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Abstract Humans manage to adapt learned movements
very quickly to new situations by generalizing learned be-
haviors from similar situations. In contrast, robots currently
often need to re-learn the complete movement. In this paper,
we propose a method that learns to generalize parametrized
motor plans by adapting a small set of global parameters,
called meta-parameters. We employ reinforcement learning
to learn the required meta-parameters to deal with the cur-
rent situation, described by states. We introduce an appro-
priate reinforcement learning algorithm based on a kernel-
ized version of the reward-weighted regression. To show its
feasibility, we evaluate this algorithm on a toy example and
compare it to several previous approaches. Subsequently, we
apply the approach to three robot tasks, i.e., the generaliza-
tion of throwing movements in darts, of hitting movements
in table tennis, and of throwing balls where the tasks are
learned on several different real physical robots, i.e., a Bar-
rett WAM, a BioRob, the JST-ICORP/SARCOS CBi and a
Kuka KR 6.
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1 Introduction

Human movements appear to be represented using move-
ment templates, also called motor primitives (Schmidt and
Wrisberg, 2000). Once learned, these templates allow hu-
mans to quickly adapt their movements to variations of the
situation without the need of re-learning the complete move-
ment. For example, the overall shape of table tennis fore-
hands are very similar when the swing is adapted to varied
trajectories of the incoming ball and a different targets on the
opponent’s court. To accomplish such behavior, the human
player has learned by trial and error how the global parame-
ters of a generic forehand need to be adapted due to changes
in the situation (Mülling et al, 2010, 2011).

In robot learning, motor primitives based on dynami-
cal systems (Ijspeert et al, 2002; Schaal et al, 2007) can
be considered a technical counterpart to these templates.
They allow acquiring new behaviors quickly and reliably
both by imitation and reinforcement learning. Resulting suc-
cesses have shown that it is possible to rapidly learn motor
primitives for complex behaviors such as tennis-like swings
(Ijspeert et al, 2002), T-ball batting (Peters and Schaal,
2008b), drumming (Pongas et al, 2005), biped locomotion
(Nakanishi et al, 2004), ball-in-a-cup (Kober and Peters,
2011b), and even in tasks with potential industrial applica-
tions (Urbanek et al, 2004). While the examples are impres-
sive, they do not yet address how a motor primitive can be
generalized to a different behavior by trial and error without
re-learning the task. Such generalization of behaviors can
be achieved by adapting the meta-parameters of the move-
ment representation. Meta-parameters are defined as a small
set of parameters that adapt the global movement behavior.
The dynamical system motor primitives can be adapted both
spatially and temporally without changing the overall shape
of the motion (Ijspeert et al, 2002). In this paper, we learn
a mapping from a range of changed situations, described by
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states, to the meta-parameters to adapt the template’s behav-
ior. We consider movements where it is sufficient to reshape
(e.g., rescale the motion spatially and/or temporally) the
global movement by optimizing meta-parameters to adapt
to a new situation instead of tuning the movement primi-
tive’s shape parameters that describe the fine details of the
movement.

Dynamical systems motor primitives have the capabil-
ity to adapt the movement to a changed end positions. Here,
the end position is a meta-parameter. This was exploited in
(Ijspeert et al, 2002) for tennis-like swings with static ball
targets and in (Pastor et al, 2009) for object manipulation. In
these papers, the desired end position is given in Cartesian
coordinates and the movement primitives operate in Carte-
sian coordinates as well. Thus, the meta-parameters of the
motor primitives are straightforward to set. In this paper,
we are interested in non-intuitive connections , where the
relation between the desired outcome and the meta-param-
eters is not straightforward. There is related prior work in
the context of programming by demonstration by Ude et al
(2010) and Kronander et al (2011) who employ supervised
learning to learn a mapping from desired outcomes to meta-
parameters for tasks such as reaching, throwing, drumming,
and mini-golf. They assume that a teacher has presented a
number of demonstrations that cannot be contradictory and
the task is to imitate and generalize these demonstrations.
Lampariello et al (2011) employ a global planner to pro-
vide demonstrations of optimal catching meta-parameters
and use supervised learning approaches to generalize these
in real-time. In contrast, in our setting the robot actively ex-
plores different movements and improves the behavior ac-
cording to a cost function. It can deal with contradictory
demonstrations and actively generate its own scenarios by
exploration combined with self-improvement. As mentioned
in (Ude et al, 2010), the two approaches may even be com-
plimentary: reinforcement learning can provide demonstra-
tions for supervised learning, and supervised learning can be
used as a starting point for reinforcement learning.

Adapting movements to situations is also discussed in
(Jetchev and Toussaint, 2009) in a supervised learning set-
ting. Their approach is based on predicting a trajectory from
a previously demonstrated set and refining it by motion
planning. The authors note that kernel ridge regression per-
formed poorly for the prediction if the new situation is far
from previously seen ones as the algorithm yields the global
mean. In our approach, we employ a cost weighted mean
that overcomes this problem. If the situation is far from pre-
viously seen ones, large exploration will help to find a solu-
tion.

In machine learning, there have been many attempts to
use meta-parameters in order to generalize between tasks
(Caruana, 1997). Particularly, in grid-world domains, sig-
nificant speed-up could be achieved by adjusting policies

by modifying their meta-parameters, e.g., re-using options
with different subgoals (McGovern and Barto, 2001). The
learning of meta-parameters of the learning algorithm has
been proposed as a model for neuromodulation in the brain
(Doya, 2002). In contrast, we learn the meta-parameters of
a motor skill in this paper. In robotics, such meta-parame-
ter learning could be particularly helpful due to the com-
plexity of reinforcement learning for complex motor skills
with high dimensional states and actions. The cost of expe-
rience is high as sample generation is time consuming and
often requires human interaction (e.g., in cart-pole, for plac-
ing the pole back on the robot’s hand) or supervision (e.g.,
for safety during the execution of the trial). Generalizing
a teacher’s demonstration or a previously learned policy to
new situations may reduce both the complexity of the task
and the number of required samples. Hence, a reinforcement
learning method for acquiring and refining meta-parameters
of pre-structured primitive movements becomes an essential
next step, which we will address in this paper.

This paper does not address the problem of decid-
ing whether it is more advantageous to generalize existing
generic movements or to learn a novel one. Similar to most
reinforcement learning approaches, the states and meta-pa-
rameters (which correspond to actions in the standard rein-
forcement learning settings) as well as the cost or reward
function need to be designed by the user prior to the learn-
ing process. Here, we can only provide a few general in-
dications with regard to the choice of these setting. Cost
functions need to capture the desired outcome of the rein-
forcement learning process. Often the global target can be
described verbally - but it is not obvious how the cost needs
to be scaled and how to take secondary optimization crite-
ria into account. For example, when throwing at a target, the
global goal is hitting it. However, it is not obvious which
distance metric should be used to score misses, which sec-
ondary criteria (e.g. required torques) should be included,
and which weight each criterion should be assigned. These
choices influence both the learning performance and the fi-
nal policy. Even for human reaching movements, the under-
lying cost function is not completely understood (Bays and
Wolpert, 2007). In practice, informative cost functions (i.e.,
cost functions that contain a notion of closeness) often per-
form better than binary reward functions in robotic tasks.
In this paper, we used a number of cost functions both with
and without secondary objectives. In the future, inverse rein-
forcement learning (Russell, 1998) may be a useful alterna-
tive to automatically recover underlying cost functions from
data as done already in other settings.

The state of the environment needs to enable the robot to
obtain sufficient information to react appropriately. The pro-
posed algorithm can cope with superfluous states at a cost
of slower learning. Similarly, the meta-parameters are de-
fined by the underlying representation of the movement. For
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example, the dynamical systems motor primitives (Ijspeert
et al, 2002; Schaal et al, 2007) have meta-parameters for
scaling the duration and amplitude of the movement as well
as the possibility to change the final position. Restricting the
meta-parameters to task relevant ones, may often speed up
the learning process.

