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Abstract

A nonparametric approach for policy learn-
ing for POMDPs is proposed. The approach
represents distributions over the states, ob-
servations, and actions as embeddings in
feature spaces, which are reproducing ker-
nel Hilbert spaces. Distributions over states
given the observations are obtained by ap-
plying the kernel Bayes’ rule to these distri-
bution embeddings. Policies and value func-
tions are defined on the feature space over
states, which leads to a feature space expres-
sion for the Bellman equation. Value itera-
tion may then be used to estimate the op-
timal value function and associated policy.
Experimental results confirm that the correct
policy is learned using the feature space rep-
resentation.

1 Introduction

Partially Observable Markov Decision Processes
(POMDPs) are general models for sequential control
problems in partially observable environments, in
which an agent executes an action under uncertainty
while reward delivery and state transitions vary
depending on the state and action. The objective
is to find an optimal policy that maximizes a value
function defined on beliefs (distributions over states),
and determined by the reward function. When the
value is the expected sum of discounted rewards, the
optimal policy and the optimal value function are
computed by solving a Bellman equation. Solutions
to the Bellman equation are generally very difficult to
obtain, with a number of approaches being employed.
These include tractable parametric models of the sys-
tem (parametric POMDPs [Poupart et al., 2006,
Even-dar, 2005]); Monte Carlo methods for
more complex models (Monte Carlo POMDPs

[Silver and Veness, 2010, Thrun, 2000]); and methods
that take advantage of the piece-wise linear and con-
vex (PWLC) property (PBVI [Pineau et al., 2003],
Perseus [Spaan and Vlassis, 2005], HSVI
[Smith and Simmons, 2004]), where these last ap-
proaches use the fact that value functions computed
by finite-step value iteration algorithms are PWLC
in the beliefs [Sondik, 1971, Porta. et al., 2006]. All
these methods have drawbacks, however: parametric
models can cause bias errors if they oversimplify,
Monte Carlo sampling methods can be computation-
ally costly, and PWLC-based methods require the
observations and actions to be discrete.

Our nonparametric approach is based on a series
of recent works in which probability distributions
are represented as embeddings in reproducing ker-
nel Hilbert spaces (RKHSs) [Fukumizu et al., 2008,
Gretton et al., 2007, Gretton et al., 2012]. Proba-
bility distributions can be embedded as points in
RKHSs, and expectations of RKHS functions may
be obtained as inner products with these em-
beddings, using the kernel trick. For a suffi-
ciently rich RKHS (i.e., a characteristic RKHS),
every probability distribution has a unique em-
bedding, and the distance between embeddings
is a metric on distributions [Fukumizu et al., 2008,
Sriperumbudur et al., 2010]. Recently, inference
methods which make use of the embeddings have
been proposed, including for Hidden Markov Mod-
els [Song et al., 2009, Song et al., 2010], and be-
lief propagation [Song et al., 2010, Song et al., 2011].
More recently, the embeddings have been used
in performing value iteration and optimal pol-
icy learning in Markov decision processes (MDPs)
[Grunewalder et al., 2012]; and the Kernel Bayes’ Rule
(KBR) [Fukumizu et al., 2011] was proposed, which
updates a prior distribution embedding via feature
space operations to obtain a posterior embedding.

In this paper, we propose kernel POMDPs
(kPOMDPs), a new approach to solving the Bellman



equations and determining policy, based on a non-
parametric model defined in appropriate RKHSs. All
probability distributions required for the algorithm
are represented as embeddings in RKHSs, including
the beliefs over the states, the transition models, the
observation models, and the predictive distributions
over subsequent states given actions, observations,
and current beliefs. These embeddings are updated
sequentially based on actions and observations.
Likewise, value functions are defined over feature
representations of states, and policies map RKHS
representations of states to actions, which leads to an
expression for the Bellman equation in feature space.

We use the feature representation of the Bellman
equations to define a value iteration algorithm for
POMDPs, which directly estimates both the expected
immediate rewards and expected values of posterior
beliefs in feature space. As in the earlier work
cited above, expectations are represented by inner
products in respective state and observation feature
spaces, and can be efficiently computed using the ker-
nel trick. While the original Bellman operator has
contractive and isotonic properties, i.e., the original
value iteration is guaranteed to converge monotoni-
cally [Porta. et al., 2006], the resulting kernel Bellman
operator does not. That said, these properties can be
enforced following a simple correction, as proposed by
[Grunewalder et al., 2012]. Approaches from the clas-
sical POMDP literature for initializing and enhancing
efficiency can be applied, including ways to set initial
values over the state feature space, and pruning meth-
ods for action edges.

Since kPOMDPs are nonparametric, the embeddings
of the distributions used in the algorithm are learned
from training samples. Note that in training, we must
have access to samples from the hidden state, although
for the test phase no such observations are necessary.
This setting is reasonable in cases where hidden states
are relatively costly to obtain: while it might be possi-
ble to observe them initially when learning the system
dynamics, we would not have access to them during
the value iteration phase, when learning an optimal
policy.

Advantages of kPOMDPs include

• kPOMDPs can handle complex distributions over
states and observations, since kPOMDPs are non-
parametric.

• kPOMDPs can handle a wide variety of data
types, as RKHS kernels have been defined on
many domains: these include discrete, continu-
ous, and structured data.

