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Abstract

In conventional causal discovery, structural equation models (SEM) are directly
applied to the observed variables, meaning that the causal effect can be represented
as a function of the direct causes themselves. However, in many real world prob-
lems, there are significant dependencies in the variances or energies, which indi-
cates that causality may possibly take place at the level of variances or energies. In
this paper, we propose a probabilistic causal scale-mixture model with spatiotem-
poral variance dependencies to represent a specific type of generating mechanism
of the observations. In particular, the causal mechanism including contempora-
neous and temporal causal relations in variances or energies is represented by a
Structural Vector AutoRegressive model (SVAR). We prove the identifiability of
this model under the non-Gaussian assumption on the innovation processes. We
also propose algorithms to estimate the involved parameters and discover the con-
temporaneous causal structure. Experiments on synthetic and real world data are
conducted to show the applicability of the proposed model and algorithms.

1 Introduction

Causal discovery aims to discover the underlying generating mechanism of the observed data, and
consequently, the causal relations allow us to predict the effects of interventions on the system
[15, 19]. For example, if we know the causal structure of a stock market, we are able to predict the
reactions of other stocks against the sudden collapse of one share price in the market. A traditional
way to infer the causal structure is by controlled experiments. However, controlled experiments
are in general expensive, time consuming, technically infeasible and/or ethically prohibited. Thus,
causal discovery from non-experimental data is of great importance and has drawn considerable
attention in the past decades [15, 19, 16, 17, 12, 22, 2]. Probabilistic models such as Bayesian
Networks (BNs) and Linear Non-Gaussian Acyclic Models (LiNGAM) have been proposed and
applied to many real world problems [18, 13, 14, 21].

Conventional models such as LiNGAM assume that the causal relations are of a linear form, i.e., if
the observed variable x is the cause of another observed variable y, we model the causal relation as
y = αx+ e, where α is a constant coefficient and e is the additive noise independent of x. However,
in many types of natural signals or time series such as MEG/EEG data [23] and financial data [20],
a common form of nonlinear dependency, as seen from the correlation in variances or energies, is
found [5]. This observation indicates that causality may take place at the level of variances or en-
ergies instead of the observed variables themselves. Generally speaking, traditional methods cannot
detect this type of causal relations. Another restriction of conventional causal models is that these
models assume constant variances of the observations; this assumption is unrealistic for those data
with strong heteroscedasticity [1].
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In this paper, we propose a new probabilistic model called Causal Scale-Mixture model with Spa-
tioTemporal Variance Dependencies (CSM-STVD) incorporating the spatial and temporal variance
or energy dependencies among the observed data. The main feature of the new model is that we
model the spatiotemporal variance dependencies based on the Structural Vector AutoRegressive
(SVAR) model, in particular the Non-Gaussian SVAR [11]. The contributions of this study are
two-fold. First, we provide an alternative way to model the causal relations among the observa-
tions, i.e., causality in variances or energies. In this model, causality takes place at the level of
variances or energies, i.e., the variance or energy of one observed series at time instant t0 is influ-
enced by the variances or energies of other variables at time instants t ≤ t0 and its past values at
time instants t < t0. Thus, both contemporaneous and temporal causal relations in variances are
considered. Secondly, we prove the identifiability of this model and more specifically, we show
that Non-Gaussianity makes the model fully identifiable. Furthermore, we propose a method which
directly estimates such causal structures without explicitly estimating the variances.

2 Related work

To model the variance or energy dependencies of the observations, a classic method is to use a scale-
mixture model [5, 23, 9, 8]. Mathematically, we can represent a signal as si = uiσi, where ui is a
signal with zero mean and constant variance, and σi is a positive factor which is independent of ui

and modulates the variance or energy of si [5]. For multivariate case, we have

s = u⊙ σ, (1)

where ⊙ means element-wise multiplication. In basic scale-mixture model, u and σ are statistically
independent and the components ui are spatiatemporally independent, i.e. ui,tτ1

⊥⊥ uj,tτ2
, ∀tτ1 , tτ2 .