We present current work on automatic meta-parameter
acquisition for motor primitives by reinforcement learning.
We focus on learning the mapping from situations to meta-
parameters and how to employ these in dynamical systems
motor primitives. We extend the motor primitives of Ijspeert
et al (2002) with a learned meta-parameter function and
re-frame the problem as an episodic reinforcement learn-
ing scenario. In order to obtain an algorithm for fast rein-
forcement learning of meta-parameters, we view reinforce-
ment learning as a reward-weighted self-imitation (Peters
and Schaal, 2008a; Kober and Peters, 2011b). Compared to
the preliminary version of this paper (Kober et al, 2010b),
this paper includes significantly extended real robot evalu-
ations, an extended description of the approach, a compari-
son to related approaches, as well as an application to active
learning.

To have a general meta-parameter learning, we adopted
a parametric method, the reward-weighed regression (Pe-
ters and Schaal, 2008a), and turned it into a non-parametric
one. We call this method Cost-regularized Kernel Regres-
sion (CrKR), which is related to Gaussian process regres-
sion (Rasmussen and Williams, 2006) but differs in the key
aspects of incorporating costs and exploration naturally. We
compare the CrKR with a traditional policy gradient algo-
rithm (Peters and Schaal, 2008b), the reward-weighted re-
gression (Peters and Schaal, 2008a), and supervised learning
(Ude et al, 2010; Kronander et al, 2011) on a toy problem in
order to show that it outperforms available previously devel-
oped approaches. As complex motor control scenarios, we
evaluate the algorithm in the acquisition of flexible motor
primitives for dart games such as Around the Clock (Mas-
ters Games Ltd., 2010), for table tennis, and for ball target
throwing.

2 Meta-Parameter Learning for Motor Primitives

The goal of this paper is to show that elementary move-
ments can be generalized by modifying only the meta-pa-
rameters of the primitives using learned mappings based on
self-improvement. In Section 2.1, we first review how a sin-
gle primitive movement can be represented and learned. We
discuss how meta-parameters may be able to adapt the mo-
tor primitive spatially and temporally to the new situation. In
order to develop algorithms that learn to automatically ad-
just such motor primitives, we model meta-parameter self-
improvement as an episodic reinforcement learning prob-
lem in Section 2.2. While this problem could in theory be

treated with arbitrary reinforcement learning methods, the
availability of few samples suggests that more efficient, task
appropriate reinforcement learning approaches are needed.
To avoid the limitations of parametric function approxima-
tion, we aim for a kernel-based approach. When a movement
is generalized, new parameter settings need to be explored.
Hence, a predictive distribution over the meta-parameters is
required to serve as an exploratory policy. These require-
ments lead to the method which we derive in Section 2.3
and employ for meta-parameter learning in Section 2.4.

2.1 Motor Primitives with Meta-Parameters

In this section, we review how the dynamical systems mo-
tor primitives (Ijspeert et al, 2002; Schaal et al, 2007) can
be used for meta-parameter learning. The dynamical system
motor primitives are a powerful movement representation
that allows ensuring the stability of the movement1, choos-
ing between a rhythmic and a discrete movement and is in-
variant under rescaling of both duration and movement am-
plitude. These modification parameters can become part of
the meta-parameters of the movement.

In this paper, we focus on single stroke movements
which appear frequently in human motor control (Wulf,
2007; Schaal et al, 2007). Therefore, we will always focus
on the discrete version of the dynamical system motor primi-
tives in this paper. We use the most recent formulation of the
discrete dynamical systems motor primitives (Schaal et al,
2007) where the phase z of the movement is represented by
a single first order system

ż=−ταzz. (1)

This canonical system has the time constant τ = 1/T where
T is the duration of the motor primitive and a parameter αz,
which is chosen such that z ≈ 0 at T . Subsequently, the in-
ternal state x of a second system is chosen such that posi-
tions q of all degrees of freedom are given by q = x1, the
velocities by q̇ = τx2 = ẋ1 and the accelerations by q̈ = τ ẋ2.
The learned dynamics of Ijspeert motor primitives can be
expressed in the following form

ẋ2 = ταx (βx (g− x1)− x2)+ τAf(z) , (2)

ẋ1 = τx2.

This set of differential equations has the same time con-
stant τ as the canonical system and parameters αx, βx are
set such that the system is critically damped. The goal pa-
rameter g, a transformation function f and an amplitude ma-
trix A = diag(a1,a2, . . . ,aI), with the amplitude modifier
a = [a1,a2, . . . ,aI] allow representing complex movements.

1 Note that thehe dynamical systems motor primitives ensure the
stability of the movement generation but cannot guarantee the stability
of the movement execution (Ijspeert et al, 2002; Schaal et al, 2007).
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In (Schaal et al, 2007), the authors use a = g − x0
1, with

the initial position x0
1, which ensures linear scaling. Other

choices are possibly better suited for specific tasks, see for
example (Park et al, 2008). The transformation function f(z)
alters the output of the first system, in Equation (1), so that
the second system in Equation (2), can represent complex
nonlinear patterns and is given by

f(z) = ∑N
n=1ψn (z)θ nz. (3)

Here, θ n contains the nth adjustable parameter of all degrees
of freedom, N is the number of parameters per degree of
freedom, and ψn(z) are the corresponding weighting func-
tions (Schaal et al, 2007). Normalized Gaussian kernels are
used as weighting functions given by

ψn =
exp

(

−hn (z− cn)
2
)

∑N
m=1 exp

(

−hm (z− cm)
2
) . (4)

These weighting functions localize the interaction in phase
space using the centers cn and widths hn. As z ≈ 0 at T ,
the influence of the transformation function f(z) in Equa-
tion (3) vanishes and the system stays at the goal position g.
Note that the degrees of freedom (DoF) are usually all mod-
eled independently in the second system in Equation (2). All
DoFs are synchronous as the dynamical systems for all DoFs
start at the same time, have the same duration and the shape
of the movement is generated using the transformation f(z)
in Equation (3), which is learned as a function of the shared
canonical system in Equation (1).

One of the biggest advantages of this motor primitive
framework (Ijspeert et al, 2002; Schaal et al, 2007) is that the
second system in Equation (2), is linear in the shape param-
eters θ . Therefore, these parameters can be obtained effi-
ciently, and the resulting framework is well-suited for imita-
tion (Ijspeert et al, 2002) and reinforcement learning (Kober
and Peters, 2011b). The resulting policy is invariant under
transformations of the initial position x0

1, the initial velocity
x0

2, the goal g, the amplitude A and the duration T (Ijspeert
et al, 2002). In (Kober et al, 2010a), a variant of the motor
primitive framework has been introduced that allows speci-
fying non-zero goal velocities ġ. These six modification pa-
rameters can be used as the meta-parameters γ of the move-
ment. Appendix A illustrates the influence of these meta-
parameters on the movement generation. Obviously, we can
make more use of the motor primitive framework by adjust-
ing the meta-parameters γ depending on the current situation
or state s according to a meta-parameter function γ̄(s). The
meta-parameter γ is treated as a random variable where the
variance correspond to the uncertainty. The state s can for
example contain the current position, velocity and acceler-
ation of the robot and external objects, as well as the target
to be achieved. This paper focuses on learning the meta-pa-
rameter function γ̄(s) by episodic reinforcement learning.

Fig. 1: This figure illustrates a table tennis task. The situa-
tion, described by the state s, corresponds to the positions
and velocities of the ball and the robot at the time the ball is
above the net. The meta-parameters γ are the joint positions
and velocity at which the ball is hit. The policy parameters
represent the backward motion and the movement on the arc.
The meta-parameter function γ̄(s), which maps the state to
the meta-parameters, is learned.