• kPOMDPs can be applied to high-dimensional

POMDPs, since the computation scales with
training sample size, and not with state and
observation dimensionality. The convergence of
the distribution embedding is at a rate indepen-
dent of the dimension of the underlying space
[Fukumizu et al., 2011, Gretton et al., 2012].

Our experiments confirm that the proposed kernel
value iteration algorithm learns the correct policy on
POMDP benchmark tasks.

This paper is organized as follows. We introduce the
notations for POMDPs in the next section, and review
recent kernel methods for probability distributions in
Section 3. We present kernel POMDPs in Section 4,
where Bellman equations in feature spaces (Subsec-
tion 4.1), the empirical expression and value iteration
algorithms (Subsection 4.2) are shown. Experiments
follow for an online planning algorithm.

2 POMDPs

A POMDP is specified by a tuple ⟨S,A, T,R,O, Z⟩
where S is the set of states, A is the set of actions,
T : S × A × S → [0,∞)1 is the transition function
where T (s, a, s′) = Pr(s′|s, a) represents the distribu-
tion of the next state s′ given an action a in a state
s, R : S × A → R is the reward function given an
action a in a state s, O is the set of observations,
Z : S ×O → [0,∞)2 is the observation function where
Z(s, o) = Pr(o|s) represents the distribution of obser-
vation o given a state s. We assume that R is bounded.

An agent executes an action a under the setting that
the true state s is not known, but partial information o
can be observed according to Z(s, o). The agent then
transitions to its next state s′ according to T (s, a, s′),
receiving a reward R(s, a) and making a new observa-
tion o′ according to Z(s′, o′). The agent executes then
its next action a′, and the process is repeated.

The goal of reinforcement learning in a POMDP
is, given an initial belief b0 for the initial state
and a history of actions and observations ht+1 =
{a0, o1, ..., at, ot+1}, to find an optimal policy π∗

t+1 :
(b0, ht+1) 7→ at+1 that maximizes the value function of
the expected sum of discounted rewards with infinite
horizon E[

∑∞
t=0 γ

tRt], where γ ∈ (0, 1) is a discount
factor.

In POMDPs, all the information (b0, ht+1) is con-
densed in a sufficient statistic of a belief distribution
b over the state set S, and the optimal policy π∗

t+1 is
reduced to π∗ : b 7→ a. Belief bt+1(t ≥ 0) is updated

1In discrete case, T : S ×A× S → [0, 1].
2In discrete case, Z : S ×O → [0, 1].



according to Bayes’ rule

bt+1(st+1) =
Z(st+1, ot+1)P (st+1|at; bt)

P (ot+1|at; bt)
, (1)

where

P (st+1|at; bt) = ESt∼bt [T (St, at, st+1)] ,

P (ot+1|at; bt) = ESt+1∼P (·|bt,at) [Z(ot+1, St+1)] .

A variable with a prime indicates a value at the next
timestep. ba,o

′
denotes the posterior belief for the next

state S′ when the next observation o′ is observed after
executing action a in belief b.

The value function of belief b following a fixed policy
π is given by

V π(b) = E

[ ∞∑
t=0

γtESt∼bt [R(St, π(bt))]

]
, (2)

and it is the fixed point of the Bellman equation

V π(b) = Qπ(b, π(b)),

Qπ(b, a) = ES∼b [R(S, a)]+γEO′∼P (·|b,a)

[
V π(ba,O

′
)
]
(3)

where Qπ(b, a) is the action value function, i.e., the
value of executing action a in belief b while future ac-
tions a′, a′′, . . . are chosen according to policy π.

The optimal policy π∗ and its optimal value function
V ∗(b) are given by the fixed point of the Bellman op-
timality equation

V ∗(b) = max
a∈A

Q∗(b, a),

Q∗(b, a) = ES∼b [R(S, a)] + γEO′∼p(·|b,a)

[
V ∗(ba,O

′
)
]
,

π∗ = argmax
a∈A

Q∗(b, a). (4)

V ∗(b) can be estimated by the value iteration algo-
rithm Vd = HVd−1(d ≥ 1), where Vd is the d-step
value function and H is the Bellman operator

(HV )(b)=max
a∈A

[
ES∼b [R(S, a)]+γEO′∼p(·|b,a)

[
V (ba,O

′
)
]]
.

(5)

H is known to be isotonic, contractive, and Vd is guar-
anteed to be more accurate than Vd−1; that is, if Vd−1

satisfies ε = supb |V ∗(b)− Vd−1(b)|, then Vd has an er-
ror bound of |V ∗(b)− V̂d(b)| ≤ γε where γ ∈ (0, 1)
[Ross et al., 2008].

The initial value V0(b) of belief b used for value itera-
tion can be defined using the initial Q-value Q0(s, a)
over states and actions,

V0(b) = max
a∈A

ES∼b(·) [Q0(S, a)] . (6)

A simple choice for Q0(s, a) is the reward Q0(s, a) =
R(s, a). Alternatively, a QMDP approximation
Q0(s, a) = QMDP (s, a) may be used [Littman, 1995],
where QMDP (s, a) is given by running MDP value it-
eration, and approximating the POMDP by an MDP.

