y. First, suppose dist(y, s) = r+n (s). Then

µ (B(y,dist(x, y))) ≥ µ
(
B(y, r+n (s))

)
with B(y, r+n (s)) ⊆ B(s, 2rmax

n ).

If dist(y, s) > r+n (s) we set y′ = s+(y−s)/‖y−s‖, that is the point on the line connecting s and y
with distance r+n (s) from s. Then, by construction, B(y′, r+n (s)) ⊆ B(s, 2rmax

n ) and B(y′, r+n (s)) ⊆
B(y,dist(y, s)). Since x and y are on different sides of S we have dist(y, s)) ≤ dist(y, x). Therefore

µ (B(y,dist(y, x))) ≥ µ (B(y,dist(y, s))) ≥ µ
(
B(y′, r+n (s))

)
.

We show how to bound µ(B(x, r+n (s))). The same bound can be shown for the probability mass
in B(x′, r+n (s)), B(y, r+n (s)) and B(y′, r+n (s)), since all of these balls lie in B(s, 2rmax

n ). We have,
since ξn < 1/2,

µ
(
B(x, r+n (s))

)
≥ (1− ξn)p(s)ηd

(
r+n (s))

)d
= (1− ξn)p(s)ηd

(1 + 2ξn)(1 + δn)kn
(n− 1)p(s)ηd

= (1− ξn)(1 + 2ξn)(1 + δn)
kn
n− 1

≥ (1 + δn)
kn
n− 1

.

Let U+
x ∼ Bin (n− 2, µ (B(x, r+n (s)))) and V +

x ∼ Bin (n− 2, (1 + δn)kn/(n− 1)). Then, we have
for (n− 2)δn > 1

0 ≤ kn
n− 2

=

(
1 +

1

n− 2

)
kn
n− 1

< (1 + δn)
kn
n− 1

and thus, by the tail bound from Angluin and Valiant (1979),

Pr(D12) = Pr
(
U+
x < k

)
≤ Pr

(
V +
x < k

)
≤ exp

−1

2

(
(n− 2)(1 + δn) kn

n−1 − kn
)2

(n− 2)(1 + δn) kn
n−1

 .

We have (
(n− 2)(1 + δn)

kn
n− 1

− kn
)2

=

((
1− 1

n− 1

)
(1 + δn)kn − kn

)2

=

(
δnkn −

1 + δn
n− 1

kn

)2

≥ δ2nk2n − 2δn(1 + δn)
kn
n− 1

kn ≥ δ2nk2n − 4δnkn
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and

(n− 2)(1 + δn)
kn
n− 1

=

(
1− 1

n− 1

)
(1 + δn)kn ≤ 2kn,

and thus, using δn < 1,

Pr(D12) ≤ exp

(
−δ

2
nk

2
n − 4δnkn

4kn

)
≤ exp

(
−δ

2
nkn
4

+ δn

)
≤ 3 exp

(
−δ

2
nkn
4

)
.

This analysis can be carried over to the case t > r+n (s)) and the same bound holds.

The same bound holds also for Pr(D21), since the same bounds for the probability mass in the
balls B(y, r+n (s)) and B(y′, r+n (s)) hold.

In the final step of the proof we use the results derived so far to show the results for the undirected
k-nearest neighbor graphs. For the mutual kNN graph we have by definition Pr (C12) = Pr (C21) =
Pr (D12 ∩D21). Thus, clearly, Pr (C12) ≤ Pr (D12) and

Pr (C12) = Pr (D12 ∩D21) = 1− Pr (Dc
12 ∪Dc

21) ≥ 1− Pr (Dc
12)− Pr (Dc

21)

= 1− (1− Pr (D12))− (1− Pr (D21)) = Pr (D12) + Pr (D21)− 1.

This implies

Pr (D12 | x1 = x, x2 = y) + Pr (D21 | x1 = x, x2 = y)− 1

≤ Pr (C12 | x1 = x, x2 = y) ≤ Pr (D12 | x1 = x, x2 = y) .

For the symmetric kNN graph we have Pr (C12) = Pr (C21) = Pr (D12 ∪D21), which implies
Pr (C12) ≥ Pr (D12) and by a union bound Pr (C12) ≤ Pr (D12) + Pr (D21). Therefore

Pr (D12 | x1 = x, x2 = y) ≤ Pr (C12 | x1 = x, x2 = y)

≤ Pr (D12 | x1 = x, x2 = y) + Pr (D21 | x1 = x, x2 = y) .

Thus, using the worse out of the two possible bounds we obtain for both undirected kNN graph
types

Pr (D12 | x1 = x, x2 = y) + Pr (D21 | x1 = x, x2 = y)− 1 ≤ Pr (C12 | x1 = x, x2 = y)

≤ Pr (D12 | x1 = x, x2 = y) + Pr (D21 | x1 = x, x2 = y) .

Plugging in the results for Pr(D12) and Pr(D21) in the cases studied above, we obtain the result.

�

Lemma 3. (Integral over caps) Let the general assumptions hold and let f : R≥0 → R≥0 be a
monotonically decreasing function and s ∈ S. Then we have for any R ∈ R>0∫ R

0

∫
B(s+tnS ,R)∩H−

f(dist(s+ tnS , y)) dy dt = ηd−1

∫ R

u=0

udf(u) du

and ∫ 0

−R

∫
B(s+tnS ,R)∩H−

f(dist(s+ tnS , y)) dy dt = ηd−1

∫ R

u=0

udf(u) du
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Proof. By a translation and rotation of our coordinate system in Rd such that s+ tnS is the origin
and −nS the first coordinate axis we obtain for t ≥ 0∫

B(s+tnS ,R)∩H−
f(dist(s+ tnS , y)) dy =

∫
B(0,R)∩{z1≥t}

f(dist(0, z)) dz

=

∫ R

z1=t

∫
{z22+...+z2d≤R2−z21}

f(dist(0, z)) dzd . . . dz2 dz1

=

∫ R

z1=t

∫
{z22+...+z2d≤R2−z21}

f

(√
z21 + . . .+ z2d

)
dzd . . . dz2 dz1

=

∫ R

z1=t

A(z1) dz1,

where we have set

A(r) =

∫
{z22+...+z2d≤R2−r2}

f

(√
r2 + z22 + . . .+ z2d

)
dzd . . . dz2.

Thus, ∫ R

t=0

∫
B(s+tnS ,R)∩H−

f(dist(s+ tnS , y)) dy dt =

∫ R

t=0

∫ R

r=t

A(r) dr dt

=

∫ R

r=0

∫ r

t=0

A(r) dt dr =

∫ R

r=0

A(r)

∫ r

t=0

dt dr =

∫ R

r=0

rA(r) dr

Similarly, by the same translation and a rotation such that nS is the first coordinate axis we obtain
for t < 0 ∫

B(s+tnS ,R)∩H+

f(dist(s+ tnS , y)) dy =

∫
B(0,R)∩{z1≥−t}

f(dist(0, z)) dz

=

∫ R

z1=−t
A(z1) dz1,

that is, ∫ 0

−R

∫
B(s+tnS ,R)∩H−

f(dist(s+ tnS , y)) dy dt =

∫ 0

t=−R

∫ R

r=−t
A(r) dr dt

=

∫ R

r=0

∫ 0

t=−r
A(r) dt dr =

∫ R

r=0

A(r)

∫ 0

t=−r
dt dr =

∫ R

r=0

rA(r) dr.

Therefore, both the integrals we want to compute are equal to
∫ R
r=0

rA(r) dr which we will treat
in the following. First we are going to compute the (d − 1)-dimensional integral A(r). Setting

f̃r(s) = f(
√
r2 + s2) we can write A(r) as the following integral in Rd−1:

A(r) =

∫
{x2

1+...+x
2
d−1≤R2−r2}

f
(√

r2 + x21 + . . .+ x2d−1

)
dxd−1 . . . dx1

=

∫
‖x‖≤

√
R2−r2

f̃r(‖x‖) dx =

∫ √R2−r2

0

(d− 1)ηd−1s
d−2f̃r(s) ds

= (d− 1)ηd−1

∫ √R2−r2

0

sd−2f
(√

r2 + s2
)

ds.
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Plugging in this expression for A(r) we obtain

∫ R

r=0

rA(r) dr = (d− 1)ηd−1

∫ R

r=0

∫ √R2−r2

s=0

rsd−2f
(√

r2 + s2
)

ds dr.

