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Abstract. Camera lenses are a critical component of optical imaging
systems, and lens imperfections compromise image quality. While tra-
ditionally, sophisticated lens design and quality control aim at limiting
optical aberrations, recent works [1,2,3] promote the correction of opti-
cal flaws by computational means. These approaches rely on elaborate
measurement procedures to characterize an optical system, and perform
image correction by non-blind deconvolution.
In this paper, we present a method that utilizes physically plausible
assumptions to estimate non-stationary lens aberrations blindly, and thus
can correct images without knowledge of specifics of camera and lens. The
blur estimation features a novel preconditioning step that enables fast
deconvolution. We obtain results that are competitive with state-of-the-
art non-blind approaches.

1 Introduction

Optical lenses image scenes by refracting light onto photosensitive surfaces. The
lens of the vertebrate eye creates images on the retina, the lens of a photographic
camera creates images on digital sensors. This transformation should ideally sat-
isfy a number of constraints formalizing our notion of a veridical imaging process.
The design of any lens forms a trade-off between these constraints, leaving us
with residual errors that are called optical aberrations. Some errors are due to
the fact that light coming through different parts of the lens can not be fo-
cused onto a single point (spherical aberrations, astigmatism and coma), some
errors appear because refraction depends on the wavelength of the light (chro-
matic aberrations). A third type of error, not treated in the present work, leads
to a deviation from a rectilinear projection (image distortion). Camera lenses
are carefully designed to minimize optical aberrations by combining elements of
multiple shapes and glass types.

However, it is impossible to make a perfect lens, and it is very expensive to
make a close-to-perfect lens. A much cheaper solution is in line with the new
field of computational photography: correct the optical aberration in software.
To this end, we use non-uniform (non-stationary) blind deconvolution. Deconvo-
lution is a hard inverse problem, which implies that in practice, even non-blind
uniform deconvolution requires assumptions to work robustly. Blind deconvolu-
tion is harder still, since we additionally have to estimate the blur kernel, and

http://webdav.is.mpg.de/pixel/blind_lenscorrection/
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non-uniform deconvolution means that we have to estimate the blur kernels as
a function of image position. The art of making this work consists of finding
the right assumptions, sufficiently constraining the solution space while being at
least approximately true in practice, and designing an efficient method to solve
the inverse problem under these assumptions. Our approach is based on a for-
ward model for the image formation process that incorporates two assumptions:

(a) The image contains certain elements typical of natural images, in particular,
there are sharp edges.

(b) Even though the blur due to optical aberrations is non-uniform (spatially
varying across the image), there are circular symmetries that we can exploit.

Inverting a forward model has the benefit that if the assumptions are correct,
it will lead to a plausible explanation of the image, making it more credible than
an image obtained by sharpening the blurry image using, say, an algorithm that
filters the image to increase high frequencies.

Furthermore, we emphasize that our approach is blind, i.e., it requires as
an input only the blurry image, and not a point spread function that we may
have obtained using other means such as a calibration step. This is a substantial
advantage, since the actual blur depends not only on the particular photographic
lens but also on settings such as focus, aperture and zoom. Moreover, there are
cases where the camera settings are lost and the camera may even no longer be
available, e.g., for historic photographs.

2 Related Work and Technical Contributions

Correction of optical aberrations: The existing deconvolution methods to
reduce blur due to optical aberrations are non-blind methods, i.e., they require a
time-consuming calibration step to measure the point spread function (PSF) of
the given camera-lens combination, and in principle they require this for all pa-
rameter settings. Early work is due to Joshi et al. [1], who used a calibration sheet
to estimate the PSF. By finding sharp edges in the image, they also were able to
remove chromatic aberrations blindly. Kee et al. [2] built upon this calibration
method and looked at the problem how lens blur can be modeled such that for
continuous parameter settings like zoom, only a few discrete measurements are
sufficient. Schuler et al. [3] use point light sources rather than a calibration sheet,
and measure the PSF as a function of image location. The commercial software
“DxO Optics Pro” (DXO) also removes “lens softness”1 relying on a previous
calibration of a long list of lens/camera combinations referred to as “modules.”
Furthermore, Adobe’s Photoshop comes with a “Smart Sharpener,” correcting
for lens blur after setting parameters for blur size and strength. It does not re-
quire knowledge about the lens used, however, it is unclear if a genuine PSF is
inferred from the image, or the blur is just determined by the parameters.