In kernel POMDPs, all the expectations appearing
above are computed nonparametrically, without ex-
plicitly estimating the distributions b(S), P (S′|a; b),
P (O′|a; b), ba,o′(S′) and transition and observation
models, T and Z. Instead, we obtain feature represen-
tations of the distributions (distribution embeddings)
and the models (conditional embedding operators), as
described in Section 3.

We end this section with a key to matching the prob-
abilistic and reinforcement learning results presented
in this section with their nonparametric, kernel-based
counterparts in the following section. Bayes’ rule (1)
becomes the kernel Bayes’ rule eq.(12), and its em-
pirical counterpart leads to the updates (15)(16); the
Bellman equations (3)(4) take the form of Claims 1-4,
the Bellman operator (5) becomes the kernel Bellman
operator (19), and the value initializations (6) lead to
the initializations (20),(21).

3 Kernel Methods for Probabilities

In the present section, we provide an overview
of distribution embeddings in reproduc-
ing kernel Hilbert spaces [Smola et al., 2007,
Sriperumbudur et al., 2010, Gretton et al., 2012].
The embeddings are represented as mean (non-
linear) features of distributions, hence may
also be referred to as mean embeddings. We
also recall conditional embedding operators
[Song et al., 2009, Song et al., 2010], and the Kernel
Bayes’ Rule (KBR) [Fukumizu et al., 2011]. Mean
embeddings can be updated using conditional em-
bedding operators; in particular, KBR allows us to
obtain posterior embeddings given prior embeddings
in feature spaces.

3.1 Embedding Distributions

Let HX be an RKHS associated with a bounded and
measurable positive definite kernel kX : X × X → R
over domain (X ,BX ), with ⟨·, ·⟩HX

the corresponding
inner product. The embedding of a distribution P
over (X ,BX ) in HX is given by the RKHS element
µX = EX∼P [kX (X, ·)] ∈ HX . µX coincides with the
unique element satisfying ⟨µX , f⟩HX

= EX∼P [f(X)]
for all f ∈ HX , which means that the expectation of
any function f ∈ HX can be computed as an inner
product of the embedding µX and f in HX , without
explicitly estimating the distribution P .



The element µX can be estimated by a linear combi-
nation of feature vectors on samples (X1, . . . , Xn) over
X , i.e., µ̂X = Υα where α = (α1, . . . , αn)

⊤ ∈ Rn and
Υ = (kX (·, X1), . . . , kX (·, Xn)). Using the empirical
embedding µ̂X , the expectation can be nonparametri-
cally estimated as

EX∼P [f(X)] ∼ ⟨µ̂X , f⟩HX
= α⊤f , (7)

where f = (f(X1), . . . , f(Xn))
⊤.

We use characteristic kernels, e.g., Gaussian kernels
and Laplacian kernels, which guarantee that each dis-
tribution maps to a unique embedding in the RKHS
[Sriperumbudur et al., 2010, Fukumizu et al., 2011].

3.2 Conditional Embedding Operators &
Kernel Bayes’ Rule (KBR)

Let HX and HY be RKHSs associated with kX and
kY over (X ,BX ) and (Y,BY), respectively. Let (X,Y )
be a random variable taking values on X × Y with
distribution P and the density p(x, y). The condi-
tional density functions {p(Y |X = x)|x ∈ X} define
a family of embeddings {µY |x} in HY . According to
[Song et al., 2009], a mapping from kX (x, ·) ∈ HX to
µY |x ∈ HY for all x ∈ X can be characterized by con-
ditional embedding operator UY |X : HX → HY ,

µY |x = UY |XkX (x, ·) = CY XC
−1
XXkX (x, ·), (8)

where CY X and CXX are uncentred covariance oper-
ators with respect to P ,

CY X = E(X,Y )∼P [kY(Y, ·)⊗ kX (X, ·)] ,
CXX = E(X,Y )∼P [kX (X, ·)⊗ kX (X, ·)] , (9)

and we use the tensor product definition (a ⊗ b)c =
a⟨b, c⟩. Feature representations of conditional distri-
butions µY |x are obtained by applying the operator
UY |X to the feature map kX (x, ·).

Since a posterior distribution is also written as a con-
ditional distribution, the embedding of a posterior
can be expressed as a conditional embedding operator
[Fukumizu et al., 2011]. Let Π be a prior distribution
with density π(x), and (X̄, Ȳ ) be a new random vari-
able with distribution Q corresponding to the density
q(x, y) = p(y|x)π(x). The embedding of a posterior
q(X̄|Ȳ = y) given y can be expressed by a correspond-
ing conditional embedding operator UX̄|Ȳ

µX̄|y = UX̄|Ȳ kY(y, ·) = CX̄Ȳ C
−1
Ȳ Ȳ

kY(y, ·), (10)

where CX̄Ȳ and CȲ Ȳ are covariance operators with
respect to Q.

CX̄Ȳ = E(X̄,Ȳ )∼Q

[
kX (X̄, ·)⊗ kY(Ȳ , ·)

]
,

CȲ Ȳ = E(X̄,Ȳ )∼Q

[
kY(Ȳ , ·)⊗ kY(Ȳ , ·)

]
. (11)

See Appendix for further details and empirical esti-
mates.

The inference underlying kPOMDPs is accomplished
with the embedding operator UY |X and posterior em-
bedding operator UX̄|Ȳ .

4 Kernel POMDPs (kPOMDPs)

We now present our main results: we formulate
POMDPs in feature spaces, and propose a kernelized
value iteration algorithm. A key to the notation is
given in Table 1.