Fig. 2: This figure illustrates a 2D dart throwing task. The
situation, described by the state s corresponds to the relative
height. The meta-parameters γ are the velocity and the angle
at which the dart leaves the launcher. The policy parameters
represent the backward motion and the movement on the arc.
The meta-parameter function γ̄(s), which maps the state to
the meta-parameters, is learned.

Illustrations of the Learning Problem

We discuss the resulting learning problem based on the two
examples shown in Figures 1 and 2.

As a first illustration of the meta-parameter learning
problem, we take a table tennis task which is illustrated in
Figure 1 (in Section 3.3, we will expand this example to a
robot application). Here, the desired skill is to return a table
tennis ball. The motor primitive corresponds to the hitting
movement. When modeling a single hitting movement with
dynamical-systems motor primitives (Ijspeert et al, 2002),
the combination of retracting and hitting motions would be
represented by one movement primitive and can be learned
by determining the movement parameters θ . These param-
eters can either be estimated by imitation learning or ac-
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quired by reinforcement learning. The return can be adapted
by changing the paddle position and velocity at the hitting
point. These variables can be influenced by modifying the
meta-parameters of the motor primitive such as the final
joint positions and velocities. The state consists of the cur-
rent positions and velocities of the ball and the robot at the
time the ball is directly above the net. The meta-parameter
function γ̄(s) maps the state (the state of the ball and the
robot before the return) to the meta-parameters γ (the final
positions and velocities of the motor primitive). Its variance
corresponds to the uncertainty of the mapping.

In a 2D dart throwing task with a dart on a launcher
which is illustrated in Figure 2 (in Section 3.2, we will ex-
pand this example to a robot application) the desired skill
is to hit a specified point on a wall with a dart. The dart is
placed on the launcher and held there by friction. The mo-
tor primitive corresponds to the throwing of the dart. When
modeling a single dart’s movement with dynamical-systems
motor primitives (Ijspeert et al, 2002), the combination of re-
tracting and throwing motions would be represented by the
movement parameters θ of one movement primitive. The
dart’s impact position can be adapted to a desired target by
changing the velocity and the angle at which the dart leaves
the launcher. These variables can be influenced by chang-
ing the meta-parameters of the motor primitive such as the
final position of the launcher and the duration of the throw.
The state consists of the current position of the hand and
the desired position on the target. If the thrower is always
at the same distance from the wall the two positions can be
equivalently expressed as the vertical distance. The meta-pa-
rameter function γ̄(s) maps the state (the relative height) to
the meta-parameters γ (the final position g and the duration
of the motor primitive T ).

The approach presented in this paper is applicable to any
movement representation that has meta-parameters, i.e., a
small set of parameters that allows to modify the movement.
In contrast to (Lampariello et al, 2011; Jetchev and Tous-
saint, 2009; Grimes and Rao, 2008; Bentivegna et al, 2004)
our approach does not require explicit (re-)planning of the
motion.

In the next sections, we derive and apply an appropriate
reinforcement learning algorithm.

2.2 Problem Statement: Meta-Parameter Self-Improvement

The problem of meta-parameter learning is to find a stochas-
tic policy π(γ|x) = p(γ|s) that maximizes the expected re-
turn

J(π) =

ˆ

S

p(s)

ˆ

G

π(γ|s)R(s,γ)dγ ds, (5)

where S denotes the the space of states s, G denotes the the
space of meta-parameters γ , and R(s,γ) denotes all the re-

wards following the selection of the meta-parameter γ ac-
cording to a situation described by state s. Such a policy
π(γ|x) is a probability distribution over meta-parameters
given the current state. The stochastic formulation allows
a natural incorporation of exploration, and the optimal time-
invariant policy has been shown to be stochastic in the case
of hidden state variables (Sutton et al, 1999; Jaakkola et al,
1993). The return of an episode is R(s,γ) = T−1 ∑T

t=0 r
t with

number of steps T and rewards rt . For a parametrized policy
π with parameters w it is natural to first try a policy gradient
approach such as finite-difference methods, vanilla policy
gradient approaches and natural gradients. While we will de-
note the shape parameters by θ , we denote the parameters of
the meta-parameter function by w. Reinforcement learning
of the meta-parameter function γ̄(s) is not straightforward
as only few examples can be generated on the real system
and trials are often quite expensive. The credit assignment
problem is non-trivial as the whole movement is affected
by every change in the meta-parameter function. Early at-
tempts using policy gradient approaches resulted in tens of
thousands of trials even for simple toy problems, which is
not feasible on a real system.

Dayan and Hinton (1997) showed that an immedi-
ate reward can be maximized by instead minimizing the
Kullback-Leibler divergence D(π(γ|s)R(s,γ)||π ′(γ|s)) be-
tween the reward-weighted policy π(γ|s) and the new policy
π ′(γ|s). As we are in an episodic setting, this form of op-
timization solves the considered problem. Williams (1992)
suggested to use Gaussian noise in this context; hence, we
employ a policy of the form

π(γ|s) = N (γ|γ̄(s),σ2(s)I),

where we have the deterministic mean policy γ̄(s) = φ(s)Tw
with basis functions φ (s) and parameters w as well as
the variance σ2(s) that determines the exploration ε ∼

N (0,σ2(s)I) as e.g., in (Peters and Schaal, 2008b). The
parameters w can then be adapted by reward-weighted re-
gression in an immediate reward (Peters and Schaal, 2008a)
or episodic reinforcement learning scenario (Kober and Pe-
ters, 2011b). The reasoning behind this reward-weighted re-
gression is that the reward can be treated as an improper
probability distribution over indicator variables determining
whether the action is optimal or not.

2.3 A Task-Appropriate Reinforcement Learning
Algorithm

Designing good basis functions is challenging, a nonpara-
metric representation is better suited in this context. There is
an intuitive way of turning the reward-weighted regression
into a Cost-regularized Kernel Regression. The kerneliza-
tion of the reward-weighted regression can be done straight-
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forwardly (similar to Section 6.1 of (Bishop, 2006) for reg-
ular supervised learning). Inserting the reward-weighted re-
gression solution w = (ΦTRΦ+λ I)−1ΦTRΓi and using the
Woodbury formula2 (Welling, 2010), we transform reward-
weighted regression into a Cost-regularized Kernel Regres-
sion

γ̄ i = φ(s)Tw = φ(s)T
(

ΦTRΦ+λ I
)−1

ΦTRΓi

= φ(s)TΦT
(

ΦΦT +λ R−1
)−1

Γi, (6)

where the rows of Φ correspond to the basis functions
φ(si) = Φi of the training examples, Γi is a vector contain-
ing the training examples for meta-parameter component γ i,
and λ is a ridge factor. Next, we assume that the accumu-
lated rewards Rk are strictly positiveRk > 0 and can be trans-
formed into costs by ck = 1/Rk. Hence, we have a cost ma-
trix C =R−1 = diag(R−1

1 , . . . ,R−1
n ) with the cost of all n data

points. After replacing k(s) = φ (s)TΦT and K = ΦΦT, we
obtain the Cost-regularized Kernel Regression

γ̄ i = γ̄ i(s) = k(s)T (K+λ C)−1 Γi,

which gives us a deterministic policy. Here, costs correspond
to the uncertainty about the training examples. Thus, a high
cost is incurred for being further away from the desired opti-
mal solution at a point. In our formulation, a high cost there-
fore corresponds to a high uncertainty of the prediction at
this point.

In order to incorporate exploration, we need to have a
stochastic policy and, hence, we need a predictive distribu-
tion. This distribution can be obtained by performing the

2 The equality (ΦTRΦ + λ I)−1ΦTR = ΦT(ΦΦT + λ R−1)−1 is
straightforward to verify by left and right multiplying the non-inverted
terms: ΦTR(ΦΦT +λ R−1) = (ΦTRΦ+λ I)ΦT.

