
MAX PLANCK INSTITUTE FOR INTELLIGENT SYSTEMS

Technical Report No. 2 27 July 2011

NONCONVEX PROXIMAL SPLITTING:
BATCH AND INCREMENTAL ALGORITHMS

Suvrit Sra

Abstract. Within the unmanageably large class of nonconvex optimization, we
consider the rich subclass of nonsmooth problems having composite objectives
(this includes the extensively studied convex, composite objective problems as
a special case). For this subclass, we introduce a powerful, new framework
that permits asymptotically non-vanishing perturbations. In particular, we de-
velop perturbation-based batch and incremental (online like) nonconvex prox-
imal splitting algorithms. To our knowledge, this is the first time that such
perturbation-based nonconvex splitting algorithms are being proposed and an-
alyzed. While the main contribution of the paper is the theoretical framework,
we complement our results by presenting some empirical results on matrix fac-
torization.

Note. This technical report includes verbatim the authors original writeup
that was submitted to Neural Information Processing Systems, 2011 on June 3,
2011.

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Nonconvex proximal splitting:
batch and incremental algorithms

Anonymous Author(s)
Affiliation
Address
email

Abstract

Within the unmanageably large class of nonconvex optimization, we consider the
rich subclass of nonsmooth problems having composite objectives (this includes
the extensively studied convex, composite objective problems as a special case).
For this subclass, we introduce a powerful, new framework that permits asymptot-
ically non-vanishing perturbations. In particular, we develop perturbation-based
batch and incremental (online like) nonconvex proximal splitting algorithms. To
our knowledge, this is the first time that such perturbation-based nonconvex split-
ting algorithms are being proposed and analyzed. While the main contribution of
the paper is the theoretical framework, we complement our results by presenting
some empirical results on matrix factorization.

1 Introduction
Within the unmanageably vast class of nonconvex optimization, we consider the rich subclass of
problems that have nonconvex composite objectives. Specifically, we study problems of the form

minimize F (x) + ψ(x), s.t. x ∈ X , (1)

where X ⊂ Rn is a compact convex set, F : Rn → R is a differentiable function, and ψ : Rn → R is
a lower semi-continuous (lsc) convex function. We make the common assumption that F ∈ C1

L(X),
i.e., the gradient ∇F is (locally) Lipschitz continuous on X with constant L,

�∇F (x) −∇F (y)� ≤ L�x − y� for all x, y ∈ X . (2)

Problem (1) is a natural but far-reaching generalization of composite objective convex problems that
enjoy tremendous importance in machine learning; see [1–4], for example. Although, convex for-
mulations are extremely useful, often for many difficult problems a nonconvex formulation is more
natural. Familiar examples include, matrix factorization [5, 6], blind deconvolution [7], dictionary
learning [8, 5], and neural networks [9, 10].

The main contribution of our paper is a new framework NOCOPS (an acronym for nonconvex
proximal splitting). This framework solves (1) while allowing computational errors, a capability
that proves key to deriving scalable batch and incremental (online like). A realistic feature of our
framework is that it does not require the computational errors to vanish in the limit or its stepsizes
to shrink to zero; such choices that are often assumed in standard analysis of (convex) incremental-
gradient like methods [11] or even in stochastic gradient methods [12].

NOCOPS builds on the remarkable work of Solodov [13], but it is strictly more general than [13]
(which solves (1) only for ψ ≡ 0). Like Solodov [13]’s framework, NOCOPS also allows nonvan-
ishing errors, which is practical, since often one has limited or no true control over computational
errors (e.g., fixed noise level in a simulation). To our knowledge, ours is the first work on nonconvex
proximal splitting that has both batch and incremental incarnations, even if we disregard the ability
to handle nonvanishing errors.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Related Work. Among batch nonconvex splitting methods, an early work is [14]. More recently,
in his pioneering paper on composite minimization, Nesterov [15] solved (1) via a splitting-like
algorithm. Fukushima and Mine [14] ensured convergence by forcing monotonic descent (using
line-search); Nesterov [15] proved convergence (for the nonconvex case) by also ensuring monotonic
descent. Even more recently, Attouch et al. [16] introduced a powerful method based on Kurdyka-
Łojasiewicz theory, though convergence again hinged on descent. This insistence on monotonic
descent makes these methods unsuitable to obtaining incremental, stochastic, or online variants.

But there are some incremental and stochastic methods that do apply to (1), namely the general-
ized gradient-type algorithms of [17] and stochastic generalized gradient methods of [18, 19]. Both
approaches are analogous to subgradient methods from convex optimization, and face similar dif-
ficulties. For example, as is well recognized (see [15, 1], e.g.), subgradient-style methods fail to
exploit composite objectives. Moreover, they exhibit the effect of the regularizer only in the limit;
for example, if ψ(x) = �x�1, then the sparse solutions are obtained only in the limit, and interme-
diate iterates may be dense.

For convex problems, a powerful alternative to subgradient methods is offered by proximal splitting
(see [20] for a survey). These methods split (1) into smooth and nonsmooth parts. The smooth part
is handled as in gradient-projection while the nonsmooth part is handled via a proximity operator.
Owing to their ability to effectively tackle the nonsmooth part, proximal methods become valuable
in machine learning and related areas; see [20, 4, 2, 1] and the references therein.