4.1 Kernel Bellman Equations (KBEs)

To kernelize the Bellman equations, we introduce three
RKHSs for state set S, action set A, and observation
set O. Let HS , HA, HO be RKHSs associated with
bounded and measurable positive definite kernels kS ,
kA, kO over (S,BS), (A,BA), (O,BO), respectively.
⟨·, ·⟩HS

, ⟨·, ·⟩HA
, ⟨·, ·⟩HO

denote their respective inner
products, and φ(S), ψ(A), ϕ(O) their feature vectors.

The relevant distributions b(S), P (S′|a; b), P (O′|a; b),
ba,o

′
(S′) can be embedded in the corresponding

RKHSs HS , HO as follows:

µS = ES∼b(·)[φ(S)],

µS′|a;µS
= ES′∼p(·|a;b)[φ(S

′)],

µO′|a;µS
= EO′∼p(·|a;b)[ϕ(O

′)],

µa,o′

S′ = ES′∼ba,o′ (·)[φ(S
′)].

These embeddings are related via conditional embed-
ding operators expressing transition models T , obser-
vation models Z, and posteriors.

Let US′|S,A : HS ⊗ HA → HS be the conditional
embedding operator for the transition model T , and
UO|S : HS → HO be the operator for the observation

model Z. Let U (a,µS)

S̄|Ō : HO → HS be the posterior

embedding operator corresponding to eq.(10), where
we use the prior embedding µS′|a;µS

in the KBR.

The four embeddings above are related as

µS′|a;µS
= US′|S,AµS ⊗ kA (a, ·) ,

µO′|a;µS
= UO|SµS′|a;µS

,

µa,o′

S′ = U (a,µS)

S̄|Ō kO(o
′, ·). (12)

The sequence of mappings µS 7→ µS′|a;µS
7→

µO′|a;µS
7→ µa,o′

S′ depends on the action a. A policy π
is defined to be a mapping from embeddings µS to ac-
tions. In evaluating policies, value functions V (·) are
defined to be functions of embeddings µS , and thus
(indirectly) of the actions a and observations o.



Table 1: Notation

State Action Observation (State, Action)
domain S A O S ×A
r.v. S A O (S,A)
Instance s a o (s, a)
kernel kS(·, ·) kA(·, ·) kO(·, ·) kS×A(·, ·) = kS(·, ·)⊗ kA(·, ·)
RKHS HS HA HO HS×A = HS ⊗HA
feature map φ(s) = kS(s, ·) ψ(a) = kA(a, ·) ϕ(o) = kO(o, ·) ϑ(s, a) = kS×A((s, a), ·)
finite Sample Set S0 A0 O0 (S0,A0)
feature matrix Υ Ψ Φ Θ
Gram matrix GS = Υ⊤Υ GA = Ψ⊤Ψ GO = Φ⊤Φ G(S,A) = GS ⊙GA

feature column kS(s) = Υ⊤φ(s) kA(a) = Ψ⊤ψ(a) kO(o) = Φ⊤ϕ(o) k(S,A)(s, a) = Θ⊤ϑ(a, o)

Using value functions over embeddings, the expected
immediate rewards and expected values of posterior
beliefs in the Bellman equations (Section 2) can be
computed as inner products in RKHSs,

ES∼b [R(S, a)] = ⟨µS , R (·, a)⟩HS
,

EO′∼P (·|b,a)

[
V π(ba,O

′
)
]
=

⟨
µO′|a;µS

, V π
(
µ
a,(·)
S′

)⟩
HO

,

EO′∼P (·|b,a)

[
V ∗(ba,O

′
)
]
=

⟨
µO′|a;µS

, V ∗
(
µ
a,(·)
S′

)⟩
HO

,

assuming R(·, a) ∈ HS and V π
(
µ
a,(·)
S′

)
, V ∗

(
µ
a,(·)
S′

)
∈

HO.

We are now ready to introduce the kernel Bellman
equation as an operation on the embeddings µS . Let
PS be the set of beliefs and IS be the set of embeddings
of PS in HS .

Claim 1. Let R(·, a) ∈ HS and V π
(
µ
a,(·)
S′

)
∈ HO for

all a ∈ A and µS ∈ IS . The kernel Bellman equations
on HS are

V π(µS)=Qπ (µS , π (µS)) ,

Qπ(µS , a)= ⟨µS , R (·, a)⟩HS
+γ

⟨
µO′|a;µS

, V π
(
µ
a,(·)
S′

)⟩
HO

.

The solution of these equations following a fixed policy
π on HS yields a value function V π(·). The kernel
Bellman optimality equations take similar form.

Claim 2. Let R(·, a) ∈ HS and V ∗
(
µ
a,(·)
S′

)
∈ HO for

all a ∈ A and µS ∈ IS . The kernel Bellman optimality
equations on RKHS HS are

V ∗(µS)=max
a∈A

Q∗(µS , a) ,

Q∗(µS , a)= ⟨µS , R (·, a)⟩HS
+γ

⟨
µO′|a;µS

, V ∗
(
µ
a,(·)
S′

)⟩
HO

,

π∗(µS)= argmax
a∈A

Q∗ (µS , a) . (13)

The solution of these equations is the optimal value
function V ∗(·) with corresponding optimal policy π∗(·)

on HS . We use the following tuple for solving a
POMDP in feature space:⟨

HS ,HA,US|S,A, R,HO,UO|S ,U
(A,IS)

S̄|Ō

⟩
,

where U (A,IS)

S̄|Ō = {U (a,µS)

S̄|Ō |a ∈ A, µS ∈ IS}.