Algorithm 1: Meta-Parameter Learning
Preparation steps:

Learn one or more motor primitives by imitation and/or
reinforcement learning (yields shape parameters θ ).

Determine initial state s0, meta-parameters γ0, and cost C0

corresponding to the initial motor primitive.
Initialize the corresponding matrices S,Γ,C.
Choose a kernel k,K.
Set a scaling parameter λ .

For all iterations j:

Determine the state s j specifying the situation.
Calculate the meta-parameters γ j by:

Determine the mean of each meta-parameter i
γ̄i(s j) = k(s j)T (K+λ C)−1 Γi,

Determine the variance

σ 2(s j) = k(s j, s j)−k(s j)T (K+λ C)−1 k(s j),
Draw the meta-parameters from a Gaussian distribution

γ j ∼ N (γ |γ̄(s j),σ 2(s j)I).
Execute the motor primitive using the new meta-parameters.
Calculate the cost c j at the end of the episode.
Update S,Γ,C according to the achieved result.

policy update with a Gaussian process regression and we
directly see from the kernel ridge regression that

σ2(s) = k(s,s)+λ − k(s)T (K+λ C)−1 k(s),

where k(s,s) = φ(s)Tφ(s) is the norm of the point in the
kernel space. We call this algorithm Cost-regularized Ker-
nel Regression. Algorithm 1 describes the complete learning
procedure, where the rows of S correspond to the states of
the training examples si = Si.

The algorithm corresponds to a Gaussian process regres-
sion where the costs on the diagonal are input-dependent
noise priors. The parameter λ acts as a exploration-
exploitation trade-off parameter as illustrated in Figure 6.
Gaussian processes have been used previously for reinforce-
ment learning (Engel et al, 2005) in value function based
approaches while here we use them to learn the policy.

2.4 Meta-Parameter Learning by Reinforcement Learning

As a result of Section 2.3, we have a framework of mo-
tor primitives as introduced in Section 2.1 that we can use
for reinforcement learning of meta-parameters as outlined
in Section 2.2. We have generalized the reward-weighted re-
gression policy update to instead become a Cost-regularized
Kernel Regression (CrKR) update where the predictive vari-
ance is used for exploration. In Algorithm 1, we show the
complete algorithm resulting from these steps.

The algorithm receives three inputs, i.e., (i) a motor
primitive that has associated meta-parameters γ , (ii) an ini-
tial example containing state s0, meta-parameter γ0 and cost
C0, as well as (iii) a scaling parameter λ . The initial mo-
tor primitive can be obtained by imitation learning (Ijspeert
et al, 2002) and, subsequently, improved by parametrized
reinforcement learning algorithms such as policy gradients
(Peters and Schaal, 2008b) or Policy learning by Weighting
Exploration with the Returns (PoWER) (Kober and Peters,
2011b). The demonstration also yields the initial example
needed for meta-parameter learning. While the scaling pa-
rameter is an open parameter, it is reasonable to choose it as
a fraction of the average cost and the output noise parameter
(note that output noise and other possible hyper-parameters
of the kernel can also be obtained by approximating the un-
weighted meta-parameter function).

Illustration of the Algorithm

In order to illustrate this algorithm, we will use the exam-
ple of the table tennis task introduced in Section 2.1. Here,
the robot should hit the ball accurately while not destroying
its mechanics. Hence, the cost could correspond to the dis-
tance between the ball and the paddle, as well as the squared
torques. The initial policy is based on a prior, illustrated in
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Fig. 3: This figure illustrates the meaning of policy improvements with Cost-regularized Kernel Regression. Each sample
consists of a state, a meta-parameter and a cost where the cost is indicated the blue error bars. The red line represents the
improved mean policy, the dashed green lines indicate the exploration/standard deviation of the new policy. For comparison,
the gray lines show standard Gaussian process regression. As the cost of a data point is equivalent to having more noise,
pairs of states and meta-parameter with low cost are more likely to be reproduced than others with high costs.

Figure 3(a), that has a standard deviation for initial explo-
ration (it often makes sense to start with a uniform prior).
This standard deviation is used to enforce exploration. To
return a ball, we sample the meta-parameters from the pol-
icy based on the current state. After the trial the cost is de-
termined and, in conjunction with the employed meta-pa-
rameters, used to update the policy. If the cost is large (e.g.,
the ball was far from the racket), the standard deviation of
the policy is large as it may still be improved and therefore
needs exploration. Furthermore, the mean of the policy is
shifted only slightly towards the observed example as we
are uncertain about the optimality of this action. If the cost is
small, we know that we are close to an optimal policy (e.g.,
the racket hit the ball off-center) and only have to search in
a small region around the observed trial. The effects of the
cost on the mean and the standard deviation are illustrated
in Figure 3(b). Each additional sample refines the policy
and the overall performance improves (see Figure 3(c)). If
a state is visited several times and different meta-parameters
are sampled, the policy update must favor the meta-parame-
ters with lower costs. If several sets of meta-parameters have
similarly low costs, where it converges depends on the order
of samples. The cost function should be designed to avoid
this behavior and to favor a single set. The exploration has
to be restricted to safe meta-parameter ranges. Algorithm 1
exhibits this behavior as the exploration is only local and
restricted by the prior (see Figure 3). If the initial policy is
safe, exploring the neighboring regions is likely to be safe
as well. Additionally, lower level controllers as well as the
mechanics of the robot ensure that kinematic and dynamic
constrains are satisfied and a term in the cost function can
be used to discourage potentially harmful movements.

In the example of the 2D dart throwing task, the cost is
similar. Here, the robot should throw darts accurately while
not destroying its mechanics. Hence, the cost corresponds
to the error between desired goal and the impact point, as

well as the absolute velocity of the end-effector. Often the
state is determined by the environment, e.g., the ball trajec-
tory in table tennis depends on the opponent. However, for
the dart setting, we could choose the next target and thus
employ CrKR as an active learning approach by picking
states with large standard deviations. In the dart throwing
example we have a correspondence between the state and
the outcome similar to a regression problem. However, the
mapping between the state and the meta-parameter is not
unique. The same height can be achieved by different com-
binations of velocities and angles. Averaging these combina-
tions is likely to generate inconsistent solutions. The regres-
sion must hence favor the meta-parameters with the lower
costs. CrKR can be employed as a regularized regression
method in this setting.

3 Evaluations and Experiments

In Section 2, we have introduced both a framework for meta-
parameter self-improvement as well as an appropriate rein-
forcement learning algorithm used in this framework. In this
section, we will first show that the presented reinforcement
learning algorithm yields higher performance than off-the
shelf approaches. Hence, we compare it on a simple pla-
nar cannon shooting problem (Lawrence et al, 2003) with
the preceding reward-weighted regression, an off-the-shelf
finite difference policy gradient approach, and show the ad-
vantages over supervised learning approaches.

The resulting meta-parameter learning framework can
be used in a variety of settings in robotics. We consider three
scenarios here, i.e., (i) dart throwing with a simulated Bar-
rett WAM, a real Kuka KR 6, and the JST-ICORP/SARCOS
humanoid robot CBi (Cheng et al, 2007), (ii) table tennis
with a simulated robot arm and a real Barrett WAM, and
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Finite Difference Gradient Reward−weighted Regression Cost−regularized Kernel Regression

Fig. 4: This figure shows the performance of the compared algorithms averaged over 10 complete learning runs. Cost-
regularized Kernel Regression finds solutions with the same final performance two orders of magnitude faster than the finite
difference gradient (FD) approach and twice as fast as the reward-weighted regression. At the beginning FD often is highly
unstable due to our attempts of keeping the overall learning speed as high as possible to make it a stronger competitor. The
lines show the median and error bars indicate standard deviation. The initialization and the initial costs are identical for all
approaches. However, the omission of the first twenty rollouts was necessary to cope with the logarithmic rollout axis. The
number of rollouts includes the rollouts not used to update the policy.