However, σi, the standard deviations of the observations, are dependent across i. The observation
x, in many situations, is assumed to be a linear mixture of the source s, i.e., x = As, where A is a
mixing matrix.

In [5], Hirayama and Hyvärinen proposed a two-stage model. The first stage is a classic ICA model
[3, 10], where the observation x is a linear mixture of the hidden source s, i.e., x = As. On the
second stage, the variance dependencies are modeled by applying a linear Non-Gaussian (LiN) SEM
to the log-energies of the sources.

yi =
∑
j

hijyj + hi0 + ri, i = 1, 2, · · · , d,

where yi = log ϕ(σi) are the log-energies of sources si and the nonlinear function ϕ is any appropri-
ate measure of energy; ri are non-Gaussian distributed and independent of yj . To make the problem
tractable, they assumed that ui are binary, i.e., ui ∈ {−1, 1} and uniformly distributed. The param-
eters of this two-stage model including A and hij are estimated by maximum likelihood without
approximation due to the uniform binary distribution assumption of u. However, this assumption is
restrictive and thus may not fit real world observations well. Furthermore, they assumed that σi are
spatially dependent but temporally white. However, many time series show strong heterosecadastic-
ity and temporal variance dependencies such as financial time series and brain signals. Taking into
account of temporal variance dependencies would improve the quality of the estimated underlying
structure of the observed data.

Another two-stage model for magnetoencephalography (MEG) or electroencephalography (EEG)
data was propsoed earlier in [23]. The first stage also performs linear separation; they proposed
a blind source separation algorithm by exploiting the autocorrelations and time-varying variances
of the sources. In the second stage, si(t) are modeled by autoregressive processes with L lags
(AR(L)) driven by innovations ei(t). The innovation processes ei(t) are mutually uncorrelated and
temporally white. However, ei(t) are not necessarily independent. They modeled ei(t) as follows:

ei(t) = σitzi(t), where zi(t) ∼ N (0, 1). (2)

Two different methods are used to model the dependencies among the variances of the innovations.
The first method is causal-in-variance GARCH (CausalVar-GARCH). Specifically σ2

it are modeled
by a multivariate GARCH model. The advantage of this model is that we are able to estimate
the temporal causal structure in variances. However, this model provides no information about the
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contemporaneous causal relations among the sources if there indeed exist such causal relations. The
second method to model the variance dependencies is applying a factor model to the log-energies
(log σ2

it) of the sources. The disadvantage of this method is that we cannot model the causal relations
among the sources which are more interesting to us.

In many real world observations, there are causal influences in variances among the observed vari-
ables. For instance, there are significant mutual influences among the volatilities of the observed
stock prices. We are more interested in investigating the underlying causal structure among the
variances of the observed data. Consequently, in this paper, we consider the situation where the
correlation in the variances of the observed data is interesting. That is, the first stage of [5, 23] is
not needed, and we focus on the second stage, i.e., modeling the spatiotemporal variance depen-
dencies and causal mechanism among the observations. In the following sections, we propose our
probabilistic model based on SVAR to describe the spatiotemporal variance dependencies among
the observations. Our model is, as shown in later sections, closely related to the models introduced
in [5, 23], but has significant advantages: (1) both contemporaneous and temporal causal relations
can be modeled; (2) this model is fully identifiable under certain assumptions.

3 Causal scale-mixture model with spatiotemporal variances dependencies

We propose the causal scale-mixture model with spatiotemporal variance dependencies as follows.
Let z(t) be the m × 1 observed vector with components zi(t), which are assumed to be generated
according to the scale-mixture model:

zi(t) = ui(t)σi(t). (3)

Here we assume that ui(t) are temporally independent processes, i.e., ui(tτ1) ⊥⊥ uj(tτ2), ∀tτ1 ̸= tτ2
but unlike basic scale-mixture model, here ui(t) may be contemporarily dependent, i.e., ui(t) ̸⊥⊥
uj(t), ∀i ̸= j. σ(t) is spatially and temporally independent of u(t). Using vector notation,

zt = ut ⊙ σt. (4)

