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When we look about us towards external objects,
and consider the operation of causes, we are never able,
in a single instance, to discover any power or necessary connexion;
any quality, which binds the effect to the cause,
and renders the one an infallible consequence of the other. (David Hume, 1737)
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1 Introduction

1.1 Problem

Imagine the following problem: We are given k pairs (x1, y1), . . . , (xk, yk) sampled from
the joint distribution P (X,Y ), where X and Y are n- and m-dimensional random vari-
ables, respectively. We know there is a statistical independence between X and Y . With
our given data, how can we infer whether

X → Y , Y → X

or none of these two is right?
Note that it can happen that both X → Y and Y → X are right. This problem is of
special interest in causality research. Not considering a whole bunch of variables but
only two is the most elementary problem in that branch of research. One can imagine
many real world problems where this knowledge is of great interest. For example, is
there a causal link between human action and global warming? Does a certain medical
treatment actually help the patient or is it only because of outer circumstances that
he/she got cured? How strong is the influence that our genes have on us?
In this work a method is presented which tries to differentiate between these cases. Our
input will be samples of two high-dimensional variables. The main focus will lie on the
situation where the number of dimensions exceeds the number of samples.

1.2 Causality

For centuries people had the dream to uncover causal relations. In the time of extensive
scientific experimentation knowledge of causal dependencies would help a lot. Since
causality is a very vague term with a wide range of definitions and interpretations, we
will give a short definition here which should not be taken too close but rather as a
working definition.

Definition 1.1 (Causality)
If we do an (hypothetical) intervention on X and observe a variation in the outcome
of Y we say: X has a causal influence over Y and we write X → Y .

Causal relationships enable predictions of the consequences of actions (Spirtes et al.
[1993]). In most cases controlled randomized experiments constitute the primary tool
for identifying causal relationships. However, in a lot of cases such experiments are
either unethical, too expensive, or technically impossible. Think for example of medical
treatment.
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1 Introduction

Therefore it is important to develop causal discovery methods to infer causal relationships
from uncontrolled data. This already constitutes an important current research topic
(here a small selection: Pearl [2000], Spirtes et al. [1993], Geiger and Heckerman [1994],
Shimizu et al. [2006], Sun et al. [2008]).
Causal relations are usually described by a directed acyclic graph (DAG) where the
observed variables build the nodes and arrows are drawn if there is a causal relationship
from one node to another (Pearl [2000], see Figure 1.1).

X1 CARS

X2SMOKING X3 AIR POLLUTION

X4 LUNG CANCER

X5 LIFE EXPECTANCY

Figure 1.1: Example for a graph representing causal dependencies among five variables.

Inferring causal relations from a set of observed random variables is challenging if no
controlled randomized studies can be made. Several approaches are known to solve this
task, the most common one perhaps is the independence-based approach (Pearl [2000],
Spirtes et al. [1993]) based on the causal Markov condition, that is, that each variable
Xi is independent on all its non-descendants, given its parents PAi (in a DAG G), and
an assumption of faithfulness: We accept only those causal DAGs that explain all of the
observed dependencies in the data. Furthermore, the DAG should not contain more, i.e.
all inferred marginal and conditional independencies in the data should also derive from
the structure of the DAG. Methods based on this assumption both have its advantages
and limitations. One main problem is that approaches solely based on conditional inde-
pendencies cannot distinguish between causally distinct models that impose the same set
of independencies (so-called Markov-equivalent graphs). In particular, they cannot infer
whether X causes Y or Y causes X for just two observed variables X and Y (Mooij and
Janzing [2010]).
In the last few years several authors have proposed new ideas to do causal discovery, based
on independent component analysis (ICA) or (more generally) additive-noise models.
These methods assume that the effect is given by some (possibly nonlinear) function of
the cause up to an additive noise that is statistically independent of the cause (Kano and
Shimizu [2003], Shimizu et al. [2006], Hoyer et al. [2009], Peters et al. [2010]). A recent
proposal generalizes this model class by further allowing nonlinear transformations of the
effect (Zhang and Hyvärinen [2009]).
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1.2 Causality

However, methods based on additive noise models fail for linear relationships with Gaus-
sian noise. An unsolved problem for a long time has been how to deal with deterministic
relationships between the observed variables. A first approach into this direction was
done by Daniusis et al. [2010]. It is based on the same postulate we use in this work
(Postulate 2.1).

Another difficulty, particularly for the case of two variables, is the so-called confounding
problem. That is, assume we know that X and Y are correlated, we still do not know if
this correlation is due to a common cause Z. For this reason it is essential to develop a
method that can distinguish between

X Y , X Y or

Z

X Y ?

To solve this problem we need other prior assumptions than the causal Markov condition.
Suppose we have the cause X and the effect Y . Our additional assumption will be that
the cause X and the mechanism mapping X to Y are chosen independently from each
other since both correspond to independent mechanisms of nature.
This is a rather vague idea. Therefore a more formal mathematical examination will be
given below. At this point we will only give an intuition of the idea.
Imagine S to be a source creating x-values according to some distribution P (X). M is a
machine that gets these x as input and outputs y. Thus it represents the causal mecha-
nism which reflects the mapping from x to y. It can be characterized by the conditional
distribution of Y given X, i.e., P (Y |X). Finally, the output y is characterized by the
distribution P (Y ). We now claim that the machine M is “independent” from the input
distribution P (X) since these two entities represent independent mechanisms in nature.
We will develop this idea a bit further at the beginning of Chapter 2.

