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Abstract— The application of brain-computer interfaces
(BCI) shows promising results in stroke rehabilitation, but
the underlying neural substrates and processes of successful
BCI-based neurorehabilitation remain unclear. The goal of our
present work was to identify the brain areas associated with
successful visuomotor integration and motor learning (VMIL),
and investigate their connection with successful sensorimotor-
rhythm (SMR)-modulation commonly used in stroke rehabil-
itation related BCI systems. Our hypothesis was that neural
processes associated with VMIL are linked to characteristics of
the SMR, and thus share a common neural basis. Preliminary
results indicate that the areas used to predict the current state of
VMIL overlap with, but are not confined to, those areas used for
SMR-based BCI training in stroke rehabilitation. This supports
our hypothesis that VMIL and successful SMR modulation used
in stroke BCI training share a common neural basis.

I. INTRODUCTION
Stroke is one of the leading causes of adult disabilities,

with about 80% of patients being affected by motor im-
pairment [1]. Even after six months of intense rehabilitation
efforts about 50% of patients still show motor impairments
[2]. In recent years, the application of brain-computer in-
terfaces (BCI) in stroke rehabilitation has increased [3] [4]
[5]. Most of these paradigms reward successful modulation
of ipsilesional brain oscillatory activity, e.g. sensori-motor
rhythms (SMR, 8-15Hz). However, it is unclear how such
training of ipsilesional SMR modulation relates to motor
recovery.

We present results of a pilot study, in which we combined
an EEG-system with a seven degree-of-freedom (DoF) robot
arm to study the neurophysiological correlates of visuomotor
integration and learning (VMIL) during 3D reaching move-
ments. The primary goal of this study is to identify brain
regions, across subjects, that are associated with improved
performance in a VMIL task. We find that the extent of
SMR modulation, which is typically trained in BCIs, is
linked to the state of VMIL. This indicates a common neural
basis for BCI training and VMIL. Furthermore, we find
regions/processes involved in VMIL that have not yet been
considered for use in BCI-systems.
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II. MATERIAL AND METHODS

Six healthy subjects (3 male, 3 female; mean age 29.5±
4.5), recruited from the local student body, participated in
the present VMIL study. All subjects were right-handed and
thus conducted the experiment with their right arm.

The subjects were attached with their arm to the robotic
system (Figure 1) and performed four blocks of 50 trials,
interleaved with a brief one minute intermission. The goal
of each trial was to move the robot arm to reach a target
visualized in 3D on a computer screen. This screen displayed
the current position of the robotic arm’s end-effector as a blue
ball. Depending on the current phase, the target was either
not shown (baseline (5 seconds)), displayed as a yellow ball
(planning (2.5 – 4 seconds)), or displayed as a green ball
(move). The initial position, in which the arm was hanging
beside the body, was chosen independently by each subject.
For each trial the target was randomly chosen from an area
that could be reached comfortably by the subject. Due to
the robotic arm’s DoFs, subjects are able to perform a large
variety of natural movements. While subjects moved the
robotic arm, continuous visual feedback was provided about
the end-effector’s current position.

Throughout the experiment, a 120-channel EEG was
recorded at 1 kHz sampling rate, using active EEG elec-
trodes and a QuickAmp amplifier (BrainProducts, Gilching,
Germany). Electrodes were placed according to the 10-20
system, with Cz as the initial reference electrode. All data
were re-referenced to common average reference offline.

To track each subject’s learning process over the course
of the experiment, we computed the normalized time-to-
target (TTT) for each trial, i.e. the time required from the
instruction to initiate the movement to reaching the target,
divided by the distance. We observed a continuous decline in
TTT over the course of the experiment, reflecting successful
VMIL processes (Figure 2). This trend is captured by the
low frequencies of the TTTs’ power spectral density (PSD)
(Figure 3).

In the following, we investigate whether TTT can be
predicted on a trial-to-trial basis from EEG recorded in
the upcoming target’s planning phase. To do so, we high-
pass filtered the recorded EEG at 3 Hz, and separated the
data into (ideally) statistically independent components (ICs).
This was done by first reducing the data to 64 principal
components, then applying the SOBI-algorithm [6]. We
inspected each IC manually and rejected those which were
not of cortical origin. We then computed log-bandpower of



Fig. 1: Subject wearing an EEG-
cap while being attached to the
seven DoF Barrett WAM arm.

Fig. 2: Mean and standard deviation of
the changes in time-to-target across the
experimental session for the six subjects.
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Fig. 3: Power spectral density of time-to-
target values and coherence of prediction. Green
shaded area shows significant frequencies.

each non-artifactual IC in three frequency bands (using an
FFT in conjunction with a Hanning window): µ (8–14 Hz),
low β (20–30 Hz), and γ (55–85 Hz). We used backward
elimination feature selection [7], based on the correlation
between predicted and real performance, in conjunction with
10-times cross validation, to fit a linear regression model that
predicts TTT from the ICs’ bandpowers. We then calculated
the coherence between the predicted and the actual TTT
and estimated significance with a permutation test. For this
test, the trial order of the input variables was permuted, and
coherence was calculated. This was repeated 5,000 times and,
to correct for multiple comparisons, significance was tested
using a false discovery rate of .01 [8].

III. RESULTS
The employed permutation test rejected the null-

hypothesis that the temporal structure of the features does not
provide any information on the current state of VMIL for all
frequencies between [.0078 - .0465] Hz of the TTTs’ PSD.
This implies that our prediction captures the global learning
trend, as this trend is represented by the low frequencies
of the TTTs’ PSD (Figure 3). In order to identify cortical
areas relevant for TTT-prediction, the regression weights
of the linear model were projected to the cortical level as
described in [9] (Figure 4). While source localisation for
the µ frequency band shows a clear focus covering parts
of the contralateral somatosensory and motor cortex (Figure
4a), it is less focused for the β- and γ-band. In the β-
band, parietal areas appear most relevant for performance
prediction. In the γ-band, contralateral frontal cortex areas
and the supplementary motor area show relevancy.

IV. DISCUSSION AND CONCLUSIONS
The extent of the SMR’s change during the course of one

session correlates negatively with the TTT and thus positively
with the state of VMIL (Figure 4a). This indicates that train-
ing to modulate the SMR, e.g. in BCI training, could enhance
the capability of VMIL, which in turn might be beneficial for
stroke rehabilitation. These results, especially regarding the µ
frequency band, support the hypothesis that BCI training may
facilitate VMIL and thus support rehabilitation processes.
However, the β and γ frequency band indicate that BCI
training could be improved by extending to areas and regions
beyond those generating SMR.

(a) µ (8–14 Hz) (b) β (20–30 Hz) (c) γ (55–85 Hz)

Fig. 4: Cortical areas relevant for TTT-prediction in the µ, β, γ-
range (with a cut-off at 70% in Figure 4a)

Based on these results, we plan to conduct future studies,
investigating whether the connection between successful
VMIL and SMR modulation exists in stroke patients as well.
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