Here σit > 0 are related to the variances or energies of the observations zt and are assumed to be
spatiotemporally dependent. As in [5, 23], let yt = logσt. In this paper, we model the spatiotem-
poral variance dependencies by a Structural Vector AutoRegressive model (SVAR), i.e.,

yt = A0yt +
L∑

τ=1

Bτyt−τ + ϵt, (5)

where A0 contains the contemporaneous causal strengths among the variances of the observations,
i.e., if [A0]ij ̸= 0, we say that yit is contemporaneously affected by yjt; Bτ contains the temporal
(time-lag) causal relations, i.e., if [Bτ ]ij ̸= 0, we say that yi,t is affected by yj,t−τ . Here, ϵt are
i.i.d. mutually independent innovations. Let xt = log |zt| (In this model, we assume that ui(t) do
not take value zero) and ηt = log |ut|.Take log of the absolute values of both sides of equation (4),
then we have the following model:

xt = yt + ηt,

yt = A0yt +
L∑

τ=1

Bτyt−τ + ϵt.
(6)

We make the following assumptions on the model:

A1 Both ηt and ϵt are temporally white with zero means. The components of ηt are not neces-
sarily independent, and we assume that the covariance matrix of ηt is Ση . The components
of ϵt are independent and Σϵ = I1.

A2 The contemporaneous causal structure is acyclic, i.e., by simultaneous row and column
permutations, A0 can be permuted to a strictly lower triangular matrix. BL is of full rank.

1Note that Σϵ = I is assumed just for convenience. A0 and Bτ can also be correctly estimated if Σϵ is a
general diagonal covariance matrix. The explanation why the scaling indeterminacy can be eliminated is the
same as LiNGAM given in [16].
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A3 The innovations ϵt are non-Gaussian, and ηt are either Gaussian or non-Gaussian.

Inspired by the identifiability results of the Non-Gaussian state-space model in [24], we show that
our model is identifiable. Note that our new model and the state-space model proposed in [24] are
two different models, while interestingly by simple re-parameterization we can prove the following
Lemma 3.1 and Theorem 3.1 following [24].

Lemma 3.1 Given the log-transformed observation xt = log |zt| generated by Equations (6), if the
assumptions A1 ∼A2 hold, by solving simple linear equations involving the autocovariances of xt,
the covariance Ση and ABτ can be uniquely determined, where A = (I−A0)

−1; furthermore, A
and Bτ can be identified up to some rotation transformations. That is, suppose that two models with
parameters (A, {Bτ}Lτ=1,Ση) and (Ã, {B̃τ}Lτ=1, Σ̃η̃) generate the same observation xt, then we
have Ση = Σ̃η̃ , Ã = AU, B̃τ = UTBτ , where U is an orthogonal matrix.

Non-Gaussianity of the innovations ϵt makes the model fully identifiable, as seen in the following
theorem.

Theorem 3.1 Given the log-transformed observation xt = log |zt| generated by Equations (6) and
given L, if assumptions A1 ∼ A3 hold, then the model is identifiable. In other words, suppose
that two models with parameters (A, {Bτ}Lτ=1,Ση) and (Ã, {B̃τ}Lτ=1, Σ̃η̃) generate the same
observation xt; then these two models are identical, i.e., we have Σ̃η̃ = Ση , Ã = A, B̃τ = Bτ ,
and ỹt = yt.

4 Parameter learning and causal discovery

In this section, we propose an effective algorithm to estimate the contemporaneous causal structure
matrix A0 and temporal causal structure matrices Bτ , τ = 1, · · · , L (see (6)).

4.1 Estimation of ABτ

We have shown that ABτ can be uniquely determined, where A = (I − A0)
−1. The proof of

Lemma 3.1 also suggests a way to estimate ABτ , as given below. Readers can refer to the appendix
for the detailed mathematical derivation. Although we are aware that this method might not be sta-
tistically efficient, we adopt this estimation method due to its great computational efficiency. Given
the log-transformed observations xt = log |zt|, denoted by Rx(k) the autocovariance function of
xt at lag k, we have Rx(k) = E(xtx

T
t+k). Based on the model assumptions A1 and A2, we have

the following linear equations of the autocovarainces of xt.
Rx(L+ 1)

Rx(L+ 2)

...
Rx(2L)

 =


Rx(L) Rx(L− 1) · · · Rx(1)

Rx(L+ 1) Rx(L) · · · Rx(2)

...
...