In major parts this work will follow the line of Janzing et al. [2010], apart from the fact
that it will focus on the small sample case with a deterministic relationship. That means,
the model investigated will be

Y = AX

with high-dimensional Y and X and A being a matrix. The sample size will be smaller
than the dimensionality of both X and Y . This case requires significant modifications of
the approach of Janzing et al. [2010], since one has to find new ways to estimate A. New
elements are the application of free probability theory, which is introduced in Section 2.2,
a slightly different generation of the simulated data and new applications of the method
to real world data.
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1 Introduction

1.3 Outline

We start with an introduction into free probability in Chapter 2. Free probability deals
with noncommutative random variables and has strong connections to random matrices.
At the end of this chapter we introduce two important lemmas, the Schur Lemma and
Lévy’s Lemma.
In Chapter 3 we establish identifiability results. That means, we prove how one can
distinguish between cause and effect under the given assumptions. We need identifiability
to derive an algorithm that gives us the right causal relations. Here, we constitute an
asymmetry between the forward and the backward direction.
Chapter 4 proposes an inference method which results in a simple algorithm and uses
the identifiability results from Chapter 3. We also present experiments there, both on
simulated and real world data.
Chapter 5 gives a short extension to the nonlinear case.
Finally, Chapter 6 summarizes the work, gives an outlook and makes suggestions for
future work.
Chapters 3-5 describe my own work, whereas in Chapter 1 and 2, I present the prelimi-
naries.
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2 Mathematical Tools

In this chapter we will first give some ideas concerning the basic assumption of this work.
We will call this “philosophy”. Afterwards we give an introduction into free probability
theory. At its end we will present two important lemmas and provide a motivating
example that gives an intuition about what kind of asymmetries between cause and effect
can be expected in the next chapter.

2.1 Philosophy

One can argue that the most elementary problem in causal inference is to decide whether
statistical dependencies between two random variables X and Y are due to a causal
influence from X to Y (X → Y ), an influence from Y to X (Y → X), or a possibly
unobserved common cause Z influencing X and Y (X ← Z → X).
Recent work (Sun et al. [2006], Sun et al. [2008], Janzing and Schölkopf [2010]) suggests
that the shape of the joint distribution shows asymmetries between cause and effect,
which often indicates the causal direction with some reliability. It is our aim in this work
to establish such a kind of asymmetry between X and Y for the case that one is a linear
transformation of the other.
One idea to do this is based on a postulate which was made by Lemeire and Dirkx [2006]
and Janzing and Schölkopf [2010]. They postulate that if the causal model is X → Y ,
the marginal and the conditional distribution, P (X) and P (Y |X), are algorithmically
independent in that sense that the shortest “description” of P (X,Y ) is given by separate
“descriptions” of the input distribution P (X) and the conditional distribution P (Y |X).
This expresses the fact that both represent independent mechanisms of nature. Descrip-
tions are here characterized through Kolmogorov complexity. Janzing and Schölkopf
[2010] show some toy examples where such an independent choice of P (X) and P (Y |X)
often leads to joint distributions, where P (Y ) and P (X|Y ) satisfy some suspicious re-
lations indicating that Y → X is wrong. Since Kolmogorov complexity is known to be
uncomputable we need to find other methods to exploit this independence.

Daniusis et al. [2010] formulated this assumption in a postulate for the deterministic
relationship

Y = f(X)

which we want to introduce here:

Postulate 2.1
IfX → Y , the distribution ofX and the function f mappingX to Y are independent
since they correspond to independent mechanisms in nature.

7
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Independence should not be understood as statistical independence here. We will define
later how this is meant in our particular case. Janzing et al. [2010] have developed the
same idea for multi-dimensional variables X and Y with a linear causal relation and noise,
i.e.,

Y = AX + E

with multivariate X and Y , a matrix A and a noise term E, independent from X. For
this specific case we can restate the postulate as

Postulate 2.2
If X → Y , CXX and the matrix ATA are independent since they correspond to
independent mechanisms in nature.

Here CXX denotes the covariance matrix of X. Our model assumption will be that CXX
is randomly drawn from a distribution that is invariant under transformations

CXX 7→ UCXXU
T

with U randomly chosen according to the Haar measure out of the orthogonal group.
This will be indicated with the term independent.

The eigenspaces of CXX and ATA can lie distorted to each other, which we would expect
in the generic case, or it can happen that eigenspaces of CXX with big eigenvalues meet
eigenspaces of ATA with big eigenvalues. In that case we would say that there are
dependencies between these two matrices. To be able to investigate these relationships
further we will introduce free probability theory in the next section which has a strong
connection to random matrix theory.

2.2 Introduction into Free Probability Theory

Free probability theory is a theory dealing with noncommutative random variables. In
contrast to classical probability theory, tensor products are replaced by free products,
and independent random variables are replaced by free random variables. The theory
arose from attempts to solve some longstanding problems about von Neumann algebras
of free groups. Since its creation free probability formed connections to several other
parts of mathematics: classical probability, operator algebras and the theory of random
matrices. It also has connections with some mathematical models in theoretical physics
(see Voiculescu [1997]).
We will first give two definitions, the definition of a unital algebra and the definition of
a noncommutative probability space.

Definition 2.3 (Unital algebra, see f.e. Murphy [1990])
An algebra is a vector space A together with a bilinear map

A 2 → A
(a, b) 7→ ab

8



2.2 Introduction into Free Probability Theory

such that
a(bc) = (ab)c (a, b, c ∈ A ) .

If A admits a unit 1 (a1 = 1a = a, for all a ∈ A ) and ‖1‖ = 1, where ‖ · ‖ is a
norm, we say that A is a unital algebra.

Definition 2.4 (Noncommutative probability space, Voiculescu et al. [1992])
A noncommutative probability space is a unital algebra, A over C together with a
linear functional, φ : A → C, such that φ(1) = 1.

We now follow Speicher [2001] and start with a few necessary definitions regarding random
matrices. Later we will present some results concerning free probability in relation with
random matrices.
Let τn be the normalized trace on n× n matrices, i.e., for a n× n matrix A

τn(A) :=
1
n
tr(A).