4.2 Empirical Expression

We next provide a finite sample version of
the kernel POMDP. Suppose that Dn =
{(s̃i, õi), ãi, R̃i, (s̃

′
i, õ

′
i)}ni=1 are n training samples

according to a POMDP ⟨S,A, T,R,O, Z⟩. Note that
state samples {(s̃i, s̃′i)} are included, and will used for

estimating belief embeddings µS , µ
a,o′

S′ . We assume
that such samples from the true state are available
for training, but not during the test phase.

Let S0, O0, A0, S ′0, O′
0 be finite sets of states, obser-

vations, and actions taken from the training samples
Dn. The associated feature vectors are

Υ= (φ (s̃1) , . . . , φ (s̃n)) ,Υ
′=(φ (s̃′1) , . . . , φ (s̃′n)) ,

Φ=(ϕ (õ1) , . . . , ϕ (õn)) ,Φ
′=(ϕ (õ′1) , . . . , ϕ (õ

′
n)) ,

Ψ=(ψ (ã1) , . . . , ψ (ãn)) ,Θ=(ϑ (s̃1, ã1) , . . . , ϑ (s̃n, ãn)) .

We build Gram matrices from the feature matrices
Υ, Ψ, Φ as GS = Υ⊤Υ, GA = Ψ⊤Ψ, GO = Φ⊤Φ,
G(S,A) = GS ⊙ GA, where ⊙ denotes the Hadamard
(element-wise) product. The embeddings µS , µO′|a;µS

,

µa,o′

S′ take respective forms

µ̂S = Υα,

µ̂O′|a;µS
= Φβ′

a;α,

µ̂a,o′

S′ = Υα′
a,o′ . (14)

The update rules for the weight vectors α 7→ β′
a;α 7→

α′
a,o′ corresponding to µS 7→ µO′|a;µS

7→ µa,o′

S′ in
eq.(12) are given as follows:

• The update α 7→ β′
a;α uses the empirical esti-

mates of conditional embedding operators US′|S,A,



UO|S , which results in a linear transformation
β′
a;α = LO|S,aα for all a ∈ A by the n×n matrix

LO|S,a:

(GS+εSnIn)
−1
GSS′

(
G(S,A)+ε(S,A)nIn

)−1
G(S,A)(S,a)

(15)

with GSS′ := Υ⊤Υ′, G(S,A)(S,a) := D (kA(a))GS ,

and kA(a) = Ψ⊤ψ(a).

• The update β′
a;α 7→ α′

a,o′ is based on the ker-
nel Bayes’ rule. The Gram matrix expression,

eq.(25), results inα′
a,o′ = RS|O(β̂

′
a;α)kO(o

′) using

a non-negative vector β̂
′
a;α and an n × n matrix

RS|O(β̂
′
a;α):

(
D(β̂

′
a;α)GO + ϵnIn

)−1

D(β̂
′
a;α). (16)

Given samples Dn, the embeddings µ̂S , µ̂O′|a;µS
, µ̂a,o′

S′

are identified with n-dimensional vectors
α,β′

a;α,α
′
a;α ∈ Rn, respectively, and the Bell-

man equations (Claims 1, 2) can be represented
in terms of these weight vectors. Therefore, the
belief and predictive distributions are represented by
n-dimensional vectors for any sets S and O.
Claim 3. Given samples Dn, the kernel Bellman
equation (Claim 1) has the empirical expression

V̂ π (α) = Q̂π (α, π (α)) ,

Q̂π (α, a) = α⊤Ra + γβ′⊤
a;αV̂

π
(
α′

a,O0

)
, (17)

where Ra = (R(s̃1, a), . . . , R(s̃n, a))
⊤ ∈ Rn is

the reward vector on samples S0 for action a and

V̂π
(
α′

a,O0

)
=

(
V̂ π

(
α′

a,õ1

)
, . . . , V̂ π

(
α′

a,õn

))⊤
∈ Rn

is the posterior belief value vector on samples O0 given
action a.

Claim 4. Given samples Dn, the kernel Bellman op-
timality equation (Claim 2) has the expression

V̂ ∗ (α) = max
a∈A

Q̂∗ (α, a) ,

Q̂∗ (α, a) = α⊤Ra + γβ′⊤
a;αV

∗ (α′
a,O0

)
,

π̂∗ (α) = argmax
a∈A

Q̂∗ (α, a) , (18)

where Ra = (R(s̃1, a), . . . , R(s̃n, a))
⊤ ∈ Rn and

V̂∗ (α′
a,O0

)
=

(
V̂ ∗ (α′

a,õ1

)
, . . . , V̂ ∗ (α′

a,õn

))⊤
∈ Rn.