. . .
...

Rx(2L− 1) Rx(2L− 2) · · · Rx(L)


︸ ︷︷ ︸

,H


CT

1

CT
2

...

CT
L

 , (7)

where Cτ = ABτ (τ = 1, · · · , L). As shown in the proof of Lemma 3.1, H is invertible. We can
easily estimate ABτ by solving the linear Equations (7).

4.2 Estimation of A0

The estimations of ABτ (τ = 1, · · · , L) still contain the mixing information of the causal structures
A0 and Bτ . In order to further obtain the contemporaneous and temporal causal relations, we need
to estimate both A0 and Bτ (τ = 1, · · · , L). Here, we show that the estimation of A0 can be reduced
to solving a Linear Non-Gaussian Acyclic Models with latent confounders.

Substituting yt = xt − ηt into Equations (6), we have

xt − ηt =
L∑

τ=1

ABτ (xt−τ − ηt−τ ) +Aϵt. (8)
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Since ABτ can be uniquely determined according to Lemma 3.1 or more specifically Equations (7),
we can easily obtain ξt = xt −

∑L
τ=1 ABτxt−τ , then we have:

ξt = Aϵt + ηt −
L∑

τ=1

ABτηt−τ . (9)

This is exactly a Linear Non-Gaussian Acyclic Model with latent confounders and the estimation of
A is a very challenging problem [6, 2]. To make to problem tractable, we further have the following
two assumptions on the model:

• A4 If the components of ηt are not independent, we assume that ηt follows a factor model:
ηt = Dft, where the components of ft are spatially and temporally independent Gaussian
factors and D is the factor loading matrix (not necessarily square).

• A5 The components of ϵt are simultaneously super-Gaussian or sub-Gaussian.

By replacing ηt with Dft , we have:

ξt = Aϵt +Dft −
L∑

τ=1

ABτDft−τ︸ ︷︷ ︸
confounding effects

. (10)

To identify the matrix A which contains the contemporaneous causal information of the observed
variables, we treat ft and ft−τ as latent confounders and the interpretation of assumption A4 is that
we can treat the independent factors ft as some external factors outside the system. The Gaussian
assumption of ft can be interpreted hierarchically as the result of central limit theorem because these
factors themselves represent the ensemble effects of numerous factors from the whole environment.
On the contrary, the disturbances ϵit are local factors that describe the intrinsic behaviors of the
observed variables [4]. Since they are local and thus not regarded as the ensembles of large amount
of factors. In this case, the disturbances ϵit are assumed to be non-Gaussian.

The LiNGAM-GC model [2] takes into the consideration of latent confounders. In that model, the
confounders are assumed to follow Gaussian distribution, which was interpreted as the result of
central limit theorem. It mainly focuses on the following cause-effect pair:

x = e1 + αc,

y = ρx+ e2 + βc,
(11)

where e1 and e2 are non-Gaussian and mutually independent, and c is the latent Gaussian confounder
independent of the disturbances e1 and e2. To tackle the causal discovery problem of LiNGAM-
GC, it was firstly shown that if x and y are standardized to unit absolute kurtosis then |ρ| < 1
based on the assumption that e1 and e2 are simultaneously super-Gaussian or sub-Gaussian. Note
that assumption A5 is a natural extension of this assumption. It holds in many practical problems,
especially for financial data. After the standardization, the following cumulant-based measure R̃xy

was proposed [2]:

R̃xy = (Cxy + Cyx)(Cxy − Cyx), where

Cxy = Ê{x3y} − 3Ê{xy}Ê{x2},

Cyx = Ê{xy3} − 3Ê{xy}Ê{y2},

(12)

and Ê means sample average. It was shown that the causal direction can be identified simply by
examining the sign of R̃xy , i.e., if R̃xy > 0, x → y is concluded; otherwise if R̃xy < 0, y →
x is concluded. Once the causal direction has been identified, the estimation of causal strength
is straightforward. The work can be extended to multivariate causal network discovery following
DirectLiNGAM framework [17].