In the same way, we get the averaged trace τn ⊗E for n× n random matrices. Therefore
consider a sequence (An)n∈N of n×n matrices, where the entries aij are random variables
on some probability space Ω equipped with a probability measure P . We have

τn ⊗ E(An) :=
1
n

n∑
i=1

∫
Ω
aii(ω)dP (ω).

Given these “states” τn ⊗ E, we can talk about the s-th moment τn ⊗ E(Asn) of the
random matrix An, and it is known that for “sufficiently nice” matrix ensembles these
moments converge for n→∞ (Voiculescu [1991], for specific examples see Edelman and
Rao [2005]). We give one example:

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

X

 

 
R=0.25
R=0.5
R=1
R=2
R=3

Figure 2.1: Probability density function of
the Wigner semicircle distribution with dif-
ferent parameters R.

Example (The semicircle distribution)
Wigner’s law states that the spectral mea-
sure of a random symmetric n× n-matrix
with Gaussian-distributed elements with
variance 1/

√
n tends to the (Wigner) semi-

circle distribution as n tends to infinity
(Wigner [1955, 1958]). The semicircle dis-
tribution is given by

f(x) =
2

πR2

√
R2 − x2

for −R < x < R, and f(x) = 0 if
x > R or x < −R. A plot of the proba-
bility density function of this distribution
for different values of R is shown in Fig-
ure 2.1.
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2 Mathematical Tools

Remark 2.5
Above, we used the term state although it is reserved for positive linear functionals
on C∗-algebras of norm one. We will see that the limit elements of random matrices
are elements of some algebra. In free probability theory these algebras are often
C∗-algebras, although in our case it is enough to consider ordinary algebras.

Assuming now that the limit of the s-th moment exist, let us denote it by αs, i.e.,

lim
n→∞

τn ⊗ E(Asn) =: αs. (2.1)

Thus we can say that the limit n = ∞ consists exactly of the collection of all these
moments αk. We can identify these numbers as moments of some variable A. Going a bit
further, we can view A as an element of some abstract algebra A which was generated
by A and define a state φ on A through

φ(As) := αs . (2.2)

Now we can say that our random matrices An converge to the variable A in distribution
which is defined by the next definition. We will denote this by An → A.

Definition 2.6 (Convergence in distribution, Speicher [2001])
Consider n × n-random matrices A(1)

n , . . . , A
(m)
n and variables A1, . . . , Am ∈ A ,

where A is an algebra over C with a linear functional φ : A → C, such that
φ(1) = 1. We say that

(A(1)
n , . . . , A(m)

n )→ (A1, . . . , Am) in distribution,

if
lim
n→∞

τn ⊗ E(A(i1)
n · · ·A(ik)

n ) = φ(Ai1 · · ·Aik)

for all choices of k with i1, . . . , ik ∈ {1, . . . ,m}.

The limit elements A1, . . . , Am are now elements of a noncommutative algebra according
to Definition 2.4. At this point we note that for a self-adjoint operator A = A∗ the
collection of moments corresponds also to a probability measure µA on the real line,
determined by

φ(Ak) =
∫

R
tkdµA(t) .

In particular, for a real-valued symmetric n× n-matrix A = AT this measure is given by
the eigenvalue distribution of A, i.e., it puts mass 1/n on each of the eigenvalues of A
(counted with multiplicity):

µA =
1
n

n∑
i=1

δλi
(2.3)

where λ1, . . . , λn are the eigenvalues of A. We will use this measure in Section 3.2.
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2.2 Introduction into Free Probability Theory

Let An and Bn be two independent random matrices (all entries of An are independent of
all entries of Bn) where all joint moments converge. Then we can say (An, Bn)→ (A,B)
What is the relation between A and B? Is there still something like independence? It
turns out that the corresponding term here is freeness which is defined in the following
sense:

Definition 2.7 (Freeness; Voiculescu [1985], Speicher [1997])
Let A be a unital algebra and φ : A → C a linear functional on A , which is unital,
i.e., φ(1) = 1. Then a1, . . . , am ∈ A are called free (with respect to φ) if

φ[p1(ai(1)) · · · pk(ai(k))] = 0

whenever

• p1, . . . , pk are polynomials in one variable
• i(1) 6= i(2) 6= i(3) 6= · · · 6= i(k) (only neighbouring elements are required to be

distinct)
• φ[pj(ai(j))] = 0 for all j = 1, . . . , k.

Remark 2.8
For calculations with higher order terms there is a more convenient definition of
freeness in terms of free cumulants. Free cumulants involve non-crossing partitions
which will be introduced in the next section. There is an analogy to the indepen-
dence in classical probability spaces: Any mixed cumulant involving independent
variables is zero in classical probability theory. Freeness now is equivalent to the
vanishing of mixed (free) cumulants in free probability theory. This is often easier
to handle.

With this definition of freeness we can try to calculate mixed moments in terms of mo-
ments of the singular variables. Especially, if a and b are free, then the definition of
freeness requires that

φ[(a− φ(a) · 1)(b− φ(b) · 1)] = 0

which implies that
φ(ab) = φ(a) · φ(b). (2.4)

Up to now, there is no difference to the results for classical independent random variables.
But consider next for a and b free,

φ[(a− φ(a) · 1)(b− φ(b) · 1)(a− φ(a) · 1)(b− φ(b) · 1)] = 0 .

From that we can derive

φ(abab) = φ(aa) · φ(b) · φ(b) + φ(a) · φ(a) · φ(bb)− φ(a) · φ(b) · φ(a) · φ(b). (2.5)

This shows that freeness is something different from classical independence; indeed it
seems to be more complicated. Also, φ seems to play a similar role here as E does in
classical probability theory. It is possible (at least in principle) to calculate all mixed

11
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moments by reducing them to alternating products of centered variables as in the defini-
tion of freeness. Remembering that φ is the limit of the normalized trace of a sequence of
random matrices, this fact holds approximately for independent matrices and sufficiently
high dimension n. Later on (in Section 3.2) we want to calculate mixed moments of a
certain structure, namely φ[(bp)s] where p is a projection matrix. To do this we need the
concept of non-crossing partitions which we will introduce now.