2 The NOCOPS Framework

We begin by defining the function g : Rn → R to be the sum g(x) := ψ(x)+δ(x|X), where δ(x|X)
is the indicator function for the set X . With this notation, the main problem of this paper is

minimizex∈Rn φ(x) := F (x) + g(x). (3)

Next, we recall a definition central to our analysis.
Definition 1 (Proximity operator). Let g : Rn → R be lsc and convex. The proximity operator for
g, indexed by scalar η > 0, is the nonlinear map [see e.g., 21; Def. 1.22]:

P g
η : y �→ argmin

x∈Rn

�
g(x) +

1

2η
�x − y�2

�
. (4)

Proximity operators are key to forward-backward splitting [22], which, for convex F ∈ C1
L(X) and

appropriate stepsizes ηk, optimizes (1) by essentially iterating

xk+1 = P g
ηk

(xk − ηk∇F (xk)), k = 0, 1, (5)

Our new framework NOCOPS introduces two powerful generalizations to (5). First, it allows F to
be nonconvex, and second, it allows perturbations. Formally, NOCOPS performs the iteration

xk+1 = P g
ηk

(xk − ηk∇F (xk) + ηkϑ(xk)), k = 0, 1, . . . , (6)

where the stepsizes ηk satisfy the standard bounds and conditions

c ≤ lim infk ηk, lim supk ηk ≤ min {1, 2/L − c} , 0 < c < 1/L. (7)

The perturbation term ηkϑ(xk) in (6) represents the computational errors, which occur for example
when only an approximation to the full gradient ∇F (x) is available.

To make NOCOPS well-defined, following [13], we also impose a mild restriction on the perturba-
tions. Specifically, we assume that for all η smaller than a fixed value η̄, it holds that

η�ϑ(x)� ≤ �̄, for some fixed �̄ ≥ 0, and ∀x ∈ X . (8)

Condition (8) is weaker than the typical vanishing error requirement η�ϑ(xk)� → 0 imposed by
most analyses. Since nonvanishing errors are allowed, exact stationary points cannot not always
be obtained, but appropriate inexact stationary points can be found. To formalize this, recall that a
point x∗ ∈ Rn is stationary for (3), if and only if it satisfies the inclusion

0 ∈ ∂Cφ(x∗) := ∇F (x∗) + ∂g(x∗), (9)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

where ∂Cφ denotes the Clarke (generalized) subdifferential [23]. Inclusion (9) may be equivalently
recast as the fixed-point condition

x∗ = P g
η (x∗ − η∇F (x∗)), for η > 0. (10)

We use (10) to characterize approximate stationary points. Define thus the proximal residual

ρ(x) := x − P g
1 (x −∇F (x)), (11)

so that for stationary x∗, the residual norm �ρ(x∗)� = 0. At point x, let the level of perturbation be
given by �(x) ≥ 0. We define a point x̄ to be �-stationary if the residual norm is bounded satisfies

�ρ(x̄)� ≤ �(x̄). (12)

To control overall level of perturbation in the system, we require �(x) ≥ η�ϑ(x)�. Thus, intuitively,
by letting η become small enough, we can obtain a stationary point of any desired accuracy.

2.1 Convergence analysis

Our analysis builds on the pioneering works of Nesterov [15] and Solodov [13]. But as mentioned,
our problem and analysis are strictly more general. Specifically, in contrast to [15], we permit
perturbations and do not rely on strict descent, and unlike [13], we consider nonsmooth objective
functions. Our analysis yields, to our knowledge, the first nonconvex proximal splitting algorithm
with nonvanishing noise, and also the first nonconvex incremental proximal splitting algorithm,
regardless of vanishing or nonvanishing nature of the noise.

We begin by recalling two simple facts without proof; the first is a classical descent lemma.
Lemma 1 (Descent lemma [see e.g., 24; Lemma 2.1.3]). Let F ∈ C1

L(X). Then,

|F (x) − F (y) − �∇F (y), x − y�| ≤ L
2 �x − y�2, ∀ x, y ∈ X . (13)

Lemma 2 (Nonexpansivity [see e.g., 22; Lemma 2.4]). The operator P g
η is nonexpansive, that is,

�P g
η x − P g

η y� ≤ �x − y�, ∀ x, y ∈ Rn. (14)

Next, we prove a useful monotonicity result about proximity operators.
Lemma 3 (Monotonicity). Let Pη ≡ P g

η ; let y, z ∈ Rn, and η > 0, and define

p(η) := η−1�Pη(y − ηz) − y�, (15)
q(η) := �Pη(y − ηz) − y�. (16)

Then, p(η) is a decreasing function of η, while q(η) is an increasing function of η.