Substituting with polar coordinates (r, s) = (u cos θ, u sin θ) with u ∈ [0, R] and θ ∈ [0, π/2], we
have ∫ R

r=0

∫ √R2−r2

s=0

rsd−2f
(√

r2 + s2
)

ds dr

=

∫ R

u=0

∫ π/2

θ=0

u cos θud−2 sind−2 θf(u)u dθ du

=

∫ R

u=0

udf(u)

∫ π/2

θ=0

cos θ sind−2 θ dθ du

=

∫ R

u=0

udf(u)

[
1

d− 1
sind−1 θ

]π/2
θ=0

du =
1

d− 1

∫ R

u=0

udf(u) du

Combining the last two equations we obtain∫ R

r=0

rA(r) dr = ηd−1

∫ R

u=0

udf(u) du.

Note that the integral exists due to the monotonicity of f and the compactness of the interval
[0, R]. �

Corollary 1. (Unweighted kNN-graph) Let Gn be the unweighted k-nearest neighbor graph and let
fn be the unit weight function. Then∣∣∣∣∣ 1

nkn
d

√
n

kn
cutn−

2ηd−1

(d+ 1)η
1+1/d
d

∫
S

p1−1/d(s) ds

∣∣∣∣∣ = O

(
d

√
kn
n

+

√
log n

kn

)

and, for a suitable constant C̃ > 0

Pr

(∣∣∣∣ 1

nkn
d

√
n

kn
cutn−E

(
1

nkn
d

√
n

kn
cutn

)∣∣∣∣ > ε

)
≤ 2 exp

(
−C̃ε2n1−2/dk2/dn

)
.

Proof. With Lemma 8 we have for any s ∈ S ∩ C, plugging in the definition of rn(s),

F
(1)
C (rn(s)) =

ηd−1
d+ 1

(
kn

(n− 1)p(s)ηd

)1+1/d

=
ηd−1

(d+ 1)η
1+1/d
d

(
kn
n− 1

)1+1/d

p−1−1/d(s).

Therefore,

2

∫
S∩C

p2(s)F
(1)
C (rn(s)) ds = 2

∫
S∩C

p2(s)
ηd−1

(d+ 1)η
1+1/d
d

(
kn
n− 1

)1+1/d

p−1−1/d(s) ds

=

(
kn
n− 1

)1+1/d
2ηd−1

(d+ 1)η
1+1/d
d

∫
S

p1−1/d(s) ds.

Multiplying this term with the factor (kn/(n − 1))−1−1/d we obtain a constant limit. We now
multiply the inequality for the bias term in Proposition 1 with this factor and deal with the error
terms.



30 TITLE WILL BE SET BY THE PUBLISHER

For the first on we derive an upper bound on F
(1)
C (rmax

n ) similarly to above and obtain

(
kn
n− 1

)−1−1/d
F

(1)
C (rmax

n )
d

√
kn
n

= O

(
d

√
kn
n

)
.

For the second error term we have with δ0 = 3 and fn ≡ 1(
kn
n− 1

)−1−1/d
n−δ0fn

(
inf
x∈C

rn(x)

)
≤ n2n−3 = O

(
n−1

)
.

For the last error term we have(
kn
n− 1

)−1−1/d(
d

√
kn
n

+

√
log n

kn

)
fn

(
inf
x∈C

r−n (x)

)(
kn
n

)1+1/d

= O

(
d

√
kn
n

+

√
log n

kn

)
.

Thus, considering that n−1 ≤ d
√
kn/n, we obtain∣∣∣∣∣ 1

nkn

d

√
n− 1

kn
cutn−

2ηd−1

(d+ 1)η
1+1/d
d

∫
S

p1−1/d(s) ds

∣∣∣∣∣
=

(
n− 1

kn

)1+1/d ∣∣∣∣ cutn
n(n− 1)

− 2

∫
S

p2(s)F
(1)
C (rn(s)) ds

∣∣∣∣ = O

(
d

√
kn
n

+

√
log n

kn

)
.

For the variance term we have with Proposition 1 and fn(0) = 1

Pr

(∣∣∣∣ 1

nkn

d

√
n− 1

kn
cutn−E

(
1

nkn

d

√
n− 1

kn
cutn

)∣∣∣∣ > ε

)
= Pr

(
|cutn−E (cutn)| > nkn

d

√
kn
n− 1

ε

)

≤ 2 exp

(
−C̃ ε

2n2k2n(kn/(n− 1))2/d

nk2nf
2
n(0)

)
≤ 2 exp

(
−C̃ε2n1−2/dk2/dn

)
.

Since 1/n = O( d
√
kn/n) we can change d

√
(n− 1)/kn in the scaling factor to d

√
n/kn without

changing the convergence rate.

�

Corollary 2 (Gaussian weights and 1/σn(kn/n)1/d → 0). Let Gn be the k-nearest neighbor graph
with Gaussian weight function and let 1/σn(kn/n)1/d → 0. Then

∣∣∣∣∣E
(
σdn
nkn

d

√
n

kn
cutn

)
−

2ηd−1η
−1−1/d
d

(d+ 1)(2π)d/2

∫
S

p1−1/d(s) ds

∣∣∣∣∣ = O

( 1

σn

d

√
kn
n

)2

+
d

√
kn
n

+

√
log n

kn


and, for a suitable constant C̃ > 0

Pr

(∣∣∣∣ 1

nkn
d

√
n

kn
cutn−E

(
1

nkn
d

√
n

kn
cutn

)∣∣∣∣ > ε

)
≤ 2 exp

(
−C̃ε2n1−2/dk2/dn

)
.

Proof. According to Lemma 9 we have for all s ∈ S ∩ C∣∣∣∣ σqdn
rd+1
n (s)

F
(q)
C (rn(s))− ηd−1

(d+ 1)(2π)qd/2

∣∣∣∣ ≤ 2

(
rn(s)

σn

)2

.
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Plugging in rn(s) = d
√
kn/((n− 1)ηdp(s)) we obtain∣∣∣∣∣σqdn

(
n− 1

kn

)1+1/d

(ηdp(s))
1+1/d

F
(q)
C (rn(s))− ηd−1

(d+ 1)(2π)qd/2

∣∣∣∣∣ ≤ 2

(
1

σn
d

√
kn

(n− 1)ηdp(s)

)2

and therefore∣∣∣∣∣σqdn
(
n− 1

kn

)1+1/d

F
(q)
C (rn(s))−

ηd−1η
−1−1/d
d

(d+ 1)(2π)qd/2
p(s)−1−1/d

∣∣∣∣∣
≤ 2(ηdp(s))

−1−1/d
(

1

σn
d

√
kn

(n− 1)ηdp(s)

)2

≤ C̃1

(
kn
σdnn

)2/d

for a suitable constant C̃1 > 0. Therefore∣∣∣∣∣σdn
(
n− 1

kn

)1+1/d

2

∫
S∩C

p2(s)F
(1)
C (rn(s)) ds−

2ηd−1η
−1−1/d
d

(2π)d/2(d+ 1)

∫
S

p1−1/d(s) ds

∣∣∣∣∣
=

∣∣∣∣∣σdn
(
n− 1

kn

)1+1/d

2

∫
S∩C

p2(s)F
(1)
C (rn(s)) ds− 2

∫
S

p2(s)
ηd−1η

−1−1/d
d

(2π)d/2(d+ 1)
p−1−1/d(s) ds

∣∣∣∣∣
≤ 2

∫
S∩C

p2(s)

∣∣∣∣∣σdn
(
n− 1

kn

)1+1/d

F
(1)
C (rn(s))−

ηd−1η
−1−1/d
d

(2π)d/2(d+ 1)
p−1−1/d(s)

∣∣∣∣∣ ds

≤ 2

∫
S∩C

p2(s)C̃1

(
kn
nσdn

)2/d

ds = 2C̃1

(
kn
nσdn

)2/d

p2maxLd−1 (S ∩ C) .

Now, we consider the error terms of Proposition 1. For the first one we have, using that F
(1)
C (rmax

n ) =

O((rmax
n )d+1/σdn) and, furthermore, rmax

n = O( d
√
kn/(n− 1))

σdn

(
n− 1

kn

)1+1/d

F
(1)
C (rmax

n )
d

√
kn
n

= O

(
σdn

(
n− 1

kn

)1+1/d

σ−dn

(
kn
n− 1

)1+1/d
d

√
kn
n

)
= O

(
d

√
kn
n

)
.