1 http://www.dxo.com/us/photo/dxo_optics_pro/features/optics_geometry_

corrections/lens_softness

http://www.dxo.com/us/photo/dxo_optics_pro/features/optics_geometry_corrections/lens_softness
http://www.dxo.com/us/photo/dxo_optics_pro/features/optics_geometry_corrections/lens_softness
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Non-stationary blind deconvolution: The background for techniques of op-
tical aberration deconvolution is recent progress in the area of removing camera
shake. Beginning with Fergus et al.’s [4] method for camera shake removal, ex-
tending the work of Miskin and MacKay [5] with sparse image statistics, blind de-
convolution became applicable to real photographs. With Cho and Lee’s work [6],
the running time of blind deconvolution has become acceptable. These early
methods were initially restricted to uniform (space invariant) blur, and later ex-
tended to real world spatially varying camera blur [7,8]. Progress has also been
made regarding the quality of the blur estimation [9,10], however, these methods
are not yet competitive with the runtime of Cho and Lee’s approach.

Technical Contributions: Our main technical contributions are as follows:

(a) we design a class of PSF families containing realistic optical aberrations, via
a set of suitable symmetry properties,

(b) we represent the PSF basis using an orthonormal basis to improve condi-
tioning, and allow for direct PSF estimation,

(c) we avoid calibration to specific camera lens combinations by proposing a
blind approach for inferring the PSFs, widening the applicability to any
photographs (e.g., with missing lens information such as historical images)
and avoiding cumbersome calibration steps,

(d) we extend blur estimation to multiple color channels to remove chromatic
aberrations as well, and finally

(e) we present experimental results showing that our approach is competitive
with non-blind approaches.

3 Spatially varying point spread functions

= *

PSF basis

blur parameters µ 

...

Fig. 1. Optical aberration as a forward model.

Optical aberrations cause image blur that is spatially varying across the
image. As such they can be modeled as a non-uniform point spread function
(PSF), for which Hirsch et al. [11] introduced the Efficient Filter Flow (EFF)
framework,

y =

R∑
r=1

a(r) ∗
(
w(r) � x

)
, (1)
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where x denotes the ideal image and y is the image degraded by optical aber-
ration. In this paper, we assume that x and y are discretely sampled images,
i.e., x and y are finite-sized matrices whose entries correspond to pixel inten-
sities. w(r) is a weighting matrix that masks out all of the image x except for
a local patch by Hadamard multiplication (symbol �, pixel-wise product). The
r-th patch is convolved (symbol ∗) with a local blur kernel a(r), also represented
as a matrix. All blurred patches are summed up to form the degraded image.
The more patches are considered (R is the total number of patches), the better
the approximation to the true non-uniform PSF. Note that the patches defined
by the weighting matrices w(r) usually overlap to yield smoothly varying blurs.
The weights are chosen such that they sum up to one for each pixel. In [11] it
is shown that this forward model can be computed efficiently by making use of
the short-time Fourier transform.

4 An EFF basis for optical aberrations

Since optical aberrations lead to image degradations that can be locally mod-
eled as convolutions, the EFF framework is a valid model. However, not all blurs
expressible in the EFF framework do correspond to blurs caused by optical aber-
rations. We thus define a PSF basis that constrains EFF to physically plausible
PSFs only.

To define the basis we introduce a few notions. The image y is split into
overlapping patches, each characterized by the weights w(r). For each patch, the
symbol lr denotes the line from the patch center to the image center, and dr the
length of line lr, i.e., the distance between patch center and image center. We
assume that local blur kernels a(r) originating from optical aberrations have the
following properties:

(a) Local reflection symmetry: a local blur kernel a(r) is reflection symmetric
with respect to the line lr.