(iii) throwing a ball at targets with a MATLAB simulation
and a real BioRob (Lens et al, 2010).

3.1 Benchmark Comparison: Toy Cannon Shots

In the first task, we only consider a simple simulated planar
cannon shooting where we benchmark our Reinforcement
Learning by Cost-regularized Kernel Regression approach
against a finite difference gradient estimator and the reward-
weighted regression. Additionally we contrast our reinforce-
ment learning approach to a supervised one. Here, we want
to learn an optimal policy for a 2D toy cannon environment
similar to (Lawrence et al, 2003). This benchmark example
serves to illustrate out approach and to compare it to various
previous approaches.

The setup is given as follows: A toy cannon is at a fixed
location [0.0,0.1]m. The trajectory of the cannon ball de-
pends on the angle with respect to the ground and the speed
at which it leaves the cannon. The flight of the canon ball
is simulated as ballistic flight of a point mass with Stokes’s
drag as wind model. The cannon ball is supposed to hit the
ground at a desired distance. The desired distance [1..3]m
and the wind speed [0..1]m/s, which is always horizontal,
are used as input states, the velocities in horizontal and ver-
tical directions are the meta-parameters (which influences
the angle and the speed of the ball leaving the cannon). In
this benchmark we do not employ the motor primitives but
set the meta-parameters directly. Lower speed can be com-
pensated by a larger angle. Thus, there are different possible

policies for hitting a target; we intend to learn the one which
is optimal for a given cost function. This cost function is
defined as

c= (bx− sx)
2 + 0.01

(

ḃ2
x + ḃ2

z

)

,

where bx is the impact position on the ground, sx the desired
impact position as indicated by the state, and ḃ{x,z} are the
horizontal and vertical velocities of the cannon ball at the
impact point respectively. It corresponds to maximizing the
precision while minimizing the employed energy according
to the chosen weighting. The input states (desired distance
and wind speed) are drawn from a uniform distribution and
directly passed to the algorithms. All approaches performed
well in this setting, first driving the position error to zero
and, subsequently, optimizing the impact velocity. The ex-
periment was initialized with [1,10]m/s as initial ball ve-
locities and 1m/s as wind velocity. This setting corresponds
to a very high parabola, which is far from optimal. For plots,
we evaluate the policy on a test set of 25 uniformly randomly
chosen points that remain the same throughout of the exper-
iment and are never used in the learning process but only to
generate Figure 4.

We compare our novel algorithm to a finite difference
policy gradient (FD) method (Peters and Schaal, 2008b)
and to the reward-weighted regression (RWR) (Peters and
Schaal, 2008a). The FD method uses a parametric policy
that employs radial basis functions in order to represent the
policy and perturbs the parameters. We used 25 Gaussian ba-
sis functions on a regular grid for each meta-parameter, thus
a total of 50 basis functions. The number of basis functions,



9

10
2

10
3

20

40

60

80

100

number of rollouts/samples

av
er

ag
e 

co
st

(a) Velocity

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

number of rollouts/samples

av
er

ag
e 

co
st

(b) Precision

10
2

10
3

0

0.5

1

1.5

2

number of rollouts/samples

av
er

ag
e 

co
st

(c) Combined

 

 

GPR random policy GPR structured policy CrKR final CrKR

Fig. 5: In this figure, we compare Gaussian process regression (GPR) in a supervised learning setting as proposed by (Ude
et al, 2010; Kronander et al, 2011) to Cost-regularized Kernel Regression (CrKR) in a reinforcement learning setting. The
red curve corresponds to the red curve (Cost-regularized Kernel Regression) in Figure 4. The GPR is trained with samples
from the prior used for the CrKR (blue line) and with samples of the final CrKR policy (cyan line) respectively. The black
line indicates the cost after CrKR has converged. GPR with samples drawn from the final policy performs best. Please note
that this comparison is contrived as the role of CrKR is to discover the policy that is provided to “GPR structured policy”.
GPR can only reproduce the demonstrated policy, which is achieved perfectly with 1000 samples. GPR can reproduce the
demonstrated policy more accurately if more samples are available. However, it cannot improve the policy according to a
cost function and it is impacted by contradictory demonstrations. The results are averaged over 10 complete learning runs.
The lines show the median and error bars indicate standard deviation. The number of rollouts includes the rollouts not used
to update the policy.
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Fig. 6: This figure illustrates the influence of the parameter
λ for the Cost-regularized Kernel Regression. The red curve
(λ = 0.5) corresponds to the red curve (Cost-regularized
Kernel Regression) in Figure 4(c). The parameter λ trades
off the exploration versus the exploitation. A higher λ leads
to larger exploration and, thus, faster convergence to a sub-
optimal solution. The results are averaged over 10 complete
learning runs. The lines show the median and error bars in-
dicate standard deviation. The number of rollouts includes
the rollouts not used to update the policy.

the learning rate, as well as the magnitude of the perturba-
tions were tuned for best performance. We used 51 sets of
uniformly perturbed parameters for each update step. The
perturbed policies were evaluated on a batch of 25 input pa-

rameters to avoid over-fitting on specific input states.The FD
algorithm converges after approximately 2000 batch gradi-
ent evaluations, which corresponds to 2,550,000 shots with
the toy cannon.

The RWR method uses the same parametric policy as the
finite difference gradient method. Exploration is achieved by
adding Gaussian noise to the mean policy. All open param-
eters were tuned for best performance. The reward trans-
formation introduced by Peters and Schaal (2008a) did not
improve performance in this episodic setting. The RWR al-
gorithm converges after approximately 40,000 shots with
the toy cannon. For the Cost-regularized Kernel Regression
(CrKR) the inputs are chosen randomly from a uniform dis-
tribution. We use Gaussian kernels and the open parameters
were optimized by cross-validation on a small test set prior
to the experiment. Each trial is added as a new training point
if it landed in the desired distance range. The CrKR algo-
rithm converges after approximately 20,000 shots with the
toy cannon. The bandwidth of the kernels used for CrKR is
in the same order of magnitude as the bandwidth of the ba-
sis functions. However, due to the non-parametric nature of
CrKR, narrower kernels can be used to capture more details
in order to improve performance. Figure 6 illustrates the in-
fluence of the parameter λ for the CrKR.

After convergence, the costs of CrKR are the same as for
RWR and slightly lower than those of the FD method. The
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(a) The dart is placed
on the launcher.

(b) The arm moves
back.

(c) The arm moves
forward on an arc.

(d) The arm stops. (e) The dart is carried
on by its momentum.

(f) The dart hits the
board.

Fig. 7: This figure shows a dart throw in a physically realistic simulation.

(a) The dart is placed
in the hand.

(b) The arm moves
back.

(c) The arm moves
forward on an arc.

(d) The arm continues
moving.

(e) The dart is re-
leased and the arm
follows through.

(f) The arm stops and
the dart hits the board.

Fig. 8: This figure shows a dart throw on the real JST-ICORP/SARCOS humanoid robot CBi.
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Cost−regularized Kernel Regression

Reward−weighted Regression

Fig. 9: This figure shows the cost function of the dart-
throwing task for a whole game Around the Clock in each
rollout. The costs are averaged over 10 runs with the error-
bars indicating standard deviation. The number of rollouts
includes the rollouts not used to update the policy.

CrKR method needs two orders of magnitude fewer shots
than the FD method. The RWR approach requires twice the
shots of CrKR demonstrating that a non-parametric policy,
as employed by CrKR, is better adapted to this class of prob-
lems than a parametric policy. The squared error between the
actual and desired impact is approximately 5 times higher
for the finite difference gradient method, see Figure 4.

Compared to standard Gaussian process regression
(GPR) in a supervised setting, CrKR can improve the policy
over time according to a cost function and outperforms GPR

in settings where different combinations of meta-parameters
yield the same result. For details, see Figure 5.