For the second error term we have with δ0 = 4

σdn

(
n− 1

kn

)1+1/d

n−δ0fn

(
inf
x∈C

rn(x)

)
≤ σdnn2n−4

1

(2π)d/2σdn
= O

(
n−2

)
.

For the third error term we have with fn(0) = O(σ−dn ) and the monotonicity of fn

σdn

(
n− 1

kn

)1+1/d
(

d

√
kn
n

+

√
log n

kn

)
fn

(
inf
x∈C

r−n (x)

)(
kn
n

)1+1/d

= O

(
d

√
kn
n

+

√
log n

kn

)
.

For the variance term we have with Proposition 1 and fn(0) = (2π)−d/2σ−dn for a suitable constant

C̃ ′ > 0

Pr

(∣∣∣∣ σdnnkn d

√
n− 1

kn
cutn−E

(
σdn
nkn

d

√
n− 1

kn
cutn

)∣∣∣∣ > ε

)
= Pr

(
|cutn−E (cutn)| > nkn

σdn

d

√
kn
n− 1

ε

)

≤ 2 exp

(
−C̃ ′ ε

2n2k2nσ
−2d
n (kn/(n− 1))2/d

nk2nf
2
n(0)

)
≤ 2 exp

(
−C̃ε2n1−2/dk2/dn

)
,

where we have set C̃ = (2π)dC̃ ′.
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Since 1/n = O( d
√
kn/n) we can change d

√
(n− 1)/kn in the scaling factor to 1/(nkn) d

√
n/kn

without changing the convergence rate. �

Corollary 3 (Gaussian weights and σn(kn/n)−1/d → 0 ). We consider the kNN graph with Gauss-
ian weight function. Let σn(kn/n)−1/d → 0 and nσd+1

n → ∞ for n → ∞. Then there exists a

constant C̃ > 0 such that∣∣∣∣E( 1

n2σn
cutn

)
− 2√

2π

∫
S

p2(s) ds

∣∣∣∣ = O

 d

√
kn
n

+
1

σn
exp

−C̃ ( 1

σn

d

√
kn
n

)2
 .

Furthermore, suppose d
√
kn/n ≥ σαn for an α ∈ (0, 1) and n sufficiently large. Then there exist

non-negative random variables D
(1)
n , D

(2)
n such that∣∣∣∣ cutn

n2σn
− E

(
cutn
n2σn

)∣∣∣∣ = O(σn) +D(1)
n +D(2)

n ,

with Pr(D
(1)
n > ε) ≤ 2 exp(C̃2nσ

d+1
n ε2) for a constant C̃2 > 0, and Pr(D

(2)
n > σn) ≤ 1/n3.

Proof. With Lemma 10 we have for for d
√
kn/n/σn sufficiently large∣∣∣∣ 2

σn

∫
S∩C

p2(s)F
(1)
C (rn(s)) ds− 2√

2π

∫
S

p2(s) ds

∣∣∣∣ ≤ 2

∫
S∩C

p2(s)

∣∣∣∣ 1

σn
F

(1)
C (rn(s))− 1√

2π

∣∣∣∣ ds

= O

exp

− 1

4(pmaxηd)2/d

(
1

σn

d

√
kn
n

)2
 ,

where we use that p and Ld−1(S ∩ C) are bounded.

Now we bound the error terms from Proposition 1 of the other difference∣∣∣∣E( 1

n(n− 1)σn
cutn

)
− 2

σn

∫
S∩C

p2(s)F
(1)
C (rn(s)) ds

∣∣∣∣ .
For the first one we observe that with Lemma 10 we have F

(1)
C (rmax

n ) = O(σn) and therefore

σ−1n F
(1)
C (rmax

n ) d
√
kn/n = O( d

√
kn/n).

For the second one we have with Lemma 10

1

σn

(
F

(1)
B (∞)− F (1)

B ( inf
x∈C

rn(x))

)
= O

 1

σn
exp

− 1

4(pmaxηd)2/d

(
1

σn

d

√
kn
n

)2
 .

For the third error term we observe that if n is sufficiently large such that δn ≤ 1/2 and ξn ≤ 1/4
then for all x ∈ C,

r−n (x) = d

√
(1− 2ξn)(1− δn)kn

(n− 1)p(x)ηd
≥ d

√
kn

4pmaxηdn
.

Then we have with Lemma 10

1

σn

(
F

(1)
C (∞)− F (1)

C ( inf
x∈C

r−n (x))

)
= O

exp

− 1

4(4pmaxηd)2/d

(
1

σn

d

√
kn
n

)2
 .

Now we proof the bound for the variance term. Unfortunately, the bound in Proposition 1 based
on McDiarmid’s inequality does not give good results. Therefore we proof a bound on the variance
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term directly. We set cutn to be the cutn in the complete graph with Gaussian weights on the
sample and we set cutmiss

n to be sum of the weights of the edges that are in the cut but not in the
kNN graph. Then cutn = cutn − cutmiss

n and we have∣∣∣∣ cutn
n(n− 1)σn

− E
(

cutn
n(n− 1)σn

)∣∣∣∣
=

∣∣∣∣ cutn
n(n− 1)σn

− E
(

cutn
n(n− 1)σn

)
−
(

cutmiss
n

n(n− 1)σn
− E

(
cutmiss

n

n(n− 1)σn

))∣∣∣∣
≤
∣∣∣∣ cutn
n(n− 1)σn

− E
(

cutn
n(n− 1)σn

)∣∣∣∣+
cutmiss

n

n(n− 1)σn
+ E

(
cutmiss

n

n(n− 1)σn

)
.

The first deviation term is dealt with in Corollary 8.

We denote with D the event that the k-nearest neighbor radius of all the points is greater than
rmin
n = d

√
kn/(2pmaxηd(n− 1)). One can show similarly to the proof of Lemma 2 that Pr(Dc) ≤

exp(log n−kn/8) and thus Pr(Dc) ≤ 1/n3 for sufficiently large n, since kn/ log n→∞. If D holds,
all the edges in cutmiss

n must have weight lower than fn(rmin
n ), whereas if Dc holds the maximum

edge weight is fn(0). There are n(n− 1) possible edges and thus

E
(

cutmiss
n

n(n− 1)σn

)
≤ 1

n(n− 1)σn
n(n− 1)fn(0) Pr(Dc) +

1

n(n− 1)σn
n(n− 1)fn(rmin

n ) Pr(D)

= O

(
1

σd+1
n

1

n3
+

1

σd+1
n

exp

(
− (rmin

n )2

2σ2
n

))
= O

(
1

n2
+

1

σd+1
n

exp

(
− (rmin

n )2

2σ2
n

))
,

since nσd+1
n →∞ for n→∞.

Under the condition d
√
kn/n ≥ σαn with α ∈ (0, 1) we have for sufficiently large n and a suitable

constant C̃1

1

σd+1
n

exp

(
− (rmin

n )2

2σ2
n

)
≤ 1

σd+1
n

exp
(
−C̃1σ

2(α−1)
n

)
≤ σn,

where we use that the exponential term converges to zero faster than any power of σn.

For the other term we clearly have for n sufficiently large

Pr

(
cutmiss

n

n(n− 1)σn
> σn

)
≤ Pr

(
cutmiss

n

n(n− 1)σn
>

1

σd+1
n

exp

(
− (rmin

n )2

2σ2
n

))
≤ Pr(Dc) ≤ 1

n3
.

Clearly, we can replace n(n − 1) in the scaling factor by n2 without changing the convergence
rate. �

6.2.3. The volume term of the kNN graph

Proposition 4. Let Gn be the k-nearest neighbor graph with a monotonically decreasing weight
function fn and let H = H+ or H = H−. Then∣∣∣∣E( voln(H)

n(n− 1)

)
−
∫
H∩C

F
(1)
B (rn(x)) p2(x) dx

∣∣∣∣
= O

(
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√
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(1)
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n )

)
+O

(
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x∈C
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)
n−δ0 , F (1)

B (∞)− F (1)
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x∈C
rn(x))

})

+O

(
min

{
fqn

(
inf
x∈C

r−n (x)

)(
d

√
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n

+

√
log n

kn

)
kn
n
, F

(1)
B (∞)− F (1)

B

(
inf
x∈C

r−n (x)

)})
.

where we set δn =
√

(4δ0 log n)/kn for a δ0 ≥ 2 in the definition of r−n (x).
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For the variance term we have for a suitable constant C̃ > 0

Pr (|voln(H)− E (voln(H))| > ε) ≤ 2 exp

(
−C̃ ε2

nk2nf
2
n(0)

)
.