Proof. Both (15) and (16) follow as corollaries to well-known properties of Moreau-envelopes [21,
22] (also see [15]). To set our notation, we provide a proof in the language of proximity operators.
Consider thus the “deflected” proximity objective

mg(x, η; y, z) := �z, x − y� + 1
2η

−1�x − y�2 + g(x), (17)

to which we associate the (deflected) Moreau-envelope

Eg(η) := inf
x∈X

mg(x, η; y, z). (18)

The infinum in (18) is attained at the unique point P g
η (y − ηz). Thus, Eg(η) is differentiable, and

E�
g(η) = − 1

2η
−2�P g

η (y − ηz) − y�2 = − 1
2p(η)2.

Since Eg(η) is convex ([21; Theorem 2.26]), E�
g is increasing; equivalently p(η) is decreasing.

Similarly, note that Êg(γ) := Eg(1/γ) is concave in γ, as it is a pointwise (indexed by x) infimum
of functions linear in γ [25; §3.2.3]; thus differentiate Êg and conclude (16).

Remark 1. The monotonicity results (15) and (16) complement similar monotonicity results for
projection operators derived in [26; Lemma 1].

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Now we analyze the difference φ(xk) − φ(xk+1); specifically, we derive an inequality

φ(xk) − φ(xk+1) ≥ h(xk), (19)

where the potential function h(x) depends on �ρ(x)� and �(x). Note that the potential h(x) is
allowed to take on negative values because we do not insist on monotonic descent. To simplify
notation, let u ≡ xk+1, x ≡ xk, and η ≡ ηk, so that update (6) becomes

u = Pη(x − η∇F (x) + ηϑ(x)). (20)

With this notation, we now have the following descent-like theorem.
Theorem 1. Let x ∈ X , u, η be as in (20), and �(x) ≥ η�ϑ(x)�. Then we have the bound

φ(x) − φ(u) ≥ 2−Lη
2η �u − x�2 − 1

η �(x)�u − x�. (21)

Proof. Consider the directional derivative dmg (of mg , with respect to x, and in the direction w),
which satisfies at x = u the optimality condition

dmg(u, η; y, z)(w) = �z + η−1(u − y) + s, w� ≥ 0, s ∈ ∂g(u). (22)

In (22), set z = ∇F (x) − ϑ(x), y = x, and w = x − u; then, rearrange to obtain

�∇F (x) − ϑ(x), u − x� ≤ �η−1(u − x) + s, x − u�. (23)

By Lemma 1 we have

φ(u) ≤ F (x) + �∇F (x), u − x� + L
2 �u − x�2 + g(u). (24)

Adding and subtracting ϑ(x) in (24), and then combining with (23) we further obtain

φ(u) ≤ F (x) + �∇F (x) − ϑ(x), u − x� + L
2 �u − x�2 + g(u) + �ϑ(x), u − x�

≤ F (x) + �η−1(u − x) + s, x − u� + L
2 �u − x�2 + g(u) + �ϑ(x), u − x�

= F (x) + g(u) + �s, x − u� +
�

L
2 − 1

η

�
�u − x�2 + �ϑ(x), u − x�

≤ F (x) + g(x) − 2−Lη
2η �u − x�2 + �ϑ(x), u − x�

≤ φ(x) − 2−Lη
2η �u − x�2 + �ϑ(x)��u − x�

≤ φ(x) − 2−Lη
2η �u − x�2 + 1

η �(x)�u − x�,

where the third inequality follows from convexity of g, the fourth one from Cauchy-Schwarz, and
the last one from the definition of �(x). Flipping signs, we immediately obtain (22).

Next, we bound the right-hand side terms in (21), for which we derive two-sided bounds on �x − u�.
Lemma 4. Let x, u, and η be as in Theorem 1, and c be as defined in (7). Then,

c�ρ(x)� − η−1�(x) ≤ �x − u� ≤ �ρ(x)� + η−1�(x). (25)

Proof. From Lemma 3 we see that for η > 0 it holds that

1 ≤ η =⇒ q(1) ≤ q(η), and 1 ≥ η =⇒ p(1) ≤ p(η) = η−1q(η) (26)

Using (26), the triangle inequality, and nonexpansivity (Lemma 2), we see that

min {1, η} q(1) = min {1, η} �ρ(x)� ≤ �Pη(x − η∇f(x)) − x�
≤ �x − u� + �u − Pη(x − η∇f(x))�
≤ �x − u� + �ϑ(x)� ≤ �x − u� + η−2�(x).

Since c ≤ lim infk ηk, we have �x − u� ≥ c�ρ(x)� − �(x). An upper bound follows upon noting

�x − u� ≤ �x − Pη(x − η∇f(x))� + �Pη(x − η∇f(x)) − u�
≤ max {1, η} �ρ(x)� + �ϑ(x)� ≤ �ρ(x)� + η−1�(x).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Theorem 1 and Lemma 4 have done the hard work; they imply the following crucial corollary.
Corollary 1. Let x, u, η, and c be as in Lemma 4 and Theorem 1. Then, we have

φ(x) − φ(u) ≥ h(x),

where the function h is given by

h(x) := 2−Lη
2η c2�ρ(x)�2 −

�
c 2−Lη

η2 + 1
η

�
�ρ(x)��(x) −

�
2−Lη
2η3 + 1

η2

�
�(x)2. (27)

Proof. Plug in the bounds (25) into (21) and simplify.