3.2 Robot Dart-Throwing Games

Now, we turn towards the complete framework, i.e., we in-
tend to learn the meta-parameters for motor primitives in
discrete movements. We compare the Cost-regularized Ker-
nel Regression (CrKR) algorithm to the reward-weighted
regression (RWR). As a sufficiently complex scenario, we
chose a robot dart throwing task inspired by (Lawrence
et al, 2003). However, we take a more complicated sce-
nario and choose dart games such as Around the Clock

(Masters Games Ltd., 2010) instead of simple throwing at
a fixed location. Hence, it will have an additional parame-
ter in the state depending on the location on the dartboard
that should come next in the sequence. The acquisition of
a basic motor primitive is achieved using previous work on
imitation learning (Ijspeert et al, 2002). Only the meta-pa-
rameter function is learned using CrKR or RWR. For the
learning process, the targets (which are part of the state) are
uniformly distributed on the dartboard. For the evaluation
the targets are placed in the center of the fields. The reward
is calculated based on the impact position observed by a vi-
sion system in the real robot experiments or the simulated
impact position.

The dart is placed on a launcher attached to the end-
effector and held there by stiction. We use the Barrett WAM
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(a) The dart is picked up. (b) The arm moves forward on an
arc.

(c) The arm continues moving. (d) The dart is released.

(e) The arm follows through. (f) The arm continues moving. (g) The arm returns to the pick-up
position.

(h) The dart has hit the board.

Fig. 10: This figure shows a dart throw on the real Kuka KR 6 robot.

robot arm in order to achieve the high accelerations needed
to overcome the stiction. See Figure 7, for a complete throw-
ing movement. The motor primitive is trained by imitation
learning with kinesthetic teach-in. We use the Cartesian co-
ordinates with respect to the center of the dart board as in-
put states. In comparison with the benchmark example, we
cannot directly influence the release velocity in this setup.
Hence, we employ the parameter for the final position g, the
time scale of the motor primitive τ and the angle around the
vertical axis (i.e., the orientation towards the dart board to
which the robot moves before throwing) as meta-parameters
instead. The popular dart game Around the Clock requires
the player to hit the numbers in ascending order, then the
bulls-eye. As energy is lost overcoming the stiction of the
launching sled, the darts fly lower and we placed the dart-
board lower than official rules require. The cost function is
defined as

c= 10

√

∑
i∈{x,z}

(di− si)
2 + τ,

where di are the horizontal and vertical positions of the dart
on the dartboard after the throw, si are the horizontal and
vertical positions of the target corresponding to the state,
and τ corresponds to the velocity of the motion. After ap-
proximately 1000 throws the algorithms have converged but
CrKR yields a high performance already much earlier (see
Figure 9). We again used a parametric policy with radial ba-
sis functions for RWR. Here, we employed 225 Gaussian
basis function on a regular grid per meta-parameter. Design-
ing a good parametric policy proved very difficult in this
setting as is reflected by the poor performance of RWR.

This experiment has also being carried out on three real,
physical robots, i.e., a Barrett WAM, the humanoid robot
CBi (JST-ICORP/SARCOS), and a Kuka KR 6. CBi was

developed within the framework of the JST-ICORP Compu-
tational Brain Project at ATR Computational Neuroscience
Labs. The hardware of the robot was developed by the
American robotic development company SARCOS. CBi can
open and close the fingers which helps for more human-like
throwing instead of the launcher employed by the Barrett
WAM. See Figure 8 for a throwing movement.

We evaluated the approach on a setup using the Kuka
KR 6 robot and a pneumatic gripper. The robot automati-
cally picks up the darts from a stand. The position of the
first degree of freedom (horizontal position) as well as the
position of the fifth degree of freedom and the release tim-
ing (vertical position) were controlled by the algorithm. Due
to inaccurate release timing the vertical position varied in a
range of 10cm. Additionally the learning approach had to
cope with non-stationary behavior as the outcome of the
same set of parameters changed by one third of the dart
board diameter upward. Despite these additional complica-
tions the robot learned to reliably (within the reproduction
accuracy of 10cm as noted above) hit all positions on the
dart board using only a total of 260 rollouts. See Figure 10
for a throwing movement.

3.3 Robot Table Tennis

In the second evaluation of the complete framework, we use
the proposed method for hitting a table tennis ball in the air.
The setup consists of a ball gun that serves to the forehand
of the robot, a Barrett WAM and a standard sized table. The
movement of the robot has three phases. The robot is in a rest
posture and starts to swing back when the ball is launched.
During this swing-back phase, the open parameters for the
stroke are to be learned. The second phase is the hitting
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(a) The robot is in the rest
posture.

(b) The arm swings back. (c) The arm strikes the
ball.

(d) The arm follows
through and decelerates.

(e) The arm returns to the
rest posture.

Fig. 11: This figure shows the phases of a table tennis stroke on the real Barrett WAM.

(a) Left. (b) Half left. (c) Center high. (d) Center low. (e) Right.

Fig. 12: This figure shows samples of the learned forehands. Note that this figure only illustrates the learned meta-parameter
function in this context but cannot show timing (see Figure 14) and velocity and it requires a careful observer to note the
important configuration differences resulting from the meta-parameters.

(a) Left high. (b) Left low. (c) Center high. (d) Center low. (e) Right.

Fig. 13: This figure shows samples of the learned forehands on the real robot.

phase which ends with the contact of the ball and racket.
In the final phase, the robot gradually ends the stroking mo-
tion and returns to the rest posture. See Figure 11 for an
illustration of a complete episode and (Kober et al, 2010a)
for a more detailed description. The movements in the three
phases are represented by three motor primitives obtained
by imitation learning. We only learn the meta-parameters
for the hitting phase.

The meta-parameters are the joint positions g and ve-
locities ġ for all seven degrees of freedom at the end of the
second phase (the instant of hitting the ball) and a timing
parameter thit that controls when the swing back phase is
transitioning to the hitting phase. For this task we employ
a variant of the motor primitives that allows to set non-zero
end velocities (Kober et al, 2010a). We learn these 15 meta-

parameters as a function of the state, which corresponds to
the ball positions and velocities when it is directly over the
net. We employed a Gaussian kernel and optimized the open
kernel parameters according to typical values for the input
and output beforehand. As cost function we employ

c=

√

∑
i∈{x,y,z}

(bi (thit)− pi (thit))
2,

where bi (thit) are the Cartesian positions of the ball and
pi (thit) are the Cartesian positions of the center of the pad-
dle, both at the predicted hitting time thit. The policy is eval-
uated every 50 episodes with 25 ball launches picked ran-
domly at the beginning of the learning. We initialize the be-
havior with five successful strokes observed from another
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Fig. 14: This figure illustrates the effect of the velocity of
the ball towards the robot on the time it has until the ball
needs to be hit. The plot was generated by sweeping through
the velocity component towards the robot, keeping the other
position and velocity values fixed. The line is the mean of
100 sweeps drawn from the same ball distribution as used
during the learning.

player. After initializing the meta-parameter function with
only these five initial examples, the robot misses approxi-
mately 95% of the balls as shown in Figure 15. Trials are
only used to update the policy if the robot has successfully
hit the ball as they did not significantly improve the learn-
ing performance and in order to keep the calculation suffi-
ciently fast. Figures 12 and 13 illustrate different positions
of the ball the policy is capable of dealing with after the
learning. Figure 14 illustrates the dependence of the timing
parameter on the ball velocity towards the robot and Fig-
ure 15 illustrates the costs over all episodes. For the results
in Figure 15, we have simulated the flight of the ball as a
simple ballistic point mass and the bouncing behavior using
a restitution constant for the velocities. The state is directly
taken from the simulated ball data with some added Gaus-
sian noise. In the real robot experiment (Figure 16), the ball
is shot with a ball cannon. The position of the ball is de-
termined by two pairs of stereo cameras and the velocity is
obtained by numerical differentiation. In this second setting,
the state information is a lot less reliable due to noise in the
vision system and even the same observed state can lead to
different outcomes due to unobserved spin.