Proof. Similarly to the proof of for the cut we define for i, j ∈ {1, . . . , n}, i 6= j the random variable
Wij as

Wij =

{
fn(dist(xi, xj) if xi ∈ H and (xi, xj) edge in Gn

0 otherwise

and then have E (voln(H)) = n(n−1)E(W12). With a function c(x, y) that indicates the probability
of connectedness we obtain

E(W q
12) =

∫
H∩C

∫
C

fqn(dist(x, y))c(x, y)p(y) dy p(x) dx.

Setting Rn = {y ∈ H ∩C | dist(y, ∂(H ∩C)) ≤ 2rmax
n } and In = (H ∩C) \Rn we can decompose

the outer integral into integrals over Rn and In.

First suppose x ∈ Rn and let cn denote a bound on the probability that points in distance at least
rmax
n are connected. Then, using cn ≤ 2 exp (−kn/8) and Lemma 5,∫

C

fqn(dist(x, y))c(x, y)p(y) dy ≤ pmax

∫
B(x,rmax

n )∩C
fqn(dist(x, y)) dy + fqn (rmax

n ) cn

∫
C

p(y) dy

≤ pmaxdηd

∫ rmax
n

0

ud−1fqn(u) du+ 2fqn (rmax
n ) exp (−kn/8)

= pmaxF
(q)
B (rmax

n ) + 2fqn (rmax
n ) exp (−kn/8) .

As was explained in the proof for the cut we can replace the term 2fqn (rmax
n ) exp (−kn/8) by the

term

pmax

(
F

(q)
B (∞)− F (q)

B (rmax
n )

)
,

which is better suited, for example for the Gaussian.

Therefore, using that according to Lemma 11 the volume of Rn is in O(rmax
n ),

∫
Rn

∫
C

fqn(dist(x, y))c(x, y)p(y) dy dx = O

(
d

√
kn
n
F

(q)
B (rmax

n )

)

+O

(
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√
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(
F

(q)
B (∞)− F (q)

B (rmax
n )

)
,
d

√
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n
fqn (rmax

n ) exp (−kn/8)

})
.

For x ∈ In we introduce as in the proof for the cut radii r−n (x) ≤ rmax
n and r+n (x) ≤ rmax

n that
depend on δn and ξn defined there. These radii approximate the true kNN radius. For a lower
bound we obtain∫

C

fqn(dist(x, y))c(x, y)p(y) dy ≥F (q)
B (rn(x)) p(x)− pmax

(
F

(q)
B (rn(x))− F (q)

B

(
r−n (x)

))
−
(
ξn + 6 exp

(
−δ2nkn/3

))
pmaxF

(q)
B (rmax

n ) .

For some weight functions, especially the Gaussian, we can use

F
(q)
B (rn(x))− F (q)

B

(
r−n (x)

)
≤ F (q)

B (∞)− F (q)
B

(
inf
x∈C

r−n (x)

)
,
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whereas for other ones it is better to use

F
(q)
B (rn(x))− F (q)

B

(
r−n (x)

)
= dηd

∫ rn(x)

r−n (x)
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≤ ηdfqn
(
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r−n (x)

)
(ξn + δn) (rmax

n )
d
.

Similarly we obtain an upper bound, with an additional term fqn (infx∈C rn(x)) exp
(
−δ2nkn/4

)
or

pmax(F
(q)
B (∞) − F (q)

B (infx∈C rn(x))) bounding the influence of points that are further away than
r+n (x). Combining the bounds we obtain∣∣∣∣∫

In

∫
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fqn(dist(x, y))c(x, y)p(y) dy −
∫
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(q)
B (rn(x)) p2(x) dx
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(
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d
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B

(
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x∈C

r−n (x)
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+O

(
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{
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(
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rn(x)

)
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(
−δ2nkn/4

)
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(q)
B (∞)− F (q)

B ( inf
x∈C

rn(x))

})
.

Setting δn =
√

(4δ0 log n)/kn we obtain exp
(
−δ2nkn/3

)
≤ n−δ0 and the same for exp

(
−δdnkn/4

)
.

Clearly, for δ0 ≥ 2 we have n−δ0 ≤ ξn and n−δ0 ≤ (ξnr
max
n )d . Thus, with ξn = O(rmax

n ) =

O( d
√
kn/n),∣∣∣∣∫
In

∫
C

fqn(dist(x, y))c(x, y)p(y) dy −
∫
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(q)
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= O
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√
kn
n
F

(q)
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n )

)
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)(
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.

Finally, by finding an upper bound on the integrand and the volume of (H ∩ C) \ In we obtain

∣∣∣∣∫
In
F

(q)
B (rn(x)) p(x) dx−

∫
H∩C

F
(q)
B (rn(x)) p2(x) dx

∣∣∣∣ = O

(
d

√
kn
n
F

(q)
B (rmax

n )

)
.

Combining all the bounds above we obtain the result for the bias term. The bound for the
variance term can be obtained with McDiarmid’s inequality similarly to the proof for the cut in
Proposition 1. �

The following lemma is necessary for the proof of the general theorem for both, the r-graph and
the kNN-graph. It is an elementary lemma and therefore stated without proof.

Lemma 5 (Integration over balls). Let fn : R≥0 → R≥0 be a monotonically decreasing function
and x ∈ Rd. Then we have for any R ∈ R>0∫

B(x,R)

f(dist(x, y)) dy = dηd

∫ R

0

ud−1f(u) du.
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Corollary 4 (Unweighted kNN-graph). Let Gn be the unweighted kNN graph with weight function
fn ≡ 1 and let H = H+ or H = H−. Then we have for the bias term∣∣∣∣voln(H)

nkn
−
∫
H

p(x) dx

∣∣∣∣ = O
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d

√
kn
n
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√
log n
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)
.

and for the variance term for a suitable constant C̃
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.

Proof. With Lemma 8 we have, plugging in the definition of rn(x),∫
H∩C

F
(1)
B (rn(x))p2(x) dx =

∫
H∩C

ηd
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p(x) dx.

Therefore by multiplying the expression in Proposition 4 with (n− 1)/kn we obtain for any δ0 ≥ 2∣∣∣∣voln(H)

nkn
−
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Using F
(1)
B (rmax

n ) ∼ (n− 1)/kn and fn ≡ 1 we obtain∣∣∣∣voln(H)

nkn
−
∫
H

p(x) dx

∣∣∣∣ = O

(
d

√
kn
n

+

√
log n

kn

)
.

For the variance term we use the bound in Proposition 4 and plug in fn(0) = 1. �

Corollary 5 (Gaussian weights and (kn/n)1/d/σn → 0). Consider the kNN graph with Gaussian
weights and (kn/n)1/d/σn → 0. Let H = H+ or H = H−. Then we have for the bias term

∣∣∣∣ σdnnkn voln(H)− 1

(2π)d/2
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and for the variance term, for a suitable constant C̃ > 0,
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Proof. According to Lemma 9 we have for all x ∈ C∣∣∣∣ σqdnrdn(x)
F

(q)
B (rn(x))− ηd
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.

Plugging in rn(x) = d
√
kn/((n− 1)ηdp(x)) and dividing by ηdp(x) we obtain for points in the

support of p ∣∣∣∣σqdn (n− 1
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)
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(2π)qd/2p(x)
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)
.
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Therefore, using the boundedness of p∣∣∣∣σdn(n− 1

kn

) ∫
H∩C

p2(x)F
(1)
B (rn(x)) dx− 1

(2π)d/2
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Now, we consider the error terms from Proposition 4 of the other difference∣∣∣∣ σdnnkn voln(H)− σdn
(
n− 1
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) ∫
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p2(x)F
(1)
B (rn(x)) dx

∣∣∣∣ .
As we have seen above σdn(n− 1)/knF

(1)
B (rmax

n ) can be bounded by a constant. Thus we have for
the first term

σdn
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)
d

√
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n ) = O

(
d

√
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)
.