Here we adopt LiNGAM-GC-UK, the algorithm proposed in [2], to find the contemporaneous casual
structure matrix A0. Once A0 has been estimated, Bτ can be easily obtained by B̂τ = (I−Â0)Ĉτ ,
where Â0 and Ĉτ are the estimations of A0 and ABτ , respectively. The algorithm for learning the
model is summarized in the following algorithm.
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Algorithm 1 Causal discovery with scale-mixture model for spatiotemporal variance dependencies
1: Given the observations zt, compute xt = log |zt|.
2: Subtract the mean x̄t from xt, i.e., xt = xt − x̄t

3: Choose an appropriate lag L for the SVAR and then estimate ABτ where A = (I−A0)
−1 and

τ = 1, · · · , L, using Equations(7).
4: Obtain the residues by ξt = xt −

∑L
τ=1 ABτxt−τ .

5: Apply LiNGAM-GC algorithms to ξt and obtain the estimation of A0 and Bτ (τ = 1, · · · , L)
and the corresponding comtemporaneous and temporal causal orderings.

5 Experiment

We conduct experiments using synthetic data and real world data to investigate the effectiveness of
our proposed model and algorithms.

5.1 Synthetic data

We generate the observations according to the following model:

zt = r⊙ ut ⊙ σt,

r is a m×1 scale vector of which the elements are randomly selected from interval [1.0, 6.0]; ut > 0
and ηt = log ut follows a factor model:

ηt = Dft,

where D is m ×m and the elements of D are randomly selected from [0.2, 0.4] . fit are i.i.d. and
fit ∼ N (0, 0.5). Denoted by yt = logσt, we model the spatiotemporal variance dependencies of
the observations xt by an SVAR(1):

yt = A0yt +B1yt−1 + ϵt,

where A0 is a m ×m strictly lower triangular matrix of which the elements are randomly selected
from [0.1, 0.2] or [−0.2,−0.1]; B1 is a m × m matrix of which the diagonal elements [B1]ii are
randomly selected from [0.7, 0.8], 80% of the off-diagonal elements [B1]i ̸=j are zero and the re-
maining 20% are randomly selected from [−0.1, 0.1]; ϵit are i.i.d. super-Gaussian generated by
ϵit = sign(nit)|nit|2(nit ∼ N (0, 1)) and normalized to unit variance. The generated observations
are permuted to a random order. The task of this experiment is to investigate the performance of our
algorithms in estimating the coefficient matrix (I−A0)

−1B1 and also the contemporaneous causal
ordering induced by A0. We estimate the matrix (I − A0)

−1B1 using Lemma 3.1 or specifically
Equations (7). We use different algorithms: LiNGAM-GC-UK proposed in [2], C-M proposed in
[7] and LiNGAM [16] to estimate the contemporaneous causal structure. We investigate the perfor-
mances of different algorithms in the scenarios of m = 4 with sample size from 500 to 4000 and
m = 8 with sample size from 1000 to 10000. For each scenario, we randomly conduct 100 inde-
pendent trials and discard those trials where the SVAR processes are not stable. We calculate the
accuracies of LiNGAM-GC-UK, C-M and LiNGAM in finding (1) whole causal ordering (2) exoge-
nous variable (root) of the causal network. We also calculate the sum square error Err of estimated
causal strength matrix of different algorithms with respect to the true one. The average SNR defined
as SNR = 10 log

∑
i V ar(ϵi)∑
i V ar(fi)

is about 13.85 dB. The experimental results are shown in Figure 1 and
Table 1. Figure 1 shows the plots of the estimated entries of (I−A0)

−1B1 versus the true ones when
the dimension of the observations m = 8. From Figure 1, we can see that the matrix (I−A0)