3.4 Active Learning of Ball Throwing

As an active learning setting, we chose a ball throwing task
where the goal is to improve the throws while trying to per-
form well in a higher level game. For this scenario, it is im-
portant to balance learning of the individual actions by prac-
ticing them while at the same time, focusing on the overall
performance in order to achieve the complete skill. Promi-
nent examples are leisure time activities such as sports or
motor skill games. For example, when playing darts with
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Fig. 15: This figure shows the cost function of the simulated
table tennis task averaged over 10 runs with the error-bars
indicating standard deviation. The red line represents the
percentage of successful hits and the blue line the average
cost. The number of rollouts includes the rollouts not used
to update the policy. At the beginning the robot misses the
ball 95% of the episodes and on average by 50cm. At the
end of the learning the robot hits almost all balls.
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Fig. 16: This figure shows the cost function of the table ten-
nis task on the real robot. The policy was learned entirely on
the real robot. The red line represents the percentage of suc-
cessful hits and the blue line the average cost. The number
of rollouts includes the rollouts not used to update the pol-
icy. At the beginning the robot misses the ball 70% of the
episodes and on average by 15cm. At the end of the learn-
ing the robot hits 80% of the balls.

friends, you will neither always attempt the lowest risk ac-
tion, nor always try to practice one particular throw, which
will be valuable when mastered. Instead, you are likely to try
plays with a reasonable level of risk and rely on safe throws
in critical situations. This exploration is tightly woven into
higher order dart games.

The higher level is modeled as a standard reinforcement
learning problem with discrete states and actions. The lower
level learning is done using CrKR. The higher level deter-
mines the target the robot is supposed to hit. The lower level
has to learn how to hit this target. The transition probabilities
of the higher level can be estimated from the learned meta-
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Fig. 17: This figure illustrates the side-stall game. The player
throws the ball and if it lands in the target (illustrated by a
wall with target holes) gets the number of points written next
to it. Missing the targets is not punished, however, going
over ten points leads to a loss of ten points.

parameter function as explained in Section 3.4.2. We will
discuss the rules of the game in Section 3.4.1, a simulated
experiment in Section 3.4.3, and the results of an evaluation
with a real BioRob in Section 3.4.4.

3.4.1 Game used for the Evaluations

The game is reminiscent of blackjack as the goal is to collect
as many points as possible without going over a threshold.
The player throws a ball at three targets. The three rewards
of one, two, and three are assigned to one target each. The
setup of the game is illustrated in Figure 17. If the ball lands
in the target, the player receives the corresponding number
of points. The player starts with zero points if he gets more
than 10 points he “busts” and incurs a loss of -10. The player
has the option to “stand” (i.e., stop throwing and collect the
accumulated number of points) at all times. Missing all tar-
gets does not entail a cost.

3.4.2 Two-Level Learning Approach

Our framework considers a hierarchy of two levels: a strat-
egy level and a behavior level. The strategy level determines
the strategy for the high-level moves, here termed “behav-
iors”, of the game. The behavior level deals with execut-
ing these behaviors in an optimal fashion. The strategy level
chooses the next behavior, which is then executed by the be-
havior level. Upon completion of the behavior, the strategy
level chooses the next behavior. The setup is illustrated in
Figure 18.

We assume that the game has discrete states s ∈ S and
discrete behaviors b∈ B. In the dart setting a behavior could
be attempting to hit a specific field and the state could cor-
respond to the current score. Given the current state, each
behavior has an associated expected outcome o∈O. For ex-
ample, the behavior “throw at target X” has the outcome

Fig. 18: This figure illustrates the setup of the roles of the
different levels.

“change score by X” as a result of hitting target X. The
transition probabilities Pb

so of the strategy level would ex-
press how likely it is to hit a different field. The game can
be modeled as an Markov decision process or MDP (Sutton
and Barto, 1998), where the states consist of the number of
accumulated points (zero to ten) and two additional game
states (“bust” and “stand”). The behaviors correspond to at-
tempting to throw at a specific target or to “stand” and are
fixed beforehand. We assume to have an episodic game with
a finite horizon, which can be expressed equivalently as an
infinite horizon problem where we define an absorbing ter-
minal state in which all actions receive an immediate reward
of 0.

On the behavior level, we augment the state space with
continuous states that describe the robot and the environ-
ment to form the combined state space s. This state space
could, for example, include the position and velocity of the
arm, the position of the targets as well as the current score.
The actions are considered to be continuous and could, for
example, be the accelerations of the arm. As the strategy
level has to wait until the behavior is completed, the behav-
iors need to be of episodic nature as well. We have a single
motor primitive representing the three behaviors of aiming
at the three targets. Hitting the desired target is learned using
CrKR. We employ Policy Iteration (Sutton and Barto, 1998)
to learn on the strategy level.

The rewards for the strategy learning are fixed by the
rules of the game. The possible states and behaviors also re-
sult from the way the game is played. The missing piece for
the strategy learning is the transition probabilities Pb

so. The
behavior learning by CrKR associates each behavior with
a variance. Each of these behaviors correspond to an ex-
pected change in state, the outcome o. For example “aim at
2” corresponds to “increase score by 2”. However, the meta-
parameter function does not explicitly include information
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Fig. 19: This figure illustrates the transition probabilities of
the three behaviors to their associated outcome in simula-
tion. For example, the red line indicates the probability of
gaining one point when throwing at target 1. After approxi-
mately 50 throws the player has improved his accuracy level
such that he always hits the desired target. The plots are av-
eraged over 10 runs with the error-bars indicating standard
deviations.

regarding what happens if the expected change in state is
not achieved. We assume that there is a discrete set of out-
comes o ∈ O (i.e., change in state) for all behaviors b for a
certain state s. For example in this game hitting each target,
and missing, is associated with either increasing the player’s
score, winning or to bust (i.e., going over ten). With the
meta-parameter function, we can calculate the overlaps of
the ranges of possible meta-parameters for the different be-
haviors. These overlaps can then be used to determine how
likely it is to end up with a change of state associated with
a behavior different from the desired one. This approach re-
lies on the assumption that we know for each behavior the
associated range of meta-parameters and their likelihood.

The meta-parameters are drawn according to a normal
distribution, thus the overlap has to be weighted accordingly.
The probability of the outcome o when performing behavior
b can be calculated as follows:

P
b
so =

ˆ

pb(γ)
po(γ)

∑k∈O pk(γ)
dγ,

where γ is the meta-parameters, pb(γ) is the probability
of picking the meta-parameter γ when performing behav-
ior b, po(γ) is the probability of picking the meta-parameter
γ when performing the action associated to the considered
outcome o, and ∑k∈O pk(γ) is the normalizing factor. This
scenario has first been treated in (Kober and Peters, 2011a).
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Fig. 20: This figure illustrates the improvement of the player
over the number of games in simulation. Due to the large
penalty for busting the framework always uses a safe strat-
egy. Already after five completed games the player reaches
almost always the maximum possible score of 10. As the
number of throws is not punished there are initially many
throws that miss the target. After 7 games the number of
throws has converged to 4, which is the minimum required
number. The plots are averaged over 10 runs with the error-
bars indicating standard deviations.

3.4.3 Evaluation in Simulation

We first evaluated our approach using a MATLAB based
simulation. The throw is modeled as a two dimensional bal-
listic flight of a point mass. The targets correspond to seg-
ments of the ground line. The meta-parameters are the initial
horizontal and vertical velocities of the ball. The meta-pa-
rameters used to initialize the learning make the ball drop in
front of the first target. The cost function for the behavior
level is

c= ∑
i∈{x,z}

ḃ2
i +(bx− sx)

2 ,

where ḃi are the initial velocities, bx is the impact position
and sx the desired impact position. The state corresponds
to the three targets and is determined by the higher level.
Figure 19 illustrates how the player learns to throw more
accurately while playing. Figure 20 illustrates how learning
to perform the lower level actions more reliably enables the
player to perform better in the game.