For the second term we have for n sufficiently large and setting δ0 = 3
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(
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kn

)
fn

(
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)
n−δ0 ≤ σdn
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)
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For the third term we have
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fn
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+

√
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)
σdnfn (0)

=

(
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)
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.

For the variance term we have for a suitable constant C̃ ′ > 0

Pr

(∣∣∣∣ σdnnkn voln(H)− E
(
σdn
nkn

voln(H)
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)
= Pr
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1
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)
= 2 exp

(
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)
,

where we have set C̃ = (2π)dC̃ ′. �

Corollary 6 (Gaussian weights and (kn/n)1/d/σn →∞). Let Gn be the kNN graph with Gaussian

weights. Then for the bias term for a constant C̃1 > 0

∣∣∣∣E(voln(H)

n2

)
−
∫
H

p2(x) dx

∣∣∣∣ = O

 d

√
kn
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+ exp
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(
1

σn

d

√
kn
n

)2
 .

Let, furthermore, d
√
kn/n ≥ σαn for an α ∈ (0, 1) and n sufficiently large. Then there exist non-

negative random variables D
(1)
n , D

(2)
n such that∣∣∣∣voln(H)

n2
− E

(
voln(H)

n2

)∣∣∣∣ = O(σn) +D(1)
n +D(2)

n ,

with Pr(D
(1)
n > ε) ≤ 2 exp(C̃2nσ

d+1
n ε2) for a constant C̃2 > 0, and Pr(D

(2)
n > σn) ≤ 1/n3.
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Proof. With Lemma 10 we have for n sufficiently large such that rn(x)/σn sufficiently large uni-
formly over all x ∈ C∣∣∣∣∫

H∩C
F

(1)
B (rn(x))p2(x) dx−

∫
H

p2(x) dx

∣∣∣∣ ≤ ∫
H∩C

∣∣∣F (1)
B (rn(x))− 1

∣∣∣ p2(x) dx

= O

(
exp

(
− 1

4(pmaxηd)2/d
1

σ2
n

(
kn
n

)2/d
))

.

Now we bound the error terms from Proposition 4 of the other difference∣∣∣∣E( 1

n(n− 1)
voln(H)

)
−
∫
H∩C

p2(x)F
(1)
C (rn(x)) dx

∣∣∣∣ .
For the first error term we use that according to Lemma 10 F

(1)
B (rmax

n ) is bounded by one for n

sufficiently large. Therefore d
√
kn/nF

(1)
B (rmax

n ) = O( d
√
kn/n).

For the second and third error term we observe that if n is sufficiently large such that δn ≤ 1/2
and ξn ≤ 1/4 then

inf
x∈C

rn(x) ≥ inf
x∈C

r−n (x) = inf
x∈C

d

√
(1− 2ξn)(1− δn)kn

(n− 1)p(x)ηd
≥ d

√
kn

4pmaxηdn
,

and therefore, for both, the second and the third error term,

F
(1)
B (∞)− F (1)

B ( inf
x∈C

rn(x)) = O

exp

− 1

4(4pmaxηd)2/d

(
1

σn

d

√
kn
n

)2
 .

The proof of the bound for the variance term is identical to the corresponding part in the proof of
Corollary 3. Therefore, we do not repeat it here.

Clearly, we can replace n(n − 1) in the scaling factor by n2 without changing the convergence
rate. �

6.2.4. The main theorem for the kNN graph

Proof. of Theorem 1 As discussed in Section 6.1 we can study the convergence of the bias and
variance terms of the cut and the volume separately.

For the unweighted graph we have with Corollary 1 that under the condition kn/ log n→∞ the bias

term for the cut is in O( d
√
kn/n +

√
log n/kn). For some ε > 0 the probability that the variance

term exceeds ε is bounded by 2 exp(−C̃ε2n1−2/dk2/dn ) for a suitable constant C̃. Clearly, the bias
term converges to zero under the condition kn/ log n→∞. For the almost sure convergence of the
variance term we need the stricter condition in dimension d = 1. The convergence of the volume-
term follows with Corollary 4, since the requirements for this convergence are weaker. In the case
d ≥ 2 we obtain the optimal rates by equating the two bounds of the bias term and checking that
the variance term converges as well at this rate. In the case d = 1 the optimal rate is determined
by the variance term.

For the kNN-graph with Gaussian weights and rn/σn →∞ we need the stronger condition rn ≥ σαn
for an α ∈ (0, 1) in order to show convergence of both, the bias term and the variance term. Under
this condition we have according to Corollaries 3 and 6 that the bias term of both, the cut and the
volume, is in O(rn), since the exponential term converges as σn.

Furthermore, the almost sure convergence of the variance term can be shown with the Borel-Cantelli
lemma if nσd+1

n / log n→∞ for n→∞.
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For the kNN-graph with Gaussian weights and rn/σn → 0 according to Corollary 2 the bias term

of the cut is in O(rn + (rn/σn)2 +
√

log n/kn). The probability that the variance term of the cut

exceeds an ε > 0 is bounded by 2 exp(−C̃n1−2/dk2/dn ) for a suitable constant C̃, which is the same
expression as in the unweighted case. Therefore, we have almost sure convergence of the cut-term
to zero under the same conditions as for the unweighted kNN graph.

From Corollary 5 we can see that the convergence conditions for the volume are less strict than
that of the cut. �

6.3. The r-graph and the complete weighted graph

This section consists of three parts: In the first one the convergence of the bias and variance term of
the cut is studied, whereas in the second part that convergence is studied for the volume. Combining
these results we can proof the main theorems on the convergence of NCut and CheegerCut for the
r-graph and the complete weighted graph.

Section 6.3.1 and Section 6.3.2 are built up similarly: First, a proposition for a general weight
function is given. The results are stated in terms of the “cap” and “ball” integrals and some
properties of the weight function. Then four corollaries follow, where the general result is applied
to the complete weighted graph with Gaussian weight function and to the r-graph with the specific
weight functions we consider in this paper.

Some words on the proofs: The results on the bias terms for general weight functions can be shown
analogously to the corresponding results for the kNN graph. Since the connectivity in these graphs
given the position of two points is not random they are even simpler. Furthermore, all the error
terms in the result for the kNN graph that are due to the uncertainty in the connectivity radius
can be dropped for the r-graph and the complete weighted graph. Therefore, in the proof of the
bias term of the cut we only discuss the adaptations that are made to the proof of the kNN graph.

As explained in Section 6.1 the situation is different for the variance term, where the convergence
proof for the kNN-graph would lead to suboptimal results when carried over to the other two
graphs. For this reason we give a different proof for the convergence of the variance term in the
proof of the general result for the cut. It can be easily carried over to the volume and thus we
omit it there.

As to the corollaries we only proof two of them: that for the complete weighted graph and that
for the r-graph with Gaussian weights and rn/σn → 0 for n → ∞. The proof of the corollary for
the unweighted graph is very simple, that of the corollary for the r-graph with Gaussian weights
and σn/rn → 0 is identical to the proof for the complete weighted graph where we can ignore one
term.

The proofs in Section 6.3.2 are completely omitted: The general result on the bias term can be
proved analogously to that for the kNN graph, if the adaptations that are discussed in the proof
for the bias term of the cut are made. The general result on the variance term of the volume is
proved analogously to that on the variance term of the cut. The proofs of the corollaries also work
analogously to the corresponding proofs for the cut.

The proofs of the main theorems in Section 6.3.3 collect the bounds of the corollaries and identify
the conditions that have to hold for the convergence of NCut and CheegerCut.

6.3.1. The cut term in the r-graph and the complete weighted graph

Proposition 6 (The cut in the r-neighborhood and the complete weighted graph). Let (rn)n∈N be
a sequence that fulfills the conditions on parameter sequences of the r-neighborhood graph. Let Gn
denote the r-neighborhood graph with parameter rn or the complete weighted graph on x1, . . . , xn
with a monotonically decreasing weight function fn : R≥0 → R≥0. We set

1c =

{
1 if Gn is the complete weighted graph

0 if Gn is the rn-neighborhood graph.
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Then for the bias term∣∣∣∣∣E
(

cutn

n(n− 1)F
(1)
C (rn)

)
− 2

∫
S

p2(s) ds

∣∣∣∣∣ = O

(
rn +

F
(1)
B (∞)− F (1)

B (rn)

F
(1)
C (rn)

1c

)
.