−1B1

is estimated well enough when the sample size is only 1000. This confirms the correctness of our
theoretical analysis of the proposed model. From Table 1, we can see that when the dimension of
the observations is small (m = 4), all algorithms have acceptable performances. The performance
of LiNGAM is the best when the sample size is small. This is because C-M and LiNGAM-GC-UK
are cumulant-based methods which need sufficiently large sample size. When the dimension of the
observations m increases to 8, we can see that the performances of C-M and LiNGAM degrade
dramatically. While LiNGAM-GC-UK still successfully finds the exogenous variable (root) or even
the whole contemporaneous causal ordering among the variances of the observations if the sample
size is sufficiently large enough. This is mainly due to the fact that when the dimension increases,

6



−1 0 1
−1

−0.5

0

0.5

1
sample size: 2000

true parameters
−1 0 1

−1

−0.5

0

0.5

1

es
tim

at
ed

 p
ar

am
et

er
s

sample size: 1000

−1 0 1
−1

−0.5

0

0.5

1
sample size: 4000

−1 0 1
−1

−0.5

0

0.5

1
es

tim
at

ed
 p

ar
am

et
er

s

sample size: 6000

−1 0 1
−1

−0.5

0

0.5

1

true parameters

sample size: 8000

−1 0 1
−1

−0.5

0

0.5

1
sample size: 10000

Figure 1: Estimated entries causal strength matrix (I −
A0)

−1B1 vs the true ones (m = 8)

FTSE

FCHI

GDAXI

DJI

NDX

1
.0

0
5

0.8427

0.7404

-0
.6

2
4

0
.9

8
3

3

0.4798

Figure 2: Contemporaneous causal net-
work of the selected stock indices

Table 1: Accuracy of finding the causal ordering

sample size whole causal ordering first variable found Err
C-M LiNGAM LiNGAM-GC-UK C-M LiNGAM LiNGAM-GC-UK C-M LiNGAM LiNGAM-GC-UK

m = 4
500 37% 70% 28% 61% 85% 60% 0.1101 0.0326 0.0938
1000 47% 75% 25% 25% 92% 72% 0.0865 0.024 0.0444
2000 74% 86% 81% 82% 90% 92% 0.0679 0.02 0.0199
3000 67% 78% 90% 79% 88% 96% 0.0716 0.0201 0.0126
4000 63% 83% 90% 81% 92% 94% 0.0669 0.0193 0.0109
m = 8
1000 0% 23.08% 8.79% 20.88% 75.82% 65.93% 0.8516 0.2318 0.3017
2000 1.14% 26.14% 25% 25% 70.45% 75% 0.7866 0.2082 0.1396
4000 0% 31.87% 58.24% 19.78% 82.41% 86.81% 0.7537 0.1916 0.0634
6000 0% 25.29% 83.91% 25.29% 75.86% 96.55% 0.7638 0.1843 0.0341
8000 2.20% 30.77% 80.22% 17.58% 79.12% 91.21% 0.7735 0.1824 0.029
10000 0% 23.53% 91.76% 12.94% 68.24% 97.64% 0.7794 0.194 0.0199

the confounding effects of Dft − (I−A)−1B1Dft−1 become more problematic such that the per-
formances of C-M and LiNGAM are strongly affected by confounding effect. Table 1 also shows
the estimation accuracies of the compared methods. Among them, LiNGAM-GC-UK significantly
outperforms other methods given sufficiently large sample size.