Now we are in a position to state our main convergence theorem.
Theorem 2 (Convergence). Let f ∈ C1

L(X) such that infX f > −∞ and g be lsc, convex on X . Let�
xk

�
⊂ X be a sequence generated by (6), and let condition (8) hold. Then, there exists a limit point

x∗ of the sequence
�
xk

�
, and a constant K > 0, such that �ρ(x∗)� ≤ K�(x∗). Moreover, if the

sequence
�
F (xk)

�
converges, then for every limit point x∗ of

�
xk

�
it holds that �r(x∗)� ≤ K�(x∗).

Proof. Corollary 1 reduces the proof to a case where the arguments of [13] become applicable; thus,
we may conclude convergence; we omit details to avoid repetition.

3 Incremental NOCOPS

We now specialize NOCOPS to the large-scale setting with decomposable F (x), that is, to

minimize
�
F (x) :=

�T

t=1
ft(x)

�
+ g(x), (28)

where each ft : Rn → R is a C1
Lt

(X) function (let Lt ≤ L for simplicity), and g, X are as before.

In machine learning and optimization it has long been known that for decomposable objectives it can
be advantageous to replace the full gradient ∇F (x) by an incremental gradient ∇fr(t)(x), where
r(t) is some suitable index. Incremental methods have been extensively analyzed in the setting
of backpropagation algorithms [11, 13], a setting that corresponds to g(x) ≡ 0 in our case. For
g(x) �= 0, the stochastic generalized gradient methods of [19] or the perturbed generalized methods
of [17] apply. But as previously argued, these methods suffer from problems similar to those faced
by ordinary subgradient methods; so we may prefer proximal splitting methods instead.

To specialize NOCOPS for solving (28), we propose the following iteration:

xk+1 = M
�
xk − ηk

�T

t=1
∇ft(z

t)
�

z1 = xk, zt+1 = O(zt − η∇ft(z
t)), t = 1, . . . , T − 1.

(29)

Here, O and M are appropriate nonexpansive maps, choosing which we get different algorithms.
For example, when X = Rn, g(x) ≡ 0, and M = O = Id, then (29) reduces to the problem class
considered in [27]. If X is a closed convex set, g(x) ≡ 0, M = ΠX , and O = Id, then (29) reduces
to a method that is essentially implicit in [27]. Note, however, that in this case, the constraints are
enforced only once every major iteration; the minor iterates (zt) may be infeasible.

We introduce below four variants of (29); to our knowledge, all four are novel.

1. X = Rn, g(x) �≡ 0, M = P g
η , and O = Id; this is a penalized unconstrained problem, and

the penalty is applied once every major iteration.
2. X = Rn, g(x) �≡ 0, M = P g

η , and O = P g
η ; this is a penalized unconstrained problem,

but now the penalty is applied at every minor iteration.
3. X is a closed convex set, g(x) = ψ(x) + δ(·|X) (where ψ may be zero or nonzero),

M = P g
η , and O = Id; this is a penalized, constrained problem, and the penalty is applied

once every major iteration.
4. Same as variant 3, except that O = P g

η ; this is a penalized, constrained problem, and the
penalty is applied at every minor iteration.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Which of the four variants one prefers depends on the complexity of the constraint set X and the
regularizer g(x). However, the analysis of all four variants is similar, so we present details only for
the fourth, as it is the most general.

Input: {∇ft(X)}, P g
η : subroutines

Output: Approximate solution to (29)
t← 1; k ← 0; xk ∈ X ;
while ¬ converged do

z1 ← xk; α1 ← ηk;
if t < T then

Get t-th gradient gt = ∇ft(z
t);

Compute zt+1 ← P g
αt

(zt − αtg
t);

Aggregate gradient F k ← F k + gt;
t← t + 1; update stepsize αt;

else
xk+1 = P g

ηk
(xk − ηkF k);

t← 0; k ← k + 1;
Check for convergence;

end
end

Algorithm 1: Incremental NOCOPS.

3.1 Convergence

We begin by rewriting (29) in a form that matches the main iteration (6):

xk+1 = M
�
xk − ηk

�T

t=1
∇ft(z

t)
�

= M
�
xk − ηk∇F (xk) + ηkϑ(xk)

�
,

where the error term at a general x is given by ϑ(x) :=
�T

t=1

�
ft(x)− ft(z

t)
�
. We must ensure that

the norm of the error term is bounded. Lemma 5 proves this.

Lemma 5 (Bounded error). If for all x ∈ X , �∇ft(x)� ≤ M and �∂g(x)� ≤ G, then �ϑ(x)� ≤
K1, for some constant K1 > 0.