(b) Global rotation symmetry: two local blur kernels a(r) and a(s) at the
same distance to the image center (i.e., dr = ds) are related to each other
by a rotation around the image center.

(c) Radial behavior: along a line through the image center, the local blur
kernels change smoothly. Furthermore, the maximum size of a blur kernel is
assumed to scale linearly with its distance to the image center.

Note that these properties are compromises that lead to good approximations
of real-world lens aberrations.2

For two dimensional blur kernels, we represent the basis by K basis elements

bk each consisting of R local blur kernels b
(1)
k , . . . , b

(R)
k . Then the actual blur

2 Due to issues such as decentering, real world lenses may not be absolutely rota-
tionally symmetric. Schuler et al.’s exemplar of the Canon 24mm f/1.4 (see below)
exhibits PSFs that deviate slightly from the local reflection symmetry. The assump-
tion, however, still turns out to be useful in that case.
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kernel a(r) can be represented as linear combinations of basis elements,

a(r) =

K∑
k=1

µkb
(r)
k . (2)

To define the basis elements we group the patches into overlapping groups, such
that each group contains all patches inside a certain ring around the image center,
i.e., the center distance dr determines whether a patch belongs to a particular
group. Basis elements for three example groups are shown Figure 2. All patches
inside a group will be assigned similar kernels. The width and the overlap of
the rings determine the amount of smoothness between groups (see property (c)
above).

For a single group we define a series of basis elements as follows. For each
patch in the group we generate matching blur kernels by placing a single delta
peak inside the blur kernel and then mirror the kernel with respect to the line lr
(see, Figure 3). For patches not in the current group (i.e., in the current ring),
the corresponding local blur kernels are zero. This generation process creates
basis elements that fulfill the symmetry properties listed above. To increase
smoothness of the basis and avoid effects due to pixelization, we place little
Gaussian blurs (standard deviation 0.5 pixels) instead of delta peaks.

Fig. 2. Three example groups of patches, each forming a ring.

(a) outside parallel to lr (a) inside parallel to lr (c) perpendicular to lr

Fig. 3. Shifts to generate basis elements for the middle group of Figure 2.
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5 An orthonormal EFF basis
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Fig. 4. SVD spectrum of a typical basis matrix B with cut-off.

The basis elements constrain possible blur kernels to fulfill the above sym-
metry and smoothness properties. However, the basis is overcomplete and direct
projection on the basis is not possible. Therefore we approximate it with an
orthonormal one. To explain this step with matrices, we reshape each basis ele-

ment as a column vector by vectorizing (operator vec) each local blur kernel b
(r)
k

and stacking them for all patches r:

bk =
[
[vec b

(1)
k ]T . . . [vec b

(R)
k ]T

]T
. (3)

Let B be the matrix containing the basis vectors b1, . . . , bK as columns. Then
we can calculate the singular value decomposition (SVD) of B,

B = USV T. (4)

with S being a diagonal matrix containing the singular values of B. Figure 4
shows the SVD spectrum and the chosen cut-off of some typical basis matrix B,
with approximately half of the eigenvalues being below numerical precision.

We define an orthonormal EFF basis Ξ that is the matrix that consists of the
column vectors of U that correspond to large singular values, i.e., that contains
the relevant left singular vectors of B. Properly chopping the column vectors of
Ξ into shorter vectors one per patch and reshaping those back to the blur kernel,

we obtain an orthonormal basis ξ
(r)
k for the EFF framework that is tailored to

optical aberrations. This representation can be plugged into the EFF forward
model in Eq. (1),

y = µ � x :=

R∑
r=1

(
K∑
µ=1

µkξ
(r)
k

)
∗
(
w(r) � x

)
. (5)

Note that the resulting forward model is linear in the parameters µ.