Figure 1 illustrates the planning forward search using
the Bellman equations. Even when the assumptions
in Claims 1, 2 do not hold, we use Claims 3, 4 as an

Figure 1: A search tree using kernel Bellman equa-
tions. Beliefs are represented by n-dimensional weight
vectors α on samples. The expected immediate re-
ward (first term) is given by the linear combination
α⊤Ra on samples S0 and associated with the action
link a. The discounted expected value for next be-
liefs (second term) is given by the linear combination

γβ′⊤
a;αV̂

(
α′

a,O0

)
on samples O0 and associated with

the observation links O0 = {õ1, . . . , õn}. Observation
links are expanded with respect to finite set O0 in-
stead of O. The kernel Bayes’ rule is applied to each
pair (a, õ). Values are back-propagated bottom to top
starting at initial values V0(·) in the kernel value iter-
ation algorithm.

approximation, and Claim 4 for value iteration. Let
Ĥn be the kernel Bellman operator,

(ĤnV ) (α) = max
a∈A

[
α⊤Ra + γβ′⊤

a;αV
(
α′

a,O0

)]
. (19)

We run value iteration V̂d = ĤnV̂d−1(d ≥ 1) with an
initial value function V0(·) on weights. The detailed al-
gorithm is shown in Algorithm 1. The computational
complexity is given in Subsection 4.3. We use the same
value initializations as in distributional POMDPs (Sec-
tion 2). If Q0(·, a) ∈ HS for all a ∈ A, the initial values
V0(·) over embeddings can be set as

V0(µS) = max
a∈A
⟨µS , Q0(·, a)⟩HS

, (20)

which leads to the empirical expression

V0(α) = max
a∈A

α⊤Q0
a, (21)

where Q0
a = (Q0 (s̃1, a) , . . . , Q0 (s̃n, a))

⊤ ∈ Rn is an
initial action value vector on samples S0. The re-
ward function Q0(s, a) = R(s, a) or the QMDP value
Q0(s, a) = QMDP (s, a) can be used for initialization.

Since α,β′
a;α,α

′
a;α do not always give nonnegative

vectors, the Bellman operator Ĥn is not guaranteed to
be isotonic and contractive, although empirically, Ĥn

can be used for the value iteration algorithm. Ĥn is
corrected to have the isotonic and contractive proper-
ties by approximating the weight vectors as probability



Algorithm 1 Kernel Value Iteration (α, d)

Input: belief weights α, tree depth d
Output: Value Vd(α), Policy πd(α)
if d = 0 then

Set: Vd(α) = max
a∈A

Q0(α, a),

πd(α) = argmax
a∈A

Q0(α, a)

else
for all a ∈ A do
Compute: β′

a;α = LO|S,aα
for all õi ∈ O0 do
if

(
β′
a;α

)
i
̸= 0 then

Compute posterior:
α′

a,õi
= RS|O(β

′
a;α)kO(õi)

Set:
V (α′

a,õi
)←Kernel Val. Iter.(α′

a,õi
, d−1)

end if
end for

end for
Set: Vd(α) = max

a∈A
Qd(α, a),

πd(α) = argmax
a∈A

Qd(α, a)

end if

vectors [Grunewalder et al., 2012]. Let α̂, β̂
′
a;α, α̂

′
a;α

be probability vectors derived from α,β′
a;α,α

′
a;α ac-

cording to ŵi =
max{wi,0}∑n
i=1 max{wi,0} for weight vectors w.

The corresponding kernel Bellman operator Ĥ+
n us-

ing the probability vectors α̂, β̂
′
a;α is guaranteed to

be isotonic and contractive. The proof is given in the
Supplementary material.

Given samples Dn, we use the following tuple for the
kernel value iteration:⟨
(HS ,kS) , (HA,kA) , R, (HO,kO) , LO|S,A, RS|O(·)

⟩
,

where LO|S,A = {LO|S,a|a ∈ A}.

4.3 Computational Complexity

The update rule α 7→ β′
a;α has complexity O(n2) with

respect to the number of samples n for an action a,
where the matrix LS|O,a is computed only once in the
training phase. The update rule β′

a;α 7→ α′
a,o′ has

complexity O(n3) for an observation o′, due to the in-
version of an n × n matrix (eq. 16). In total, the
computation of the posterior weights α′

a,o′ for a pair

(a, o′) costs O(n3), compared with O(|S|2) for Bayes’
rule in eq.(1). Kernel value iteration to depth d costs
O(n3(n|A|)d), whereas classical value iteration costs
O(|S|2(|O||A|)d). The complexity O(n3) for comput-
ing α′

a,o′ can be reduced to O(nr2) via a low rank
approximations of the n × n Gram matrices, where r
is the rank.

Algorithm 2 Online Planning with Finite Horizon d

Set: T , t = 0
Get: Initial observation o
Compute: Initial belief α = (GO + nϵOIn)

−1kO(o)
repeat

Planning: a ← Kernel Value Iteration (α, d)
Get: reward and new observation (R, o′)
Compute next belief: α = RS|O(β

′
a;α)kO(o

′)
t = t+ 1

until t > T

5 Experiments

We implemented an online planning algorithm in
POMDPs using the kernel Bellman equations (Algo-
rithm 2). An example of kPOMDP dynamics is shown
in Figure 3. An agent computes the initial belief
weights α ∈ Rn by α = (GO + nϵOIn)