Proof. First, observe that if zt+1 is computed by (29), O = P g
η , and st ∈ ∂g(zt), then

�zt+1 − zt� ≤ 2η�∇ft(z
t) + st�. (30)

Using (30) we can bound the error incurred upon using zt instead of xk. Specifically, if x ≡ xk, and

�t := �∇ft(z
t) −∇ft(x)�, t = 1, . . . , T, (31)

then the following bound holds (for details of the proof, please see appendix):

�t ≤ 2ηL
�t−1

j=1
(1 + 2ηL)t−1−j�∇fj(x) + sj�, t = 2, . . . , T. (32)

Now we use (32) and some simplification to finish the proof. Noting that �1 = 0, we have

�ϑ(x)� ≤
�T

t=2
�t

(32)
≤ 2ηL

�T

t=2

�t−1

j=1
(1 + 2ηL)t−1−jβj

= 2ηL
�T−1

t=1
βt

��T−t−1

j=0
(1 + 2ηL)j

�
=

�T−1

t=1
βt

�
(1 + 2ηL)T−t − 1

�

≤
�T−1

t=1
(1 + 2ηL)T−tβt ≤ (1 + 2ηL)T−1

�T−1

t=1
�∇ft(x) + st�

≤ C1(T − 1)(M + G) =: K1.

Remark 2. Lemma 5 implies that if in the error condition (8), we let η → 0, then η�ϑ(x)� → 0.

Given the error bounds established by Lemma 5, convergence results for Algorithm 1 follow imme-
diately from the more the general Theorem 2; we omit details to avoid repetition.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

4 Application

The main contribution and focus of this paper is the new NOCOPS framework, and studying a spe-
cific application is not one of the aims of this paper. Nevertheless, we do illustrate NOCOPS’s em-
pirical performance on a challenging nonconvex problem, namely, (penalized) nonnegative matrix
factorization:

min
X, A≥0

1
2�Y − XA�2

F + ψ0(X) +
�T

t=1
ψt(at), (33)

where Y is an m × T matrix, X is m × K, and A is K × T with a1, . . . , aT as its columns.
Problem (33) extends the famous nonnegative matrix factorization (NMF) problem [6] by allowing
Y to be arbitrary (not necessarily nonnegative) and adding nonsmooth regularizers on X and A.

A similar class of problems was recently also studied in [5], but with a crucial difference: the for-
mulation in [5] does not allow nonsmooth regularizers on X (the class of problems studied in [5]
is a subset of those our framework allows). On a technical note, [5] consider stochastic optimiza-
tion methods whose analysis requires perturbations to disappear in the limit; while our method is
deterministic and our analysis does not rely on disappearing perturbations.

Following [5] we rewrite (33) in a form more amenable to NOCOPS, that is,

minX φ(X) :=
�T

t=1
ft(X) + g(X), (34)

where g(X) captures both ψ0(X) and the constraints on X . Each ft(X) is defined as

ft(X) := mina
1
2�yt − Xa�2 + gt(a), 1 ≤ t ≤ T, (35)

where gt(a) captures both ψt(a) and the constraints on at. Whenever (35) attains its unique mini-
mum, say a∗, then ft(X) is differentiable and we have ∇Xft(X) = (yt − Xa∗)(a∗)T . Thus, we
can instantiate Algorithm 1; all we need is a subroutine for solving (35).1

In our experiments, we consider the following two instances of (34): (i) g(X) = δ(X|≥ 0); and
(ii) g(X) = λ�X�1 + δ(X|≥ 0). We select the gt’s to be matching, so that gt = δ(a|≥ 0), and
gt(a) = γ�a�1 + δ(a|≥ 0) are used. Choice (i) solves standard NMF, while choice (ii) solves a
sparse-NMF problem. We remark that in general, when penalizing X one should either constrain at

or penalize it, otherwise one can get degenerate solutions.

To provide the reader with a baseline, on the basic NMF problem we compare NOCOPS against the
well-tuned C++ toolbox SPAMS [5]. Obviously, the comparisons are not fair to NOCOPS, because
unlike SPAMS, it is implemented in MATLAB. Fortunately, our MATLAB implementation already
runs very competitively, and unlike SPAMS, also allows factorizing sparse matrices. We note that
since our subroutines depend heavily on matrix-vector operations, a well-tuned C++ implementation
of NOCOPS should run at least 3-4 times (based on initial experiments) faster than our MATLAB
version, especially for sparse matrices.

We compute NMF on the following data matrices:

1. CBCL Face Database [28] (dense, size 361 × 2429); we compute a rank-49 factorization.
2. Yale B Database [29]; (dense, size 32256 × 2414); we compute a rank-64 factorization.
3. Random matrix (dense, size 4000 × 4000, entries in [0, 1]); we compute a rank-64 factor-

ization, and penalize X by λ�·�1, and A by γ�A�1, with (λ, γ) = (102, 10−4).
4. Pajek connectivity matrix for Internet routers (sparse, size 124,651 × 124,651, density

1.3 · 10−5, from the UFL sparse matrix collection, ID: 1505 [30]); we compute a rank-4
factorization; here (λ, γ) = (10−2, 10−6) were used.

Figure 1 reports summarizes our experimental results. In the first row, in addition to SPAMS, we
include running times for Lee and Seung’s algorithm, and our implementation of alternating (non-
negatively constrained) least squares. From the graph we see that our MATLAB implementation of
NOCOPS runs only slightly slower that the state-of-the-art method in SPAMS. The plots also show
a dashed line that hints at what might be achievable with a faster C++ implementation of NOCOPS.