6 Blind deconvolution with chromatic shock filtering

Having defined a PSF basis, we perform blind deconvolution by extending [6]
to our non-uniform blur model (5) (similar to [13,8]). However, instead of con-
sidering only a gray-scale image during PSF estimation, we are processing the
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Original Blurry Shock filter [12] Chromatic shock filter

Fig. 5. Chromatic shock filter removes color fringing (adapted from [12]).

full color image. This allows us to better address chromatic aberrations by an
improved shock filtering procedure that is tailored to color images: the color
channels xR, xG and xB are shock filtered separately but share the same sign
expression depending only on the gray scale image z:

xt+1
R = xtR −∆t · sign(ztηη)|∇xtR|
xt+1
G = xtG −∆t · sign(ztηη)|∇xtG| with zt = (xtR + xtG + xtB)/3

xt+1
B = xtB −∆t · sign(ztηη)|∇xtB | (6)

where zηη denotes the second derivative in the direction of the gradient. We call
this extension chromatic shock filtering since it takes all three color channels
simultaneously into account. Figure 5 shows the reduction of color fringing on
the example of Osher and Rudin [12] adapted to three color channels.

Combining the forward model y = µ � x defined above and the chromatic
shock filtering, the PSF parameters µ and the image x (initialized by y) are
estimated by iterating over three steps:

(a) Prediction step: the current estimate x is first denoised with a bilateral fil-
ter, then edges are emphasized with chromatic shock filtering and by zeroing
flat gradient regions in the image (see [6] for further details). The gradient
selection is modified such that for every radius ring the strongest gradients
are selected.

(b) PSF estimation: if we work with the overcomplete basis B, we would like
to find coefficients τ that minimize the regularized fit of the gradient images
∂y and ∂x,

∥∥∂y − R∑
r=1

(B(r)τ) ∗ (w(r) � ∂x)
∥∥2 + α

R∑
r=1

∥∥∂B(r)τ
∥∥2 + β

R∑
r=1

∥∥B(r)τ
∥∥2 (7)

where B(r) is the matrix containing the basis elements for the r-th patch.
Note that τ is the same for all patches. This optimization can be performed
iteratively. The regularization parameters α and β are set to 0.1 and 0.01,
respectively.
However, the iterations are costly, and we can speed up things by using the
orthonormal basis Ξ. The blur is initially estimated unconstrained and then
projected onto the orthonormal basis. In particular, we first minimize the
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fit of the general EFF forward model (without the basis) with an additional
regularization term on the local blur kernels, i.e., we minimize

∥∥∂y − R∑
r=1

a(r) ∗ (w(r) � ∂x)
∥∥2 + α

R∑
r=1

∥∥∂a(r)∥∥2 + β

R∑
r=1

∥∥a(r)∥∥2 (8)

This optimization problem is approximately minimized using a single step
of direct deconvolution in Fourier space, i.e.,

a(r) ≈ CT
r FH FZ∂x∂x� (FEr Diag(w(r))Zyy)

|FZ∂x∂x|2 + α|FZll|2 + β
for all r. (9)

where l = [−1, 2,−1]T denotes the discrete Laplace operator, F the discrete
Fourier transform, and Z∂x, Zy, Zl, Cr and Er appropriate zero-padding
and cropping matrices. |u| denotes the entry-wise absolute value of a com-
plex vector u, u its entry-wise complex conjugate. The fraction has to be
implemented pixel-wise.
Finally, the resulting unconstrained blur kernels a(r) are projected onto the
orthonormal basis Ξ leading to the estimate of the blur parameters µ.

(c) Image estimation: For image estimation given the blurry image y and
blur parameters µ, we apply Tikhonov regularization with γ = 0.01 on the
gradients of the latent image x, i.e.∥∥y − µ � x∥∥2 + γ

∥∥∂x∥∥2. (10)

As shown in [8], this expression can be approximately minimized with respect
to x using a single step of the following direct deconvolution:

x ≈ N �
∑
r

CT
r FH FZbΞµ� (FEr Diag(w(r))Zyy)

|FZbΞµ|2 + γ|FZll|2
. (11)

where l = [−1, 2,−1]T denotes the discrete Laplace operator, F the discrete
Fourier transform, and Zb, Zy, Zl, Cr and Er appropriate zero-padding and
cropping matrices. |u| denotes the entry-wise absolute value of a complex
vector u, u its entry-wise complex conjugate. The fraction has to be im-
plemented pixel-wise. The normalization factor N accounts for artifacts at
patch boundaries which originate from windowing (see [8]).