2.2.1 Non-Crossing Partitions

Freeness is defined in terms of mixed moments, but this definition is not easy to handle
if we want to make concrete calculations. It is possible to describe freeness by another,
more combinatorial approach which puts the main emphasis on so called “free cumulants”.
The nomenclature comes from classical probability theory, where corresponding elements
are also called cumulants. There exists a combinatorial description of these classical
cumulants which depends on partitions of sets. Now, free cumulants can be described
combinatorially in a similar way, we only have to replace all partitions by so called “non-
crossing partitions”. Our presentation will follow Speicher [1997].

Definition 2.9
A partition of the set S := {1, . . . , n} is a decomposition

π = {V1, . . . , Vr}

of S into disjoint and non-empty sets Vi, i.e.

Vi ∩ Vj = ∅ (i, j = 1, . . . , r; i 6= j) and S =
r⋃
i=1

Vi .

We call the Vi the blocks of π.
For 1 ≤ p, q ≤ n we write

p ∼π q if p and q belong to the same block of π .

A partition π is called non-crossing if the following does not occur: There exist
1 ≤ p1 < q1 < p2 < q2 ≤ n with

p1 ∼π p2 6∼π q1 ∼π q2 .

The set of all non-crossing partitions of 1, . . . , n is denoted by NC(n).

Non-crossing partitions were introduced by Kreweras [1972] in a purely combinatorial
context. An equivalent definition of non-crossing sets is the following: If we label the ver-
tices of a regular n-gon with the numbers 1 through n, the convex hulls of the partition’s
different blocks are disjoint from each other, i.e., they also do not “cross” each other. A
visualization of a non-crossing partition of a set with ten points is given in Figure 2.2.

12



2.2 Introduction into Free Probability Theory

Figure 2.2: A non-crossing partition of ten points1

The number of non-crossing partitions of a set of size n is given by the so-called Catalan
numbers (Speicher [1994], Corollary 2) which are given by

Cn =
1

n+ 1

(
2n
n

)
.

Definition 2.10
Let A be a unital C∗-algebra and φ : A → R a linear functional. We define the
(free or non-crossing) cumulants

kn : A n → R (n ∈ N)

(indirectly) by the following system of equations:

φ(a1 · · · an) =
∑

π∈NC(n)

kπ[a1, . . . , an] (a1, . . . , an ∈ A ) ,

where kπ denotes a product of cumulants according to the block structure of π:

kπ[a1, . . . , an] := kV1 [a1, . . . , an] · · · kVr [a1, . . . , an] for π = {V1, . . . , Vr} ∈ NC(n)

and
kV [a1, . . . , an] := k#V (av1 , . . . , avl

) for V = (v1, · · · vl)

Thus, one can calculate k#V (av1 , . . . , avl
) and therefore kπ[a1, . . . , an] with the help of

φ(a1 · · · an). This definition will become clearer with the following examples.

1Figure taken from http://en.wikipedia.org/wiki/File:Noncrossing-partition.svg.
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Remarks and Examples
1) The above equations have the form

φ(a1 · · · an) = kn(a1, . . . , an) + smaller order terms

and thus they can be resolved for the kn(a1, . . . , an) in a unique way.
2) Examples:

• n = 1
φ(a1) = k1(a1) .

• n = 2
φ(a1a2) = k2(a1, a2) + k1(a1)k1(a2) ,

thus
k2(a1, a2) = φ(a1a2)− φ(a1)φ(a2) .

• n = 3

φ(a1a2a3) =k3(a1, a2a3) + k1(a1)k2(a2, a3) + k2(a1, a2)k1(a3)
+ k2(a1, a3)k1(a2) + k1(a1)k1(a2)k1(a3) ,

and thus

k3(a1, a2, a3) =φ(a1a2a3)− φ(a1)φ(a2a3)− φ(a1a3)φ(a2)
− φ(a1a2)φ(a3) + 2φ(a1)φ(a2)φ(a3) .

3) The kn are multi-linear in their n arguments.

For a random variable a ∈ A we put

kan := kn(a, . . . , a)

and call (kan)n≥1 the (free) cumulants of a. We can now define freeness with terms of free
cumulants:

Theorem 2.11 (Speicher [1994], cf. Nica [1996])
The following two statements are equivalent:

1. a1, . . . , al are free.
2. kn(ai(1), . . . , ai(n)) = 0 (n ∈ N) whenever there are 1 ≤ p, q ≤ n with i(p) 6=

i(q).

We want to apply this machinery onto the multiplication of random variables in A . First
we provide an important result from Voiculescu concerning the relation between random
matrices and free probability theory.

14
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Theorem 2.12 (Asymptotic freeness, Speicher [1997], Section 9.2; cf. Voiculescu et al.
[1992])

1. Let
A(n) =

(
a

(n)
ij

)n
i,j=1

and B(n) =
(
b
(n)
ij

)n
i,j=1

be symmetric n× n-random matrices with
a) a

(n)
ij (1 ≤ i ≤ j ≤ n) are independent and normally distributed (mean zero,

variance 1/n)
b) b

(n)
ij (1 ≤ i ≤ j ≤ n) are independent and normally distributed (mean zero,

variance 1/n)
c) all a(n)

ij are independent from all b(n)
kl .

Then A(n) and B(n) become free in the limit n→∞ with respect to φ (defined
through (2.1) and (2.2)).

2. Let An and Cn be real-valued symmetric deterministic n × n-matrices whose
eigenvalue distribution tend to some fixed probability measure µ and ν, respec-
tively, in the limit n→∞. Consider now

Bn = UnCnU
T
n ,

where Un is a random n×n orthogonal matrix from the ensemble O(n) equipped
with the Haar measure. Then An and Bn become free in the limit n→∞ with
respect to φ.