−1kO(o) with
an initial observation o, which corresponds to a belief
estimate without a prior. The agent makes a decision
a by kernel value iteration to finite horizon d under
the current belief weights α. The agent then updates
the belief weights using a function RS|O(·) and predic-
tive weights β′

a;α when obtaining a reward R and a
next observation o′. When the prediction fails (e.g.,
D(β′

a;α)kO(o
′) = 0, or in discrete cases β′

a;α(o
′) = 0)

in the case of small training samples, we reset current
belief weights and estimated initial belief weights. To
make the online planning algorithms more efficient, we
computed the inverses of the n×nmatrices in our algo-
rithm by combining low rank approximations based on
the incomplete Cholesky factorization and the Wood-
bury identity [Fine and Scheinberg, 2001]

Figure 2 shows some results on benchmarks
[Littman, 1995], where the state, action, and ob-
servation sets are finite. Results are d = 2, d = 1,
d = 1 for 10 × 10 Grid World, Network, Hallway,
respectively. The exact policy is computed by an
agent having complete knowledge about the POMDP
environment. The histogram policy computed by
running a classical value iteration algorithm, where
transition and observation models are estimated by
histograms using the same samples as our algorithm.
Since the histogram policy requires samples over all
the combinations of states and actions to estimate
transition models, we introduced prior samples
drawn from a uniform prior to test kPOMDP and
Histograms under exactly the same conditions. Note
that KBR does not need prior samples. We used
QMDP initial values and pruned action links based
on the QMDP values [Ross et al., 2008]. An action
link was pruned if its QMDP value was lower than the
current estimated value. The KBR-controller learned
the exact policy as the number of training samples



0 1000 2000 3000 4000 5000 6000

0

1

2

3

4

5

6

7

8

9

GridWorld, (γ, S, A, O, T, N) = (0.95, 100, 4, 9, 50, 500)

#Training Data

E
xp

ec
te

d 
Su

m
 D

is
R

ew
ar

d

 

 

KBR
Histogram
Exact

0 500 1000 1500 2000 2500 3000 3500 4000
−150

−100

−50

0

50

100

150

200
Network, (γ, S, A, O, T, N) = (0.95, 7, 4, 2, 30, 1000)

#Training Data

A
ve

D
is

Su
m

R
ew

ar
d

 

 

KBR
Histogram
Exact

0 1000 2000 3000 4000 5000 6000

-0.05

0

0.05

0.1

0.15

0.2

Hallway, (γ, S, A, O, T, N) = (0.95, 60, 5, 21, 50, 500)

#Training Data

E
xp

ec
te

d 
Su

m
 D

is
R

ew
ar

d

 

 

KBR
Histogram

Figure 2: kPOMDPs+KBR controller. The left, middle, and right figures are 10× 10 Gridworld, Network, and
Hallway problems, respectively. Averaged discounted sum of rewards an agent got in test experiments are plotted
against the number of training samples. We ran N experiments, where one experiment consists of T steps. The
parameters are accompanied with the titles, (γ, S, A, O, T, N) = (γ, |S|, |A|, |O|, T , N). Training samples are
collected by uniform random actions. The leftmost plot for each figure is the result of uniform prior samples
where no information about the environment. 10×10 grid world problem is similar to the 4×4 grid world, where
state size is 100, reward is delivered by any action at a goal state with value 1, otherwise 0, and observations are
9 wall patterns about 4 nearest neighbors.

was increased in the 10 × 10 grid world and network
problems. In our limited experiments, though KBR
and histogram methods sometimes showed different
results depending on training data, they gave similar
results on average.

We also implemented a simulator of a swing-up cart-
balancing system. The system consists of a cart with
mass 8 kg running on a 2 m track and a freely swinging
pendulum with mass 2 kg attached to the cart with a
50 cm rod. The state of the system is the angle and the
angular velocity of the pendulum (θ, θ̇), however the
agent observes only the angle. The agent may apply
a horizontal force or action to the cart, chosen from
a ∈ {−250,−150,−50, 0, 50, 150, 250}N. The dynam-
ics of the system are nonlinear. The states are con-
tinuous, but time is discretized in steps of 0.1 s. The
objective is to balance the pendulum in the inverted
position. Training samples are collected by applying
uniform random actions from uniformly random states
over θ = [−π/3, π/3], θ̇ = [3, 3]. The reward function
is given by R(θ, θ̇) = exp(−θ2/2σ2

1 − θ̇2/10σ2
2), where

σ2
1 and σ2

2 are the variances of uniform distributions
over θ = [−π/3, π/3], θ̇ = [3, 3], respectively.

Figure 3 shows a visualization of the kPOMDP dy-
namics and the inverted pendulum results (see cap-
tion details). The rightmost figure plots the aver-
aged result of the earned rewards (height=cos(θ)) of
the learned policies as a function of training samples.
The episode length was 10 sec, i.e., the maximum of
the total rewards is 100. The result was averaged
over 20 experiments, the planning depth was d = 1,
and the initial value function was the reward function
R(θ, θ̇). In kPOMDP, we used Gaussian kernels G(·, ·)
for states and observations kS((θ1, θ̇1), (θ2, θ̇2)) =
G(θ1, θ2)G(θ̇1, θ̇2), kO(θ1, θ2) = G(θ1, θ2), where the

kernel parameters σ were σ = MedDist/30 for θ and
σ = MedDist/10 for θ̇, where MedDist is the me-
dian inter-sample distance. The kernel for actions
was the identity. We compared kPOMDP to his-
togram policies where the environment is discretized.
Histogram(M) indicatesM×M discretized states over
[−π/3, π/3]×[3, 3]. kPOMDP almost reached the max-
imum value 100 and showed better results than his-
togram policies.