Similar to [6] and [8] the algorithm follows a coarse-to-fine approach. Having
estimated the blur parameters µ we use a non-uniform version of Krishnan and
Fergus’ approach [14,8] for the non-blind deconvolution to recover a high-quality
estimate of the true image. For the x-sub problem we use the direct deconvolution
formula (11).

7 Implementation and running times

The algorithm is implemented on a Graphics Processing Unit (GPU) in Python
using PyCUDA3. All experiments were run on 3.0GHz Intel Xeon with an

3 http://mathema.tician.de/software/pycuda

http://mathema.tician.de/software/pycuda
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NVIDIA Tesla C2070 GPU with 6GB of memory. The basis elements gener-
ated as detailed in Section 4 are orthogonalized using the SVDLIBC library4.
Calculating the SVD for the occurring large sparse matrices can require a few
minutes of running times. However, the basis is independent of the image con-
tent, so we can compute the orthonormal basis once and reuse it. Table 1 reports
the running times of our experiments for both PSF and final non-blind decon-
volution along with the EFF parameters and image dimensions. In particular, it
shows that using the orthonormal basis instead of the overcomplete one improves
the running times by a factor of about six to eight.

image image dims local blur patches using B using Ξ NBD

bridge 2601×1733 19×19 10×8 127 sec 16 sec 1.4 sec
bench 1097× 730 81×81 10×6 85 sec 14 sec 0.7 sec
historical 2191×1464 29×29 10×6 103 sec 13 sec 1.0 sec
facade 2817×1877 29×29 12×8 166 sec 21 sec 1.7 sec

(a) (b) (c) (d) (e) (f)
Table 1. (a) Image sizes, (b) size of the local blur kernels, (c) number of patches
horizontally and vertically, (d) runtime of PSF estimation using the overcomplete basis
B (see Eq. (7)), (e) runtime of PSF estimation using the orthonormal basis Ξ (see
Eq. (8)) as used in our approach, (f) runtime of the final non-blind deconvolution.

8 Results

In the following, we show results on real photos and do a comprehensive com-
parison with other approaches for removing optical aberrations. Image sizes and
blur parameters are shown in Table 1.

8.1 Schuler et al.’s lens 120mm.

Schuler et al. show deblurring results on images taken with a lens that consists
only of a single element, thus exhibiting strong optical aberrations, in particular
coma. Since their approach is non-blind, they measure the non-uniform PSF with
a point source and apply non-blind deconvolution. In contrast, our approach is
blind and is directly applied to the blurry image.

To better approximate the large blur of that lens, we additionally assume
that the local blurs scale linearly with radial position, which can be easily incor-
porated into our basis generation scheme. For comparison, we apply Photoshop’s
“Smart Sharpening” function for removing lens blur. It depends on the blur size
and the amount of blur, which are manually controlled by the user. Thus we
call this method semi-blind since it assumes a parametric form. Even though we
choose its parameters carefully, we are not able to obtain comparable results.

4 http://tedlab.mit.edu/~dr/SVDLIBC/

http://tedlab.mit.edu/~dr/SVDLIBC/
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Comparing our blind method against the non-blind approach of [3], we ob-
serve that our estimated PSF matches their measured PSFs rather well (see
Figure 7). However, surprisingly we are getting an image that may be consid-
ered sharper. The reason could be over-sharpening or a less conservative regu-
larization in the final deconvolution; it is also conceivable that the calibration
procedure used by [3] is not sufficiently accurate. Note that neither DXO nor
Kee et al.’s approach can be applied, lacking calibration data for this lens.

8.2 Canon 24mm f/1.4.

The PSF constraints we are considering assume local axial symmetry of the PSF
with respect to the radial axis. For a Canon 24mm f/1.4 lens also used in [3],
this is not exactly fulfilled, which can be seen in the inset in Figure 8. The
wings of the green blur do not have the same length. Nonetheless, our blind
estimation with enforced symmetry still approximates the PSF shape well and
yields a comparable quality of image correction. We stress the fact that this was
obtained blindly in contrast to [3].