This relates the independence of the matrix entries with freeness of the limit elements of
these matrices. Note that part 2 of this theorem is much more general than part 1. In the
first part, A(n) and B(n) are Gaussian random matrices and thus, by a result of Wigner
[1955], their eigenvalue distributions tend towards the so-called semi-circle distribution
for n→∞.
In part 2 of the theorem, however, we are not restricted to semi-circular distributions, but
we can prescribe in the limit any distribution we want. Our focus in this work will lie on
the second part, although in some situations we will assume distributions with compact
support.
Imagine now we are given two sequences of n × n-matrices Cn and Pn, where Pn are
projection matrices (P 2

n = Pn) with τn(Pn) → c for some fixed c with 0 < c < 1. The
prescribed eigenvalue distribution of Cn is µ for n → ∞ and we consider the randomly
rotated version Bn = UnCnU

T
n of this matrix. We are now looking for the moments of

the limit distribution of PnBnPn. Since all moments of Bn and Pn converge we can write

(Bn, Pn)→ (B,P ),

where B has the prescribed distribution µ, and P is a projection with φ[P ] = c. By
Voiculescu’s theorem about asymptotic freeness, we know that B and P are free. In
Section 3.2.2 we need to calculate φ[(PBP )n]. Due to the trace property of φ and the
projection property P 2 = P , we have

φ [(PBP )n] = φ [(BP )n] .

15
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This situation was already discussed in Speicher [2001], Theorem 4.3. The result is the
following

φ[(BP )n] =
∑

π∈NC(n)

kπ[B, . . . , B]cn+1−|π|, (2.6)

which is nothing else than a linear combination of the moments of B. We thus can
describe φ[(BP )n] in terms of φ[Bs] (s does not exceed n).

2.3 Two Helpful Lemmas

In this section we present two lemmas. The first will help us to make a statement about
the average of a random rotated matrix. The second is a result from concentration of
measure phenomenon and gives us an idea of how close a functional on a randomly chosen
matrix is to its average. The former goes back to Schur [1905, 1906] and thus it is called
the Schur Lemma. We will present here a formulation taken from Tung [1985]:

Lemma 2.13 (Schur Lemma)
Let U(G) be an irreducible representation of a group G on the vector space V , and T
be an arbitrary operator on V . If T commutes with all the operators {U(g), g ∈ G},
i.e. TU(g) = U(g)T , then T must be a multiple of the identity operator, i.e. T = λI
where λ is a number and I the identity.

For our purposes we set V to be the vector space of all real-valued n × n-matrices, i.e.
V = Rn×n and G is the orthogonal group O(n). Let T be the average of the matrices
UCUT for some fixed matrix C, i.e.

T =
∫
U∈O(n)

UCUTdµ(U) .

where dµ denotes the Haar measure on O(n). Since then obviously T = UTUT for any
U ∈ O(n), we have TU = UT . Thus T is commuting with every U ∈ O(n). With the
Schur Lemma it follows that T = λI. Due to the cyclic property and the linearity of the
trace we have

tr(λI) = tr(T ) = tr

(∫
U∈O(n)

UCUTdµ(U)

)
= tr(C) .

Therefore

λ =
1
n
tr(C) = τn(C). (2.7)

Next, we introduce an important result which goes back to concentration of measure
phenomenon (Ledoux [2001]) and is also used in Janzing et al. [2010], but we describe
the derivation in more detail here. It shows that “nice” functions on high-dimensional
spheres are concentrated around their median or mean.
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Lemma 2.14 (Lévy’s Lemma, Ledoux [2001], cf. Popescu et al. [2005])
Let g : Sn → R be a Lipschitz continuous function on the n-dimensional sphere with

L := max
γ 6=γ′

|g(γ)− g(γ′)|
‖γ − γ′‖

.

If a point γ on Sn is chosen uniformly at random, it satisfies

|g(γ)− ḡ| ≤ ε

with probability at least 1 − exp(−κ(n − 1)ε2/L2) for some constant κ, where ḡ is
either the median or the average of g(γ).

We will later use Lévy’s Lemma to make a statement about the trace of random matri-
ces. Let us here discuss a special case for the function g. Set g(γ) = 〈γ,Bγ〉 for some
symmetric n × n-matrix B and an n-dimensional unit vector γ. We will at this point
shortly show that then ḡ = τn(B) and the Lipschitz constant of g is given by 2‖B‖, with
‖ · ‖ denoting the operator norm

‖B‖ = max
x∈Rn

‖Bx‖
‖x‖

.

First we calculate ḡ. Averaging over γ in Sn is the same as fixing γ and averaging over
Uγ in O(n). Using the Schur Lemma we can write

ḡ =
∫
γ∈Sn

〈γ,Bγ〉dµ(γ) (2.8)

=
∫
U∈O(n)

〈Uγ,BUγ〉dµ(U) (2.9)

= 〈γ,
∫
U∈O(n)

UTBUdµ(U)γ〉 (2.10)

= 〈γ, τn(B)Iγ〉 (2.11)
= τn(B). (2.12)

Here we applied the Schur Lemma in equation (2.11). Next we compute the Lipschitz
constant. To this end let γ 6= γ′. Recall that due to the assumptions ‖γ‖ = 1 = ‖γ′‖.

17
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Then

|g(γ)− g(γ′)|
‖γ − γ′‖

=
|〈γ,Bγ〉 − 〈γ′, Bγ′〉|

‖γ − γ′‖
(2.13)

=
|〈γ,Bγ〉 − 〈γ,Bγ′〉+ 〈γ′, Bγ〉 − 〈γ′, Bγ′〉|

‖γ − γ′‖
(2.14)

=
|〈γ,B(γ − γ′)〉+ 〈γ′, B(γ − γ′)〉|

‖γ − γ′‖
(2.15)

=
|〈B(γ + γ′), γ − γ′〉|

‖γ − γ′‖
(2.16)

≤ ‖B(γ + γ′)‖‖γ − γ′‖
‖γ − γ′‖

(2.17)

≤ ‖B‖‖γ + γ′‖ (2.18)
≤ 2‖B‖ (2.19)

where we used the bilinearity of the inner product. In (2.14) and in (2.16) we made use
of the symmetry of B and in (2.17) the Cauchy Schwarz inequality.