1In practice, it is better to use mini-batches, and we used them for all the online algorithms compared.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

CBCL Yale

10
0

10
1

10
2

10
2.1

10
2.2

10
2.3

10
2.4

10
2.5

10
2.6

Running time (seconds)

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

SPAMS

Lee/Seung

ANLS

NOCOPS

10
1

10
2

10
3

10
2.1

10
2.3

10
2.5

10
2.7

Running time (seconds)

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

SPAMS

Lee/Seung

ANLS

NOCOPS

Random matrix Pajek’s matrix

10
1

10
2

10
5

Running time (seconds)

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

SGGD

NOCOPS

10
1

10
2

10
3

10
11.54

10
11.57

10
11.6

10
11.63

10
11.66

Running time (seconds)

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

SGGD

NOCOPS

Figure 1: Top row: running times on CBCL and Yale B data. Bottom line, SGGD against NOCOPS. The
densities of solutions returned (left to right) were (100%, 58.8%) for SGGD, and (61.1%, 0.1%) for NOCOPS.
Initial objective values and very small runtimes have been suppressed for clarity of presentation.

The second row in Figure 1 shows numerical results that compare the stochastic generalized gradient
(SGGD) algorithm of [19] against NOCOPS, when started at exactly the same point. As is well-
known, SGGD requires careful stepsize tuning to be competitive. Thus, we searched over a range of
possible stepsize choices, and have reported the results with the best choices found. NOCOPS also
requires some stepsize tuning, but significantly lesser than SGGD. Finally, we note that as predicted,
the solutions returned by NOCOPS, often have objective function values better than SGGD, and
always achieved greater sparsity.

5 Discussion
We presented a new framework called NOCOPS, which solves a broad class of nonconvex composite
objective problems. NOCOPS builds on the general analysis of [13], and extends it to admit problems
that are strictly more general. NOCOPS permits nonvanishing perturbations, which is a useful prac-
tical feature. We exploited the perturbation analysis to derive both batch and incremental versions
of NOCOPS. Finally, experiments with medium to large matrices showed that NOCOPS is competi-
tive with state-of-the-art methods; NOCOPS was also seen to outperform the stochastic generalized
gradient method.

We conclude by mentioning NOCOPS includes numerous algorithms and problem settings as special
cases. Example are: forward-backward splitting with convex costs, incremental forward-backward
splitting (convex), gradient projection (both convex and nonconvex), the proximal-point algorithm,
and so on. Thus, it will be valuable to investigate if some of the theoretical results for these methods
can be carried over to NOCOPS. Theoretically, the most important open problem that we would
like to analyze is to permit even the regularizer in (1) to be nonconvex—but this might require
significantly different convergence analysis.

References
[1] J. Duchi and Y. Singer. Online and Batch Learning using Forward-Backward Splitting. J. Mach. Learning

Res. (JMLR), Sep. 2009.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

[2] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Convex optimization with sparsity-inducing norms. In
S. Sra, S. Nowozin, and S. J. Wright, editors, Optimization for Machine Learning. MIT Press, 2011.

[3] M. Schmidt, E. van den Berg, M. Friedlander, and K. Murphy. Optimizing Costly Functions with Simple
Constraints: A Limited-Memory Projected Quasi-Newton Algorithm. In AISTATS, 2009.

[4] A. Beck and M. Teboulle. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Prob-
lems. SIAM J. Imgaging Sciences, 2(1):183–202, 2009.

[5] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online Learning for Matrix Factorization and Sparse Coding.
JMLR, 11:10–60, 2010.

[6] D. D. Lee and H. S. Seung. Algorithms for nonnegative matrix factorization. In NIPS, pages 556–562,
2000.

[7] D. Kundur and D. Hatzinakos. Blind image deconvolution. IEEE Signal Processing Magazine, 13(3):43
–64, may 1996.

[8] K. Kreutz-Delgado, J. F. Murray, B. D. Rao, K. Engan, T.-W. Lee, and T. J. Sejnowski. Dictionary
learning algorithms for sparse representation. Neural Computation, 15:349–396, 2003.

[9] O. L. Mangasarian. Mathematical Programming in Neural Networks. Informs J. Computing, 5(4):349–
360, 1993.

[10] S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall PTR, 1st edition, 1994.
[11] D. P. Bertsekas. Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization: A

Survey. Technical Report LIDS-P-2848, MIT, August 2010.
[12] A. A. Gaivoronski. Convergence properties of backpropagation for neural nets via theory of stochastic

gradient methods. Part 1. Optimization methods and Software, 4(2):117–134, 1994.
[13] M. V. Solodov. Convergence analysis of perturbed feasible descent methods. J. Optimization Theory and

Applications, 93(2):337–353, 1997.
[14] M. Fukushima and H. Mine. A generalized proximal point algorithm for certain non-convex minimization

problems. Int. J. Systems Science, 12(8):989–1000, 1981.
[15] Y. Nesterov. Gradient methods for minimizing composite objective function. Technical Report 2007/76,

Université catholique de Louvain, Center for Operations Research and Econometrics (CORE), September
2007.

[16] H. Attouch, J. Bolte, and B. F. Svaiter. Convergence of descent methods for semi-algebraic and tame
problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods. Op-
timization Online, Dec. 2010.