Furthermore, there are constants C̃1, C̃2 such that for the variance term

Pr

(∣∣∣∣∣ cutn

n(n− 1)F
(1)
C (rn)

− E

(
cutn

n(n− 1)F
(1)
C (rn)

)∣∣∣∣∣ ≥ ε
)

≤ 2 exp

− n
(
F

(1)
C (rn)

)2
ε2

C̃1F
(2)
C (rn) + C̃2(F

(2)
B (∞)− F (2)

B (rn))1c + 2εF
(1)
C (rn) fn(0)

 .

Proof. As was said in the introduction we do not give the detailed proof of this proposition here,
since it is similar to the proof of the corresponding proposition for the kNN-graph but simpler:
the radius rn is the same everywhere, that is we can set rmax

n = r+n (s)+ = r−n (s) = rn for all
s ∈ S. Furthermore, the connectivity is not random, that is we can set an = bn = cn = 0 for the
r-neighborhood graph, whereas we set an = 0,bn = 1 and cn = 1 for the complete weighted graph.
We obtain∣∣∣∣E (W q

12)− 2F
(q)
C (rn)

∫
S

p2(s) ds

∣∣∣∣ = O
(
F

(q)
C (rn)rn +

(
F

(q)
B (∞)− F (q)

B (rn)
)

1c

)
,

and thus the result for the bias term immediately.

In order to bound the variance term we use a U -statistics argument. We have

cutn

n(n− 1)F
(1)
C (rn)

=
1

n(n− 1)

n∑
i=1

n∑
j=1

j 6=i

1

F
(1)
C (rn)

Wij .

For the upper bound on the properly rescaled variable Wij clearly

1

F
(1)
C (rn)

Wij ≤
1

F
(1)
C (rn)

fn(0)

and for the variance

Var
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1

F
(1)
C (rn)

Wij

)
= E

( 1

F
(1)
C (rn)

Wij

)2
−(E( 1
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C (rn)

Wij

))2
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1

F
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)2

E
(
W 2
ij

)
.

With a Bernstein-type concentration inequality for U -statistics from Hoeffding (1963) we obtain

Pr

(∣∣∣∣∣ cutn

n(n− 1)F
(1)
C (rn)

− E

(
cutn

n(n− 1)F
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C (rn)
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≤ 2 exp

− bn/2cε2
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(
1
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E
(
W 2
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3
1
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εfn(0)

 ≤ 2 exp

− nε2
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6E
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W 2
ij
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+ 2εF
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C (rn) fn(0)


where we have used bn/2c ≥ n/3 for n ≥ 2

Clearly, for rn → 0 we can find constants (depending on p and S) C̃1 and C̃2 such that for n

sufficiently large 6E(W 2
ij) ≤ C̃1F

(2)
C (rn) + C̃2(F

(2)
B (∞)− F (2)

B (rn))1c. �
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The following corollary can be proved by plugging in the results of Lemma 8 into the bounds of
Proposition 6. We do not give the details here.

Corollary 7 (Unweighted r-graph). For the r-neighborhood graph and the weight function fn = 1
we obtain ∣∣∣∣E( cutn

n2rd+1
n

)
− 2ηd−1
d+ 1

∫
S

p2(s) ds

∣∣∣∣ = O(rn).

and, for a suitable constant C̃ > 0,

Pr
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cutn
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)∣∣∣∣ ≥ ε) ≤ 2 exp
(
−C̃nrd+1

n ε2
)
.

Corollary 8 (Complete weighted graph). Consider the complete weighted graph Gn with Gaussian
weight function. Then we have for the bias term for any α ∈ (0, 1)∣∣∣∣E( cutn

n2σn

)
− 2√

2π

∫
S

p2(s) ds

∣∣∣∣ = O (σαn) .

For the variance term we can find a constant C̃ > 0 such that for n sufficiently large
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− E
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cutn
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(
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n ε2
)
.

Proof. Let rn be a sequence with rn → 0 and rn/σn → ∞ for n → ∞. We use the bound from

Proposition 6 and the fact that F
(1)
C (rn)/σn can be bounded by a constant due to Lemma 10 to

obtain ∣∣∣∣∣E
(

cutn
n(n− 1)σn

)
− 2
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.

On the other hand, using Lemma 10, the boundedness of p and Ld−1(S ∩ C), we have for rn/σn
sufficiently large∣∣∣∣∣2F (1)
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.

Combining these two bounds und using log σn ≤ 0 for n sufficiently large we obtain∣∣∣∣E( cutn
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∫
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Setting rn = σαn we have to show that the exponential term converges as fast. We have
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for n→∞, since xr exp(−x)→ 0 for x→∞ and all r ∈ R.
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For the variance term we have with Proposition 6 and for constants C̃1, C̃2
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With Lemma 10 we have for rn/σn sufficiently large F
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if we choose rn = σαn for α ∈ (0, 1) similarly to above.

For the last term in the denominator we have F
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C (rn) fn(0) = O
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σnσ
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)
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)
. Therefore,

we can find a constant C̃3 > 0 such that
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Since we assume that nσn →∞ for n→∞ we can replace n(n−1) in the scaling factor by n2. �

We do not state the proof of the following corollary, since it is similar to the proof of the last one.
The difference is, that we do not have to consider the 1c-terms, which are zero in the case of the
r-graph.

Corollary 9 (r-graph with Gaussian weights and σn/rn → 0). Let Gn be the r-graph with Gaussian
weight function and let σn/rn → 0 for n→∞. Then we have for the bias term∣∣∣∣E( cutn
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∫
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For the variance term we can find a constant C̃2 > 0 such that
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Corollary 10 (r-graph with Gaussian weights and rn/σn → 0). Consider the r-neighborhood
graph with Gaussian weight function and let rn/σn → 0 for n→∞. Then we can find a constant
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Proof. Multiplying the bound in Proposition 6 with σdnF
(1)
C (rn)/rd+1

n , which can be bounded by a
constant according to Lemma 9, and using 1c = 0 we obtain∣∣∣∣∣E
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On the other hand, by the boundedness of p and Ld−1(S ∩ C), and with Lemma 9∣∣∣∣∣2σdnF (1)
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rd+1
n

∫
S

p2(s) ds− 2ηd−1
(d+ 1)(2π)d/2

∫
S

p2(s) ds

∣∣∣∣∣ = O

(
r2n
σ2
n

)
.

Combining these two bounds we obtain the result for the bias term.

For the variance term we have with Proposition 6 and for a constant C̃1
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With Lemma 9 we obtain F
(2)
C (rn) = O(rd+1

n /σ2d
n ) for sufficiently large n. With the same propo-

sition and plugging in fn(0) we obtain F
(1)
C (rn)fn(0) = O(rd+1

n /σ2d
n ). Plugging in these results

above we obtain the bound for the variance term.

Since we always assume that nrn →∞ for n→∞ we can replace n(n− 1) in the scaling factor by
n2. �

6.3.2. The volume term in the r-graph and the complete weighted graph

The following results are stated without proof: Proposition 7 can be proved analogously to Propo-
sition 4 if the remarks on the difference between the kNN-graph and r-neighborhood graph in the
proof of Proposition 6 are considered. The corollaries can be shown similarly to the corresponding
corollaries in the previous section.

Proposition 7. Let Gn be the rn-neighborhood graph or the complete weighted graph with a weight
function fn and set 1c as in Proposition 6. Then∣∣∣∣∣E

(
voln(H)

n(n− 1)F
(1)
B (rn)

)
−
∫
H

p2(x) dx

∣∣∣∣∣ ≤ O
(
rn +

F
(1)
B (∞)− F (1)

B (rn)

F
(1)
B (rn)

1c

)
.

For the variance term we have
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Corollary 11 (Unweighted graph). For fn ≡ 1 and the rn-neighborhood graph we have∣∣∣∣E(voln(H)
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Corollary 12 (Complete weighted graph with Gaussian weights). Consider the complete weighted
graph with the Gaussian weight function and a parameter sequence σn → 0. Then we have for any
α ∈ (0, 1) ∣∣∣∣E(voln(H)

n2

)
−
∫
H

p2(x) dx

∣∣∣∣ = O (σαn) .