2.4 Motivating Example

Back to causality, we want to give an intuition about our main idea. Assume that X
has a causal influence on Y . To see what kind of suspicious relations between P (Y ) and
P (X|Y ) we can expect we will present a small toy example. The following introductory
example is taken from Janzing et al. [2010].

Assume that X is a multivariate Gaussian variable with values in Rn and isotropic co-
variance matrix CXX = I. Let Y be another Rn-valued variable that is deterministically
influenced by X via the linear relation Y = AX for some n× n matrix A. This induces
the covariance matrix

CY Y = ACXXA
T = AAT .

The converse causal hypothesis Y → X becomes unlikely because P (Y ) and P (X|Y ) are
related in a suspicious way: P (Y ) is given by the covariance matrix AAT whereas P (X|Y )
is given by A−1 with probability 1. A appears in both descriptions. Another point of view
can be made if we look at symmetries: take U ∈ O(n) where O(n) denotes the orthogonal
group and consider the set of covariance matrices UCY Y UT . Among them, CY Y is very
special since it is the only one that is transformed into the isotropic covariance matrix
CXX . More general speaking, in the light of the fact of how anisotropic the matrices

C̃XX := A−1UCY Y U
TA−T

are for randomly chosen U , the hypothetical effect variable is surprisingly isotropic for
U = I (we use the short notation A−T := (A−1)T ). We will show below that this
remains true with high probability (in high dimensions) if we even start with an arbitrary
covariance matrix CXX and apply a random linear transformationA chosen independently
of CXX .
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2.4 Motivating Example

Remark 2.15
We assume Gaussianity here since this is the hardest case and contains a lot of
symmetries. Other methods attacking the linear case at least assume non-Gaussian
noise like for example Shimizu et al. [2006].

In the general setting
Y = AX + E, E ⊥⊥ X

with CXX being a randomly chosen covariance matrix. Since we want to check a certain
kind of independence between ATA and CXX we need to determine A only in terms of
X and Y . One sees immediately that A is given by

A = CY XC
−1
XX

since CXE = 0. CY X denotes here the cross-covariance matrix between X and Y . If
we are given a finite amount of samples, all of these covariances have to be estimated.
Fixing the dimensionality one can easily find consistent estimators if sample size tends to
infinity. But what can be done in the case of ultra-highdimensional variables when only
a few samples are given?
The challenge is nonetheless, to find good estimators. In this particular case, when
dimensionality exceeds sample size, the empirical estimator of CXX gets singular and
thus A cannot be determined reliably. However, as it will turn out it is not necessary to
estimate A entirely but only its trace. We will show in the next chapter, that this is still
possible for the small sample case in the deterministic setting (without noise term E) but
gets quite involved in the noisy setting.
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3 Identifiability Results

In this chapter we will prove important identifiability results. They will give us the pos-
sibility to distinguish between the right and the wrong direction. Identifiability is very
important in causality since it lays the ground for inference algorithms.

Given the true causal model Y = AX + E and the hypothetical causal model for the
backward direction X = ÃY + Ẽ, we want to check whether the pair (CY Y , Ã) satisfies
some suspicious relation that helps us to identify the wrong direction. To this end we
compare the values

τn(ACXXAT ) and τn(CXX)τn(AAT ) . (3.1)

First observe that the expectation of both values coincide if CXX is randomly drawn from
a distribution that is invariant under transformations

CXX 7→ UCXXU
T .

To show this we use the linearity of the trace and the derivations we made in the last
chapter, Section 2.3:∫

U∈O(n)
τn(AUCXXUTAT )dµ(U) = τn(A

∫
U∈O(n)

UCXXU
Tdµ(U)AT )

= τn
(
A(τn(CXX)I)AT

)
= τn(CXX)τn(AAT ) .

For our purpose it is decisive that in the typical case UCXXUT is close to its average,
i.e., the two expressions of (3.1) almost coincide. For the theoretical values this was
already shown by Janzing et al. [2010]. The challenge is now to show a similar result
for the sample-based quantities. If the number of dimensions exceeds the sample size, A
cannot be estimated reliably any more on the whole space but only on a subspace. We
will denote this estimated A by Â. However, for our purposes it suffices to find a good
approximation of the trace of ATA which is still possible. As it will turn out, this trace
can be approximated by the trace of ÂT Â times a scaling factor that is dependent only
on the rank of the Â.

3.1 Notations

Let us first introduce some notations we will use throughout this work.
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3 Identifiability Results

• Our causal model for X → Y is

Y = AX + E

with X being a random variable with values in Rn, Y,E are random variables with
values in Rm, A ∈ Rm×n and X ⊥⊥ E (it follows that CXE = CEX = 0). E is the
noise term. We refer to this model as the forward model. If not stated differently
we will always assume without loss of generality that X → Y is the ground truth.
The backward model then is

X = ÃY + Ẽ

with the same X,Y and Ẽ being a random variable in Rn, Ã ∈ Rn×m.

• For a matrix C we denote the empirical estimator by Ĉ = (ĉij)i,j∈{1,...,n}. To
estimate the covariance matrix we use the standard estimator which is given by

ĉij =
1

k − 1

k∑
l=1

(xil − x̄i)(xjl − x̄j)

where

x̄i =
1
k

k∑
l=1

xil

denotes the sample mean, n is the dimensionality of C and k is the number of
samples.

• We say the two matrices B and C are independent if for two fixed matrices B and
D, C is a random rotation of D, i.e., C = UDU with U drawn from O(n) at random
according to the Harr measure. CXX will be this randomly rotated matrix, whereas
we assume ATA to be fixed. If X → Y we will always assume that ATA and CXX
are independent.