3.4.4 Evaluation on a real BioRob

We employ a BioRob to throw balls in a catapult like fash-
ion. The arm is approximately 0.75m long, and it can reach
1.55m above the ground. The targets are located at a distance
of 2.5m from the robot at a height of 0.9m, 1.2m, and 1.5m
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Fig. 21: This figure illustrates the setup of the robot evalua-
tion.

respectively. The ball is placed in a funnel-shaped recepta-
cle. In this setup, the initial horizontal and vertical velocities
of the ball cannot directly be set. Instead, the meta-parame-
ters are defined as the duration and amount of acceleration
for two joints that are in the throwing plane. The robot starts
in a fixed initial position, accelerates the two joints accord-
ing to the meta-parameter indicating the magnitude, and ac-
celerates in the opposite direction after the time determined
by the other meta-parameter in order to break. Finally the
robot returns to the initial position. See Figure 23 for an il-
lustration of one throwing motion. The state corresponds to
the three targets and is determined by the higher level. The
outcome of the throw is observed by a vision system.

Executing the throw with identical parameters will only
land at the same target in approximately 60% of the throws,
due to the high velocities involved and small differences in
putting the ball in the holder. Thus, the algorithm has to deal
with large uncertainties. The cost function for the behavior
level is

c= ∑
i∈{1,2}

θ̈ 2
i + t2acc +(bx− sx)

2 ,

where θ̈i is the acceleration magnitude, tacc the acceleration
duration, bx is the impact position and sx the desired impact
position. The setup makes it intentionally hard to hit target
3. The target can only be hit with a very restricted set of
parameters. For targets 1 and 2 increasing the amount of ac-
celeration or the duration will result in a higher hit. Target 3
is at the limit where higher accelerations or longer durations
will lead to a throw in a downward direction with a high
velocity.

The typical behavior of one complete experiment is as
follows: At the beginning the robot explores in a very large
area and stands as soon as it reaches a score of 8, 9, or 10.
Due to the large punishment it is not willing to attempt to
throw at 1 or 2 while having a large uncertainty, and, thus, a
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Fig. 22: This figure illustrates the transition probabilities of
the three behaviors to their associated outcome like in Fig-
ure 19. The skill improves a lot in the first 15 throws after
that the improvement levels of. Initially behavior 2, associ-
ated with target 2 (which lies in the center) is most likely to
succeed. The success rate of 60% corresponds to the level
of reproducibility of our setup. The framework manages to
handle this large uncertainty by choosing to “stand” early
on. The plots are averaged over 4 runs with the error-bars
indicating standard deviations.

high chance of busting. Later on, it has learned that attempt-
ing to throw at 2 has a very low chance of ending up in 3
and hence will attempt to throw 2 points if the current score
is 8. We setup the policy iteration to favor behaviors with a
higher number, if the values of the behaviors are identical.
The first throws of a round will often be aimed at 3, even if
the probability of hitting target 2 using this action is actually
higher than hitting the associated target 3. Until 8 or more
points have been accumulated, action 3 is safe (i.e., cannot
lead to busting), does not entrain a punishment if missing
or hitting a lower target, and has a large learning potential.
Figure 22 illustrates how the robot learns to throw more ac-
curately within the physical limits of the system.

4 Conclusion & Future Work

In this paper, we have studied the problem of meta-param-
eter learning for motor primitives. It is an essential step to-
wards applying motor primitives for learning complex mo-
tor skills in robotics more flexibly. We have discussed an
appropriate reinforcement learning algorithm for mapping
situations to meta-parameters.

We show that the necessary mapping from situation
to meta-parameter can be learned using a Cost-regularized
Kernel Regression (CrKR) while the parameters of the mo-
tor primitive can still be acquired through traditional ap-
proaches. The predictive variance of CrKR is used for ex-



17

(a) The initial position. (b) The robot accelerates
in the shoulder and elbow
joints.

(c) End of acceleration. The
breaking starts.

(d) The robot slows down
while the ball flies towards
the target.

(e) The robot has stopped and
returns to the initial position.

(f) The robot is again in the
initial position, ready for the
next throw.

Fig. 23: These frames illustrate one throwing motion with the BioRob.

ploration in on-policy meta-parameter reinforcement learn-
ing. We compare the resulting algorithm in a toy scenario
to a policy gradient algorithm with a well-tuned policy rep-
resentation and the reward-weighted regression. We show
that our CrKR algorithm can significantly outperform these
preceding methods. We also illustrate the advantages of our
reinforcement learning approach over supervised learning
approaches in this setting. To demonstrate the system in a
complex scenario, we have chosen the Around the Clock

dart throwing game, table tennis, and ball throwing imple-
mented both on simulated and real robots. In these scenarios
we show that our approach performs well in a wide variety
of settings, i.e. on four different real robots (namely a Bar-
rett WAM, a BioRob, the JST-ICORP/SARCOS CBi and a
Kuka KR 6), with different cost functions (both with and
without secondary objectives), and with different policies in
conjunction with their associated meta-parameters.

In the ball throwing task, we have discussed first steps
towards a supervisory layer that deals with sequencing dif-
ferent motor primitives. This supervisory layer is learned by
an hierarchical reinforcement learning approach (Huber and
Grupen, 1998; Barto and Mahadevan, 2003). In this frame-
work, the motor primitives with meta-parameter functions
could also be seen as robotics counterpart of options (Mc-
Govern and Barto, 2001) or macro-actions (McGovern et al,
1997). The presented approach needs to be extended to deal
with different actions that do not share the same underly-

ing parametrization. For example in a table tennis task the
supervisory layer would decide between a forehand motor
primitive and a backhand motor primitive, the spatial meta-
parameter and the timing of the motor primitive would be
adapted according to the incoming ball, and the motor prim-
itive would generate the trajectory. Future work will require
to automatically detect which parameters can serve as meta-
parameters as well as to discovering new motor primitives.

Acknowledgements The project receives funding from the European
Community’s Seventh Framework Programme under grant agreement
no. ICT-248273 GeRT. The project receives funding from the European
Community’s Seventh Framework Programme under grant agreement
no. ICT-270327 CompLACS. The authors thank Prof. K. Wöllhaf from
the University of Applied Sciences Ravensburg-Weingarten for sup-
porting the Kuka KR 6 experiment.

A Motor Primitive Meta-Parameters

The motor primitives based on dynamical systems (Ijspeert et al, 2002;
Schaal et al, 2007; Kober et al, 2010a) have six natural meta-parame-
ters: the initial position x0

1, the initial velocity x0
2, the goal g, the goal

velocities ġ, the amplitude A and the duration T . The meta-parameters
modify the global movement by rescaling it spatially or temporally, or
by reshaping it with respect to the desired boundary conditions. In the
table tennis task the initial position and velocity are determined by the
phase preceding the hitting phase. In Figure 24 we illustrate influence
of the goal, goal velocity and duration meta-parameters on the move-
ment generation.
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(b) Hitting Timing Variation
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(c) Hitting Velocity Variation

Fig. 24: In this figure, we demonstrate the influence of the goal, goal velocity and duration meta-parameters. The movement
represents the hitting phase of the table tennis experiment (Section 3.3) and we demonstrate the variation of the meta-
parameters employed in this task. The ball is hit at the end of the movement. In these plots we only vary a single meta-
parameter at a time and keep the other ones fixed. In subfigure (a) the goal g is varied, which allows to hit the ball in different
locations and with different orientations. In subfigure (b) duration T is varied, which allows to time the hit. In subfigure (c)
the goal velocity ġ is varied, which allows to aim at different locations on the opponent’s side of the table.
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