Furthermore there is a constant C̃ ′ > 0 such that

Pr

(∣∣∣∣voln(H)

n2
− E

(
voln(H)

n2

)∣∣∣∣ ≥ ε) ≤ exp
(
−C̃ ′nε2σdn

)
Corollary 13 (r-graph with Gaussian weights and σn/rn → 0). Let Gn be the r-neighborhood
graph with Gaussian weights and let σn/rn → 0 for n → ∞. Then we have for the bias term for
sufficiently large n ∣∣∣∣E(voln(H)

n2

)
−
∫
H

p2(x) dx

∣∣∣∣ = O

(
rn + exp

(
−1

4

r2n
σ2
n

))
.

and for the variance term for a suitable constant C̃ ′ > 0

Pr

(∣∣∣∣voln(H)

n2
− E

(
voln(H)

n2

)∣∣∣∣ ≥ ε) ≤ exp
(
−C̃ ′nε2σdn

)
.

Corollary 14 (r-graph with Gaussian weights and rn/σn → 0). Let Gn be the r-neighborhood
graph with Gaussian weights and let rn/σn → 0 for n → ∞. Then we have for the bias term for
sufficiently large n∣∣∣∣E( σdn

n2rdn
voln(H)

)
− ηd

(2π)d/2

∫
H

p2(x) dx

∣∣∣∣ = O

(
rn +

(
rn
σn

)2
)
.

and for the variance term for a suitable constant C̃ > 0

Pr

(∣∣∣∣ σdnn2rdn
voln(H)− E

(
σdn
n2rdn

voln(H)

)∣∣∣∣ > ε

)
≤ 2 exp

(
−C̃nε2rdn

)
.

6.3.3. The main theorems for the r-graph and the complete weighted graph

Proof. of Theorem 2 As discussed in Section 6.1 we can study the convergence of the bias and
variance terms of the cut and the volume separately.

For the unweighted r-graph we have with Corollary 7 that the bias term of the cut is in O(rn) and

that for ε > 0 we can find a constant C̃ such that the probability that the variance term of the cut
exceeds ε is bounded by 2 exp(−C̃nσd+1

n ε2). Thus the cut-term converges almost surely to zero
for rn → 0 and nrd+1

n / log n → ∞. It follows from Corollary 11 that under these conditions the

vol-term also converges to zero. The best convergence rate for the cut-term is d+3
√

log n/n, which

is achieved setting rn ∼ d+3
√

log n/n. Setting rn in this way the convergence rate of the vol-term

is also d+3
√

log n/n.

For the r-graph with Gaussian weights and rn/σn → ∞ we have with Corollaries 9 and 13 that
the bias term of both, the cut and the volume, is in O(rn + exp(−1/4(rn/σn)2)). Furthermore, we

can find a constant C̃ > 0 such that the probability that the variance term of the cut exceeds an
ε > 0 is bounded by 2 exp(−C̃nσd+1

n ε2). Similarly, the variance term of the volume would converge
almost surely for nσdn/ log n → ∞. This implies almost sure convergence of ∆n to zero under the
condition nσd+1

n / log n→∞ for n→∞.

For the r-graph with Gaussian weights and rn/σn → 0 we have with Corollary 10 a rate of
O(rn+(rn/σn)2) for the bias term of the cut. Furthermore, the probability that the variance term



TITLE WILL BE SET BY THE PUBLISHER 45

exceeds an ε > 0 is bounded by 2 exp(−C̃nε2rd+1
n ) with a constant C̃. Therefore, the cut-term

almost surely converges to zero under the conditions rn → 0 and nrd+1
n / log n→∞. Under these

conditions with Corollary 14 the volume-term also converges to zero. �

Proof. of Theorem 3 As discussed in Section 6.1 we can study the convergence of the bias and
variance terms of the cut and the volume separately.

With Corollaries 8 and 12 we have that the bias term of both, the cut and the volume is in O(σαn)
for any α ∈ (0, 1). Furthermore, the probability that the variance term of the cut exceeds an

ε > 0 is bounded by 2 exp(−C̃ n σd+1
n ε2) with a suitable constant C̃. For the variance term of the

volume the exponent in this bound is only d. Consequently, we have almost sure convergence to
zero under the condition nσd+1

n / log n→∞.

For any fixed α ∈ (0, 1) the optimal convergence rate is achieved setting σn = ((log n)/n)1/(d+1+2α).
Since the variance term has to converge for any α ∈ (0, 1) we choose σn = ((log n)/n)1/(d+3) and
achieve a convergence rate of σαn for any α ∈ (0, 1). �

6.4. The integrals F
(q)
C (r) and the size of the boundary strips

Lemma 8 (Unit weights). Let fn ≡ 1 be the unit weight function. Then for any r > 0

F
(1)
C (r) = F

(2)
C (r) =

ηd−1
d+ 1

rd+1

and

F
(1)
B (r) = F

(2)
B (r) = ηdr

d.

Lemma 9 (Gaussian weights and rn/σn → 0). Let fn denote the Gaussian weight function with
parameter σn and let rn > 0. Then we have for q = 1, 2 for the cap integral∣∣∣∣ σqdnrd+1

n

F
(q)
C (rn)− ηd−1

(d+ 1)(2π)qd/2

∣∣∣∣ ≤ 2

(
rn
σn

)2

For the ball integral F
(q)
B (rn) we have∣∣∣∣σqdnrdn F (q)

B (rn)− ηd
(2π)qd/2

∣∣∣∣ ≤ 3

(
rn
σn

)2

.

Proof. For the “ball integral” we have (with the substitution v = u/rn)

F
(q)
B = dηd

∫ rn

0

ud−1fqn(u) du = dηd

∫ rn

0

ud−1
1

(2π)qd/2σqdn
exp

(
−q

2

u2

σ2
n

)
du

=
dηd

(2π)qd/2σqdn

∫ 1

0

(vrn)d−1 exp

(
−q

2

v2r2n
σ2
n

)
rn dv

=
dηdr

d
n

(2π)qd/2σqdn

∫ 1

0

vd−1 exp

(
−qv

2

2

r2n
σ2
n

)
dv.

Clearly,∫ 1

0

vd−1 exp

(
−qv

2

2

r2n
σ2
n

)
dv ≤

∫ 1

0

vd−1 dv =
1

d

and, on the other hand∫ 1

0

vd−1 exp

(
−qv

2

2

r2n
σ2
n

)
dv ≥ exp

(
−q

2

r2n
σ2
n

)∫ 1

0

vd−1 dv ≥
(

1− q

2

r2n
σ2
n

)
1

d
≥
(

1− r2n
σ2
n

)
1

d
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Therefore, (
1− r2n

σ2
n

)
ηd

(2π)qd/2
≤ σqdn

rdn
F

(q)
B (rn) ≤ ηd

(2π)qd/2
.

Using ηd/
√

2π ≤ 3 we obtain the result for the ball integral. The result for the cap integral is
shown similarly. �

Lemma 10 (Gaussian weights and σn/rn → 0). Let fn denote the Gaussian weight function with

a parameter σn and let rn/σn ≥ 4d. Then we have F
(1)
C (∞) = σn/

√
2π and

∣∣∣∣ 1

σn
F

(1)
C (rn)− 1√

2π

∣∣∣∣ = O

(
exp

(
−1

4

(
rn
σn

)2
))

Furthermore, F
(2)
C (∞) = O(σ1−d

n ) and F
(2)
C (∞)− F (2)

C (rn) = O(σ1−d
n exp

(
−(rn/σn)2/4

)
).

For the ball integral we have under the same conditions F
(1)
B (∞) = 1

∣∣∣F (1)
B (rn)− 1

∣∣∣ = O

(
exp

(
−1

4

(
rn
σn

)2
))

.

Furthermore, F
(2)
B (∞) = O(σ−dn ) and F

(2)
B (∞)− F (2)

B (rn) = O(σ−dn exp
(
−(rn/σn)2/4

)
).

Proof. We have with an integral table, for example in Harris and Stocker (1998), for q = 1, 2∫ ∞
0

xdfqn(x) dx =

∫ ∞
0

xd
1

(2π)qd/2σqdn
exp

(
− q

2σ2
n

x2
)

dx

=
1

(2π)qd/2σqdn

∫ ∞
0

xd exp

(
− q

2σ2
n

x2
)

dx =
1

(2π)qd/2σqdn

Γ(d+1
2 )

2
(

q
2σ2
n

)(d+1)/2

=
Γ(d+1

2 )2(d−1)/2

(2π)qd/2q(d+1)/2
σ(1−q)d+1
n .