[17] M. V. Solodov and S. K. Zavriev. Error stability properties of generalized gradient-type algorithms. J.
Optimization Theory and Applications, 98(3):663–680, 1998.

[18] Y. M. Ermoliev and V. I. Norkin. Stochastic generalized gradient method with application to insurance
risk management. Technical Report IR-97-021, IIASA, Austria, April 1997.

[19] Y. M. Ermoliev and V. I. Norkin. Stochastic generalized gradient method for nonconvex nonsmooth
stochastic optimization. Cybernetics and Systems Analysis, 34:196–215, 1998.

[20] P. L. Combettes and J.-C. Pesquet. Proximal Splitting Methods in Signal Processing. arXiv:0912.3522v4,
May 2010.

[21] R. T. Rockafellar and R. J.-B. Wets. Variational analysis. Springer, 1998.
[22] P. L. Combettes and V. R. Wajs. Signal recovery by proximal forward-backward splitting. Multiscale

Modeling and Simulation, 4(4):1168–1200, 2005.
[23] F. H. Clarke. Optimization and nonsmooth analysis. John Wiley & Sons, Inc., 1983.
[24] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Springer, 2004.
[25] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, March 2004. ISBN

0521833787.
[26] E. M. Gafni and D. P. Bertsekas. Two-metric projection methods for constrained optimization. SIAM

Journal on Control and Optimization, 22(6):936–964, 1984.
[27] M. V. Solodov. Incremental gradient algorithms with stepsizes bounded away from zero. Computational

Optimization and Applications, 11:23–35, 1998.
[28] K.-K. Sung. Learning and Example Selection for Object and Pattern Recognition. PhD thesis, MIT,

Artificial Intelligence Laboratory and Center for Biological and Computational Learning, Cambridge,
MA, 1996.

[29] K.C. Lee, J. Ho, and D. Kriegman. Acquiring linear subspaces for face recognition under variable lighting.
IEEE Trans. Pattern Anal. Mach. Intelligence, 27(5):684–698, 2005.

[30] T. A. Davis and Y. Hu. The University of Florida Sparse Matrix Collection. ACM Transactions on
Mathematical Software, 2011. To appear.

9

Nonconvex proximal splitting: supplement

A. Anonymous anon@anon.org

June 3, 2011

Note: References of the type (M-X) refer to equation (X), or Lemma X, Corollary X, etc., in the main
paper.

1 Proof of Lemma M-3

Proof. First consider the “deflected” model-function (the objective function corresponding to Pη)

mg(x, η; y, z) := �z, x − y� +
1

2η
�x − y�2 + g(x), (1)

for which we define the (deflected) Moreau-envelope:

Eg(η) := inf
x∈X

mg(x, η; y, z). (2)

Function µg is easily seen to be a convex (see e.g., [3; Theorem 2.26]). Rearranging mg, we see that the
infinum in (2) is attained at P g

η (y − ηz), which is unique. Thus, Eg(η) is differentiable, and

E�
g(η) = − 1

2η2
�P g

η (y − ηz) − y�2 = − 1
2p(η)2.

Since Eg(η) is convex, E�
g is an increasing function; equivalently p(η) is decreasing.

To prove (M-16), observe that Êg(γ) := Eg(1/γ) is a concave function of γ, because it is a pointwise
(indexed by x) infimum of functions linear in γ [1; §3.2.3]. Thus, its derivative

Ê�
g(γ) = 1

2�P
g
1/γ(x − γ−1y) − x�2 = q(1/γ),

is a decreasing function of γ; writing η = 1/γ completes the argument.

2 Proof of Theorem M-1

Let z = ∇F (x) − ϑ(x), so that (M-20) becomes

u = Pη(y − ηz).

The directional derivative dmg (of mg, with respect to x, and in the direction w) satisfies at x = u the
optimality condition

dmg(u, η; y, z)(w) = �z + η−1(u − y) + s, w� ≥ 0, s ∈ ∂g(u). (3)

Upon setting y = x, and w = x − u in (3), we obtain the inequality

�∇F (x) − ϑ(x) + η−1(u − x) + s, x − u� ≥ 0, (4)

1

Proof. By Lemma M-1 we have

φ(u) ≤ F (x) + �∇F (x), u − x� + L
2 �u − x�2 + g(u). (5)

Rearranging inequality (4), we obtain

�∇F (x) − ϑ(x), u − x� ≤ �η−1(u − x) + s, x − u�. (6)

Adding and subtracting ϑ(x) in (5), and then combining with (6) we further obtain

φ(u) ≤ F (x) + �∇F (x) − ϑ(x), u − x� + L
2 �u − x�2 + g(u) + �ϑ(x), u − x�

≤ F (x) + �η−1(u − x) + s, x − u� + L
2 �u − x�2 + g(u) + �ϑ(x), u − x�

= F (x) + g(u) + �s, x − u� +
�

L
2 − 1

η

�
�u − x�2 + �ϑ(x), u − x�

≤ F (x) + g(x) − 2−Lη
2η �u − x�2 + �ϑ(x), u − x�

≤ φ(x) − 2−Lη
2η �u − x�2 + �ϑ(x)��u − x�

≤ φ(x) − 2−Lη
2η �u − x�2 + η−1�(x)�u − x�,

where the third inequality follows from convexity of g, the fourth one from Cauchy-Schwarz, and the last
one from the definition of �(x). Flipping signs, we immediately obtain (3).