6 Summary

We have introduced POMDPs in feature spaces, where
beliefs over states are represented as distribution em-
beddings in feature spaces and updated via the ker-
nel Bayes’ rule. The Bellman equations, value func-
tions, and policies are all expressed as functions of
this feature representation. We further proposed a pol-
icy learning strategy by value iteration in the kernel
framework, where the isotonic and contraction prop-
erties of the kernel Bellman operator are enforced by a
simple correction. Value initialization and action edge
pruning can be implemented for kernel POMDPs, fol-
lowing the approach of distributional POMDPs such
as QMDP. Experiments confirm that the controller
learned in feature space converges to the optimum pol-
icy. Our approach serves as a first step towards more
powerful kernel-based algorithms for POMDPs.

A Appendix: Kernel Bayes’ Rule

A variant of the kernel Bayes’ rule algorithm we have
used in this paper is described. [Fukumizu et al., 2011]
propose a squared regularization form for the empirical
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Figure 3: Inverted pendulum results with an example of kPOMDP dynamics. In the three 3D plots, all the points
indicate training samples on state set S = (θ, θ̇) and z axis indicates the magnitude of weights on their samples
(after normalization), i.e., belief embedding weights α̂ identifying belief embedding µ̂S . The true state of the
system is also marked by the black point in each 3D plot. The four colors indicate different combinations of signs
of states (for instance, blue denotes positive angular velocity and negative angle). The middle figure in the 3D
plots shows the initial belief estimate given an initial observation o = θ, estimated by α = (GO+nϵOIn)

−1kO(o)
in Algorithm 2. Since θ̇ is uncertain at the initial point, positive weights spread in the direction of θ̇ axis. The
left and right figures in the 3D plots correspond to the updated weights α′

a,o′ of belief embeddings depending on
the executed actions a1 (positive) and a2 (negative) after observing a new observation o′ = θ′. Angular velocity
θ̇ is then well estimated by the kPOMDPs. The rightmost figure shows the averaged result of the total rewards
obtained by learned policies as training samples increased. More description is in the text.

posterior embedding in (10),

µ̂X̄|y = ĈX̄Ȳ

(
Ĉ2

Ȳ Ȳ + δnIn

)−1

ĈȲ Ȳ kY(y, ·), (22)

where δ is a small regularization parameter to avoid
the instability of Ĉ−1

Ȳ Ȳ
, since the empirical estimate

ĈȲ Ȳ may include negative weights. The estimate (22)
is consistent under smoothness assumptions, and con-
verges to µX̄|y in the infinite sample limit. Since we
always normalize weight vectors to probability vectors
as in subsection 4.2, however, we use the simpler and
more computationally efficient estimate

µ̂X̄|y = ĈX̄Ȳ (ĈȲ Ȳ + ϵnIn)
−1kY(y, ·), (23)

where ϵ is a small regularization parameter. Though
the consistency of (23) with the combination of the
normalization is not theoretically proven, experiments
(Section 5) show good empirical results. In what fol-
lows we give the KBR algorithm when the estimate
(23) is used with normalized weights.

Denote feature vectors φ(X) = kX (X, ·) and ϕ(Y ) =
kY(Y, ·). Let U1, . . . , Ul be l samples drawn from
the prior Π and (X1, Y1), . . . , (Xn, Yn) be n samples
drawn from P . Consider an empirical prior embed-
ding µ̂Π = Ῡγ where Ῡ = (φ(U1), . . . , φ(Ul)) are fea-
ture mappings of the prior samples and γ ∈ Rl is a
weight vector. Define the n × l matrix GXU = Υ⊤Ῡ,
and

Υ ◦ Φ := (φ(X1)⊗ ϕ(Y1), . . . , φ(Xn)⊗ ϕ(Yn)) ,
Φ ◦ Φ := (ϕ(Y1)⊗ ϕ(Y1), . . . , ϕ(Yn)⊗ ϕ(Yn)) . (24)

Empirical estimates of the covariance operators
CX̄Ȳ , CȲ Ȳ are then given by ĈX̄Ȳ = (Υ ◦ Φ)β,

ĈȲ Ȳ = (Φ ◦ Φ)β with the weight vector β =

(GX + εnIn)
−1
GXUγ [Fukumizu et al., 2011]. We ap-

proximate β by a non-negative vector β̂, as in subsec-
tion 4.2, leading to the following proposition:

Proposition 1. The empirical estimate eq.(23) has
the following Gram matrix expression using a non-
negative vector β̂ for all y ∈ Y:

µ̂X̄|y = ΥRX|Y (β̂)kY (y),

RX|Y (β̂) :=
(
D(β̂)GY + δnIn

)−1

D(β̂), (25)

where kY (y) = Φ⊤ϕ(y) and D(β̂) = diag(β̂).

Proof. The proof follows the same reasoning as Propo-
sition 3.4 of [Fukumizu et al., 2011].

Let α(y) = RX|Y (β)Φ
⊤ϕ(y) ∈ Rn. The posterior em-

bedding µX̄|y can be estimated by a linear combination
of feature vectors on samples Υ = (φ(X1), . . . , φ(Xn))
with weights α(y) ∈ Rn that depend on y ∈ Y.
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