In order to investigate the robustness of our methods against the Gaussian assumption on the ex-
ternal factors ft, we conduct the following experiment. The experimental setting is the same as
that in the above experiment but here the external factors ft are non-Gaussian, and more specifi-
cally fit = sign(nit)|nit|p, where nit ∼ N (0, 0.5). When p > 1, the factor is super-Gaussian
and when p < 1 the factor is sub-Gaussian. We investigate the performances of LiNGAM-
GC-UK, LiNGAM and C-M in finding the whole causal ordering in difference scenarios where
p = {0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6} with sample size of 6000. The results in Figure 3 show that
LiNGAM-GC-UK achieved satisfying results compared to LiNGAM and C-M. This suggests that al-
though LiNGAM-GC is developed based on the assumption that the latent confounders are Gaussian
distributed, it is still robust in the scenarios where the latent confounders are mildly non-Gaussian
with mild causal strengths.
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5.2 Real world data

In this section, we use our new model to discover the causal relations among five major world stocks
indices: (1) Dow Jones Industrial Average (DJI) (2) FTSE 100 (FTSE) (3) Nasdaq-100 (NDX) (4)
CAC 40 (FCHI) (5) DAX (GDAXI), where DJI and NDX are stock indices in US, and FTSE, FCHI
and GDAXI are indices in Europe. Note that because of the time difference, we believe that the
causal relations among these stock indices are mainly acyclic, as we assumed in this paper. We
collect the adjusted close prices of these selected indices from May 2nd, 2006 to April 12th, 2012,
and use linear interpolation to estimate the prices on those dates when the data are not available.
We apply our proposed model with SVAR(1) to model the spatiotemporal variance dependencies
of the data. For the contemporaneous causal structure discovery, we use LiNGAM-GC-UK, C-M,
LiNGAM2 and Direct-LiNGAM3 to estimate the causal ordering. The discovered causal orderings
of different algorithms are shown in Table 2. From Table 2, we see that in the causal ordering

Table 2: Contemporaneous causal ordering of the selected stock indices

algorithm causal ordering
LiNGAM-GC-UK {2} → {4} → {5} → {1} → {3}

C-M {1} → {2} → {4} → {5}
{1} → {3}

LiNGAM {2} → {5} → {3} → {1}
{2} → {4}

Direct-LiNGAM {3} → {1} → {5} → {4} → {2}

discovered by LiNGAM-GC-UK and LiNGAM, the stock indices in US, i.e., DJI and NDX are con-
temporaneously affected by the indices in Europe. Note that each stock index is given in local time.
Because of the time difference between Europe and America and the efficient market hypothesis
(the market is quick to absorb new information and adjust stock prices relative to that), the contem-
poraneous causal relations should be from Europe to America, if they exist. This is consistent with
the results our method and LiNGAM produced. Another interesting finding is that in the graphs
obtained by LiNGAM-GC-UK and LiNGAM, we can see that FTSE is the root, which is consistent
with the fact that London is the financial centre of Europe and FTSE is regarded as Europe’s most
important index. However, in results by C-M and DirectLiNGAM, we have the opposite direction,
i.e., the stock indices in US is contemporaneously the cause of the indices in Europe, which is dif-
ficult to interpret. The contemporaneous causal network of the stock indices are shown in Figure 2.
Further interpretation on the discovered causal strengths needs expertise knowledge.

6 Conclusion

In this paper, we investigate the causal discovery problem where causality takes place at the level
of variances or energies instead of the observed variables themselves. We propose a causal scale-
mixture model with spatiotemporal variance dependencies to describe this type of causal mech-
anism. We show that the model is fully identifiable under the non-Gaussian assumption of the
innovations. In addition, we propose algorithms to estimate the parameters, especially the contem-
poraneous causal structure of this model. Experimental results on synthetic data verify the practical
usefulness of our model and the effectiveness of our algorithms. Results using real world data fur-
ther suggest that our new model can possibly explain the underlying interaction mechanism of major
world stock markets.
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A Proof of Lemma 3.1 and Theorem 3.1

Proof A.1 Consider the model given in the following equations:

xt = yt + ηt

yt = A0yt +

L∑
τ=1

Bτyt−τ + ϵt
(A1)

Let A = (I−A0)
−1 and vt = A−1yt. By simple re-parameterization, we have

xt = Avt + ηt

vt =

L∑
τ=1

BτAvt−τ + ϵt
(A2)

Actually, the model after re-parameterization given in Equations A2 is the state-space model investigated by
Zhang and Hyvärinen in [24]. Thus, we can follow the idea presented in [24] to prove the identifiability of our
model.
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