8.3 Kee et al.’s image

Figure 9 shows results on an image taken from Kee et al. [2]. The close-ups re-
veal that Kee’s non-blind approach is slightly superior in terms of sharpness and
noise-robustness. However, our blind approach better removes chromatic aberra-
tion. A general problem of methods relying on a prior calibration is that optical
aberrations depend on the wavelength of the transmitting light continuously: an
approximation with only a few (generally three) color channels therefore depends
on the lighting of the scene and could change if there is a discrepancy between
the calibration setup and a photo’s lighting conditions. This is avoided with a
blind approach.

We also apply “DxO Optics Pro 7.2” to the blurry image. DXO uses a
database for combinations of cameras/lenses. While it uses calibration data, it
is not clear whether it additionally infers elements of the optical aberration from
the image. For comparison, we process the photo with the options “chromatic
aberrations” and “DxO lens softness” set to their default values. The result is
good and exhibits less noise than the other two approaches (see Figure 9, how-
ever, it is not clear if an additional denoising step is employed by the software.

8.4 Historical Images

A blind approach to removing optical aberrations can also be applied to histor-
ical photos, where information about the lens is not available. The left column
of Figure 10 shows a photo (and some detail) from the Library of Congress
archive that was taken around 19405. Assuming that the analog film used has
a sufficiently linear light response, we applied our blind lens correction method

5 http://www.loc.gov/pictures/item/fsa1992000018/PP/

http://www.loc.gov/pictures/item/fsa1992000018/PP/


Blind Correction of Optical Aberrations 11

Blurred image Our approach (blind)

Adobe’s “Smart Sharpen” (semi-blind) Schuler et al. [3] (non-blind)

Fig. 6. Schuler et al.’s lens. Full image and lower left corner.
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(a) blindly estimated by our approach (b) measured by Schuler et al. [3]

s

Fig. 7. Schuler et al.’s lens. Lower left corner of the PSF.

Blurred image Our approach Schuler et al. [3]
(blind) (non-blind)

Fig. 8. Canon 24mm f1/4 lens. Shown is the upper left corner of the image. PSF inset
is three times the original size.

Blurry image Our approach Kee et al. DXO
(blind) (non-blind) (non-blind)

Fig. 9. Comparison between our blind approach and two non-blind approaches of Kee
et al.[2] and DXO.
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and obtained a sharper image. However, the blur appeared to be small, so al-
gorithms like Adobe’s “Smart Sharpen” also give reasonable results. Note that
neither DXO nor Kee et al.’s approach can be applied here since lens data is not
available.

Blurry image Our approach Adobe’s “Smart Sharpen”
(blind) (semi-blind)

Fig. 10. Historical image from 1940.

9 Conclusion

We have proposed a method to blindly remove spatially varying blur caused by
imperfections in lens designs, including chromatic aberrations. Without relying
on elaborate calibration procedures, results comparable to non-blind methods
can be achieved. By creating a suitable orthonormal basis, the PSF is constrained
to a class that exhibits the generic symmetry properties of lens blurs, while fast
PSF estimation is possible.

9.1 Limitations

Our assumptions about the lens blur are only an approximation for lenses with
poor rotation symmetry.

The image prior used in this work is only suitable for natural images, and is
hence content specific. For images containing only text or patterns, this would
not be ideal.

9.2 Future Work

While it is useful to be able to infer the image blur from a single image, it does
not change for photos taken with the same lens settings. On the one hand, this
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implies that we can transfer the PSFs estimated for these settings for instance
to images where our image prior assumptions are violated. On the other hand, it
suggests the possibility to improve the quality of the PSF estimates by utilizing
a substantial database of images.

Finally, while optical aberrations are a major source of image degradation,
a picture may also suffer from motion blur. By choosing a suitable basis, these
two effects could be combined. It would also be interesting to see if non-uniform
motion deblurring could profit from a direct PSF estimation step as introduced
in the present work.
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