This implies for all rn > 0

F
(2)
C (rn) ≤ F (2)

C (∞) = ηd−1

∫ ∞
0

xdfqn(x) dx = O(σ1−d
n ).

For q = 1 we have

F
(1)
C (∞) = ηd−1

∫ ∞
0

xdfn(x) dx =
π(d−1)/2

Γ(d+1
2 )

Γ(d+1
2 )2(d−1)/2

(2π)d/2
σn =

σn√
2π
.

We now bound the error we make, when the integral does not run to ∞ but to rn. We have∫ ∞
rn

xdfqn(x) dx =
1

(2π)qd/2

∫ ∞
rn

xd
1

σqdn
exp

(
−q

2

x2

σ2

)
=

1

(2π)qd/2

∫ ∞
rn/σn

(uσn)d
1

σqdn
exp

(
−q

2
u2
)
σn du =

σ
(1−q)d+1
n

(2π)qd/2

∫ ∞
rn/σn

ud exp
(
−q

2
u2
)

du,

where we applied the substitution u = x/σn.
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We have for rn/σn ≥ 4d∫ ∞
rn/σn

ud exp
(
−q

2
u2
)

du ≤
∫ ∞
rn/σn

exp

(
d log u− 1

2
u2
)

du ≤
∫ ∞
rn/σn

exp

(
du− 1

2
u2
)

du

≤
∫ ∞
rn/σn

exp

(
−1

4
u2
)

du ≤
∫ ∞
rn/σn

u

2
exp

(
−1

4
u2
)

du = exp

(
−1

4

(
rn
σn

)2
)
.

For the ball integral we have with the substitution v = u/σn

F
(q)
B (∞) = dηd

∫ ∞
0

ud−1
1

(2π)qd/2σqdn
exp

(
−q

2

u2

σ2

)
du

= dηd

∫ ∞
0

(σnv)d−1
1

(2π)qd/2σqdn
exp

(
−q

2
v2
)
σn dv =

dηd
(2π)qd/2

σ(1−q)d
n

∫ ∞
0

vd−1 exp
(
−q

2
v2
)

dv

=
dηd

(2π)qd/2
σ(1−q)d
n

Γ(d/2)

2(q/2)d/2
= σ(1−q)d

n

d

2qd/2πqd/2
πd/2

Γ(d/2 + 1)

Γ(d/2)

2(q/2)d/2

= σ(1−q)d
n π(1−q)d/22(1−q)d/2,

since Γ(d/2 + 1) = d/2Γ(d/2).

We have, again with the substitution v = u/σn and for rn/σn ≥ 1

dηd

∫ ∞
rn

ud−1
1

(2π)qd/2σqdn
exp

(
−q

2

u2

σ2

)
du

= dηd

∫ ∞
rn/σn

(σv)
d−1 1

(2π)qd/2σqdn
exp

(
−q

2
v2
)
σn dv

=
dηd

(2π)qd/2
σ(1−q)d
n

∫ ∞
rn/σn

vd−1 exp
(
−q

2
v2
)

dv

≤ dηd
(2π)qd/2

σ(1−q)d
n

∫ ∞
rn/σn

vd exp
(
−q

2
v2
)

dv

We have for rn/σn ≥ 4d∫ ∞
rn/σn

ud exp
(
−q

2
u2
)

du ≤
∫ ∞
rn/σn

exp

(
d log u− 1

2
u2
)

du ≤
∫ ∞
rn/σn

exp

(
du− 1

2
u2
)

du

≤
∫ ∞
rn/σn

exp

(
−1

4
u2
)

du ≤
∫ ∞
rn/σn

u

2
exp

(
−1

4
u2
)

du = exp

(
−1

4

(
rn
σn

)2
)
.

�

The following lemma is necessary to bound the influence of points close to the boundary on the
cut and the volume. The first statement is used for the cut, whereas the second statement is used
for the volume.

Lemma 11. Let the general assumptions hold and let (rn)n∈N be a sequence with rn → 0 for
n→∞. Define Rn = {x ∈ Rd | dist(x, ∂C) ≤ 2rn}. Then Ld−1(S ∩Rn) = O(rn).

For H = H+ or H = H− define R̄n = {x ∈ H ∩ C | dist(x, ∂(H ∩ C)) ≤ 2rn}. Then Ld(R̄n) =
O(rn).
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Appendix: Table of Notation

The following table contains an overview of the most important notation used througout the paper:

x1, . . . , xn sample points in Rd
n sample size
d dimension of the space Rd
p(x) density, the points are sampled from
C compact support of the density p
pmin, pmax minimum and maximum value of the density p on C
p′max supremum of the norm of the gradient ‖∇p(x)‖ in the interior

of C
µ measure induced by the density p, that is, µ(A) =

∫
A
p(x) dx

∂C boundary of the set C
κ minimal curvature radius of ∂C
nx normal to the surface ∂C at the point x ∈ ∂C
γ, rγ for balls of radius r ≤ rγ around points in C at least γ of the total

volume of the ball is within C
S hyperplane in Rd that defines the cuts we consider in the neigh-

borhood graphs
H+, H− halfspaces of Rd defined by S
nS normal of S pointing towards H+

α minimum angle between nS and nx for all x ∈ S ∩ ∂C.
〈x1, x2〉 Euclidean dot product of x1, x2 ∈ Rd
‖x‖ Euclidean norm of x ∈ Rd, i.e. ‖x‖ =

√
〈x, x〉

dist(x, y) distance between x and y
L the Lebesgue volume
Ld−1 the (d−1)-dimensional Lebesgue measure in a (d−1)-dimensional

affine subspace or the (d − 1)-dimensional area of a (d − 1)-
dimensional surface

Ld−2 the (d− 2)-dimensional area of a (d− 2)-dimensional surface
B(x, r) the closed ball of radius r around x ∈ Rd, that is, B(x, r) = {y ∈

Rd | dist(x, y) ≤ r}
ηd volume of the d-dimensional unit ball in the Euclidean metric,

that is, ηd = Ld(B(0, 1))
τd kissing number in dimension d
Pr(A) probability of the event A
E(U) expectation of the random variable U
Var(U) variance of the random variable U
Bin(n, p) discrete density of the binomial distribution with parameters n

and p
a.s.→ almost sure convergence
f = O(g) f is bounded above by g asymptotically up to a constant factor
∇f(x) gradient of f at x
∂f(x)
∂xi

partial derivative of the function f in the direction xi
k neighborhood parameter of the k-nearest neighbor graph
r neighborhood size of the r-neigborhood graph
σ bandwidth of the Gaussian weight function
1c 1 for complete graph, 0 otherwise
cut(C, V \ C) cut size of the cut defined by (C, V \C) in the graph G(V,E) with

vertice set V and edge set E
vol(C) volume of C ⊆ V in the graph G(V,E)
NCut(C, V \ C) the normalized cut measure for the partition (C, V \ C) in the

graph G(V,E)
cutn cut in neighborhood graph on n points defined by S
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voln(H) volume of sample points in the halfspace H in neighborhood graph
on n points

NCutn normalized cut in neighborhood graph on n points
rmax
n maximum (with a high probability) k-nearest neighbor radius
rn(x) expected k-nearest neighbor radius in point x
r+n , r−n (x) sequences that converge to rn(x) from above and below
ξn variation of the density in balls of radius 2rmax

n

δn sequence determining the convergence of r+n and r−n (x) to rn(x)
Cij event that there is an edge between xi and xj in the undirected

neighborhood graph
Dij event that there is an edge between xi and xj in the directed

neighborhood graph
c(x, y) probabilty of an edge between a point in x and a point in y
(scutn )n∈N, (svoln )n∈N scaling sequences for the cut and the volume
Wij random variable for the weight of an edge between xi and xj

F
(q)
B (r) integral over balls dηd

∫ r
0
ud−1fqn(u) du

F
(q)
C (r) integral over caps ηd−1

∫ r
0
udfqn(u) du

CutLim limit of the cut induced by S on the neighborhood graph
V olLim(H) limit of the volume of the halfspace H
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