• In the next section we will consider sequences of matrices with finite moments of all
orders. Given a n× n-matrix Bn we can talk about a real-valued random variable
Zn with probability measure µBn as in (2.3). Zn then reflects the distribution of
the eigenvalues of Bn.

• We will denote the sample size with k and the rank of CXX with r. We assume
k ≤ n. Thus if P (X) is a density, almost surely r = k − 1, since for k given i.i.d.
samples of X, the rank of its covariance matrix is k − 1.

• When we write limn→∞ in the following part we mean convergence in probability.
We say, a sequence of random variables Xn converges in probability towards X if
for all ε > 0

lim
n→∞

Pr(|Xn −X| ≥ ε) = 0.
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3.2 The Deterministic (Noiseless) Case

We will now discuss the deterministic case, i.e., our model does not contain a noise
term E. Let A(m,n) be a sequence of (deterministic) m × n-matrices such that the limit
distribution of AT(m,n)A(m,n) exists. This formulation is from now on always meant in the
spirit of free probability theory, i.e., we claim that

lim
m,n→∞

τn
(
(AT(m,n)A(m,n))

s
)

exist for all s. One can ignore the expectation here since the entries of A(m,n) are fixed.
Referring to this we will also say that all moments of AT(m,n)A(m,n) converge.
Let X(n) be a sequence of n-dimensional multivariate real-valued random variables such
that the normalized trace τn(CXX) converges for n→∞.
Let Y(m) be a sequence of Rm-valued variables that is deterministically influenced by X(n)

via the linear relation
Y(m) = A(m,n)X(n) .

Finally, let Ĉ(n)
XX be the sequence of empirical covariances for k randomly observed sam-

ples (xi, yi) (i = 1, . . . , k). As it will be shown in Lemma 3.9, the normalized trace of
Ĉ

(n)
XX then converges independently from n, if k →∞ (the same is true for Ĉ(m)

Y Y and m).

Since the case where k � m,n was already discussed in Janzing et al. [2010] we want to
focus here on the more difficult case where k ≤ min(m,n). Note that in this case, if CXX
has full rank, almost surely

rank(ĈXX) = k − 1 =: r .

Thus we can assume without loss of generality that rank(ĈXX) = rank(ĈY Y ) = r. In
this section we want to investigate what happens if m,n → ∞ and k ≤ min(m,n). To
deal with this we assume that m,n and k go to infinity with the same rate. Thus we have
the relations m = κn for some constant κ, and r/min(m,n) is fixed, i.e.

r

min(m,n)
→ c with 0 < c < 1 as m,n→∞ .

We will discuss at the end of this section what will happen if r/min(m,n) → 0. Since
m,n and r are now dependent only on one variable we set ρ := min(m,n) and denote the
matrices A(m,n) with Aρ. We will also index all other matrices dependent on both m and
n with the sub- or superscript ρ, like for example CρXY . On the other hand, if a matrix
is dependent only on either m or n we keep the index (m) and (n), respectively.

3.2.1 Establishing an Equality in the Forward Direction

Let
Ĉ

(n)
XX = U(n)Σ(n)U

T
(n)
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denote the reduced singular value decomposition of the empirical covariance matrix Ĉ(n)
XX .

U(n) is given by (u1, . . . , ur)(n) with orthonormal vectors u(n)
i and Σ(n) is a diagonal r×r-

matrix with the non-zero eigenvalues σ(n)
i of Ĉ(n)

XX on its diagonal. One then can also
write

Ĉ
(n)
XX =

k∑
i=1

σiuiu
T
i

(here we omitted the indices (n) for better readability, but remember that also ui and σi
depend on n). We can now estimate Aρ by

Âρ = ĈρY XĈ
+(n)
XX = AρĈ

(n)
XXĈ

+(n)
XX = AρU(n)U

T
(n) (3.2)

where Ĉ+(n)
XX denotes the Moore-Penrose pseudoinverse of Ĉ(n)

XX , given by

Ĉ
+(n)
XX = U(n)Σ

−1
(n)U

T
(n).

We can establish our first result for the forward direction.

Theorem 3.1 (Equality in the forward direction)
Assume that either

a) the growing rate of the operator norm of ATρAρ is bounded by n, i.e., ‖ATρAρ‖/n <
∞ for n, ρ→∞ or

b) the eigenvalue distribution of both C(n)
XX and ATρAρ converge to some probability

density µ and ν, respectively.

Then, if ATρAρ and C(n)
XX are independent and 0 < r/ρ→ c < 1 for ρ→∞,

lim
ρ→∞

[
τn(ÂTρ ÂρĈ

(n)
XX)− n

r
τn(ÂTρ Âρ)τn(Ĉ(n)

XX)
]

= 0 . (3.3)

We will provide two different proofs for this lemma. One “classical” one under the as-
sumption a) which does not use free probability but Lévy’s Lemma instead. The other
one, assuming b), will show how helpful free probability theory can be in this kind of
setting.

Proof without free probability theory (a): Due to the following property of the
Moore-Penrose pseudoinverse

DD+D = D

for some matrix D, we get

ÂρĈ
(n)
XXÂ

T
ρ = AρĈ

(n)
XXĈ

+(n)
XX Ĉ

(n)
XXĈ

+(n)
XX Ĉ

(n)
XXA

T
ρ = AρĈ

(n)
XXA

T
ρ .