Moreover, we can also prove the following bound

�φ�(u), x − u� ≥ 1−Lη
η �u − x�2 − η−1�(x)�u − x� (7)

Proof. Consider the directional derivative dφ(u; x − u), for which using φ�(u) = ∇F (u) + s, we have

�∇F (u) + s, x − u� = �∇F (x) − ϑ(x) + s, x − u� − �∇F (u) −∇F (x) + ϑ(x), u − x�
≥ �η−1(x − u), x − u� − �∇F (u) −∇F (x), u − x� − �ϑ(x), u − x�
≥ (η−1 − L)�u − x�2 − �ϑ(x), u − x�
≥ 1−Lη

η �u − x�2 − �ϑ(x)��u − x�
≥ 1−Lη

η �u − x�2 − η−1�(x)�u − x�.

3 Proof of (M-32)

To that end, we first bound �zt+1 − zt� in Lemma 1 below.

Lemma 1 (Bounded increment). Let zt+1 be computed by M-29. Then, we have

if O = P g
η and st ∈ ∂g(zt), then �zt+1 − zt� ≤ 2η�∇ft(z

t) + st�. (8)

Proof. For proving (8), notice that definition (M-4) implies the inequality

1
2�zt+1 − zt + η∇ft(z

t)�2 + ηg(zt+1) ≤ 1
2�η∇ft(z

t)�2 + ηg(zt),
1
2�zt+1 − zt�2 ≤ η�∇ft(z

t), zt − zt+1� + η(g(zt) − g(zt+1)).

But since ψ is convex, we know that

g(zt+1) ≥ g(zt) + �st, zt+1 − zt�, st ∈ ∂g(zt).

Since g is convex it further follows that

1
2�zt+1 − zt�2 ≤ η�st, zt − zt+1� + �∇ft(z

t), zt − zt+1�
≤ η�st + ∇ft(z

t)��zt − zt+1�
=⇒ �zt+1 − zt� ≤ 2η�∇ft(z

t) + st�.

2

Lemma 2 (Incrementality error). Let x ≡ xk, and define

�t := �∇ft(z
t) −∇ft(x)�, t = 1, . . . , T. (9)

Then, for each t ≥ 2, the following bound on the error holds:

�t ≤ 2ηL
�t−1

j=1
(1 + 2ηL)t−1−j�∇fj(x) + sj�, t = 2, . . . , T. (10)

Proof. The proof extends the unconstrained, unpenalized setting of [4] to our setting. We proceed by
induction. The base case is t = 2, for which we have

�2 = �∇f2(z
2) −∇f2(x)� ≤ L�z2 − x� = L�z2 − z1�

(8)

≤ 2ηL�∇f1(x) + s1�.

Assume inductively that (M-32) holds for t ≤ r < T , and consider t = r + 1. In this case we have

�r+1 = �∇fr+1(z
r+1) −∇fr+1(x)� ≤ L�zr+1 − x�

= L
���
�r

j=1
(zj+1 − zj)

��� ≤ L
�r

j=1
�zj+1 − zj�

Lemma 1
≤ 2ηL

�r

j=1
�∇fj(z

j) + sj�. (11)

To complete the induction, first observe that �∇ft(z
t) + st� ≤ �∇ft(x) + st� + �t. Thus, invoking the

induction hypothesis, we obtain

�∇ft(z
t)� ≤ �∇ft(x)� + 2ηL

�t−1

j=1
(1 + 2ηL)t−1−j�∇fj(x) + sj�, t = 2, . . . , r. (12)

Combining inequality (12) with (11) we further obtain

�r+1 ≤ 2ηL
�r

j=1

�
�∇fj(x) + sj� + 2ηL

�j−1

l=1
(1 + Lη)j−1−l�∇fl(x) + sl�

�
.

Introducing the shorthand βj ≡ �∇fj(x) + sj�, simple manipulation of the above inequality yields

�r+1 ≤ 2ηLβr +
�r−1

l=1

�
2ηL + 4η2L2

�r

j=l+1
(1 + 2ηL)j−l−1

�
βl

= 2ηLβr +
�r−1

l=1

�
2ηL + 4η2L2

�r−l−1

j=0
(1 + 2ηL)j)

�
βl

= 2ηLβr +
�r−1

l=1
2ηL(1 + 2ηL)r−lβl = 2ηL

�r

l=1
(1 + 2ηL)r−lβl,

which completes the proof.

References

[1] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, March 2004. ISBN
0521833787.

[2] P. L. Combettes and J.-C. Pesquet. Proximal Splitting Methods in Signal Processing. arXiv:0912.3522v4,
May 2010.

[3] R. T. Rockafellar and R. J.-B. Wets. Variational analysis. Springer, 1998.

[4] M. V. Solodov. Incremental gradient algorithms with stepsizes bounded away from zero. Computational
Optimization and Applications, 11:23–35, 1998.

3