Thus
τn(ÂTρ ÂρĈ

(n)
XX) = τn(ATρAρĈ

(n)
XX) (3.4)
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by the cyclic property of the trace.
We set Bρ := ATρAρ and derive

lim
ρ→∞

[
τn(ATρAρĈ

(n)
XX)− n

r
τn(ÂTρ Âρ)τn(Ĉ(n)

XX)
]

(3.5)

= lim
ρ→∞

[
τn(BρĈ

(n)
XX)− n

r
τn(U(n)U

T
(n)A

T
ρAρU(n)U

T
(n))τn(Ĉ(n)

XX)
]

(3.6)

= lim
ρ→∞

[
τn(BρĈ

(n)
XX)− n

r
τn(BρU(n)U

T
(n))τn(Ĉ(n)

XX)
]

(3.7)

= lim
ρ→∞

[
τn(Bρ

r∑
i=1

σiuiu
T
i )− n

r
τn(Bρ

r∑
i=1

uiu
T
i )τn(Ĉ(n)

XX)
]

(3.8)

= lim
ρ→∞

[
τn(Bρ

r∑
i=1

σiuiu
T
i )− τn(Bρ

r∑
i=1

n

r
τn(Ĉ(n)

XX)uiuTi )
]

(3.9)

= lim
ρ→∞

[
τn
(
Bρ

r∑
i=1

σiuiu
T
i −Bρ

r∑
i=1

n

r
τn(Ĉ(n)

XX)uiuTi
)]

(3.10)

= lim
ρ→∞

[
τn
(
Bρ

r∑
i=1

(σi −
n

r
τn(Ĉ(n)

XX))uiuTi
)]

(3.11)

= lim
ρ→∞

[ r∑
i=1

(σi − τr(Ĉ(n)
XX))τn(BρuiuTi )

]
(3.12)

= lim
ρ→∞

r∑
i=1

(σi − τr(Ĉ(n)
XX)) lim

ρ→∞
τn(BρuiuTi ) . (3.13)

In (3.7) we used the cyclic property of the trace and that P := U(n)U
T
(n) is a projection

and thus P 2 = P . In (3.8) we substituted U(n)U
T
(n) by

∑k
i=1 uiu

T
i . In (3.9) and (3.10)

we used the linearity of the trace. The change of multiplication and limes in (3.13) is
possible since all relevant quantities converge. Also we used the notation τr(·) = tr(·)/r.

Now we apply Lévy’s Lemma (Lemma 2.14): define the function f(u) := 〈u,Bρu〉 =
tr(BρuuT ). Then f̄ = τn(Bρ) if u has norm 1 and is randomly chosen according to a
rotation invariant prior (see (2.7)). We can assume this for the ui’s since Ĉ(n)

XX and Bρ
are independent. It follows

|τn(BρuiuTi )− 1
n
τn(Bρ)| ≤

ε

n
‖Bρ‖ (3.14)

with probability at least 1 − exp(−κ(n − 1)ε2) (replace ε with ε‖Bρ‖ in Lemma 2.14).
Now, due to our assumption a), ‖Bρ‖/n <∞ for all ρ, we get for every ε > 0

lim
n→∞

Pr
(∣∣∣∣τn(BρuiuTi )− 1

n
τn(Bρ)

∣∣∣∣ ≥ ε) = 0 .

Because of
r∑
i=1

(σi − τr(Ĉ(n)
XX)) =

r∑
i=1

σi − r
1
r
tr(Ĉ(n)

XX)) = 0
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it is clear that (3.13) is zero. This proves the lemma. �

Proof with free probability theory (b): For a sequence of real valued deterministic
n× n-matrices Dn it holds

lim
n→∞

τn(Dn) = lim
n→∞

τn ⊗ E(Bn) ,

i.e., if Dn → D,
φ(D) = lim

n→∞
τn(Dn) .

We use (3.4) and set again Bρ = ATρAρ. We want to apply the second part of Voiculescu’s

theorem (Theorem 2.12). Bρ and Ĉ
(n)
XX fulfill its assumptions: Both their eigenvalue

distributions tend to some fixed probability measure µ and ν, respectively, and Ĉ(n)
XX can

be viewed as some randomly rotated matrix. Ergo Bρ and Ĉ(n)
XX become free in the limit

ρ, n→∞. We set
B = lim

ρ→∞
Bρ

and
C = lim

ρ→∞
Ĉ

(n)
XX .

Let us define Pρ = Ĉ
(n)
XXĈ

+(n)
XX . If Ĉ(n)

XX is randomly rotated against Bρ, then also Pρ.
Due to the assumption that r/ρ→ c we get τn(Pρ)→ c for n→∞ and thus, since c < 1,
all moments of Pρ converge. Again by Theorem 2.12, Pρ and Bρ are free in the limit. We
can set

P = lim
ρ→∞

Pρ .

Let us conclude for a moment what we got so far: B and C as well as B and P are free
with respect to φ. By a simple property of free variables (cf. Equation (2.4)) we have

φ(BC) = φ(B)φ(C) and φ(BP ) = φ(B)φ(P )

and thus

lim
ρ→∞

τn(AρĈ
(n)
XXA

T
ρ ) = φ(BC) = φ(B)φ(C) =

φ(BP )φ(C)
φ(P )

=
n

r
φ(PBP )φ(C)

= lim
ρ→∞

n

r
τn(ÂTρ Âρ)τn(Ĉ(n)

XX)

since φ(P ) = r/n. Note that we used the trace property of φ and P 2 = P . �

As one can see, the proof using free probability theory is a bit shorter. However, we used
different assumptions for both proofs and it seems that assumption a) is a bit weaker. To
see that, consider a sequence of n×n-matrices An where every entry is drawn i.i.d. from
a standard normal distribution. Then τn(ATnAn) = nσ̂(xi,j) ≈ n and ‖ATnAn‖/n <∞ for
all n. To obtain converging moments this sequence would need some normalization on the
entries and thus it has no limit distribution for n→∞. Hence it violates assumption b).
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Theorem 3.1 shows (except from the quotient r/n which comes from the projection)
that for two independent matrices A and B the renormalized trace is approximately
multiplicative, i.e.,

τn(AB) ≈ τn(A)τn(B) .

We will refer to this as the trace multiplicativity.

3.2.2 Establishing an Inequality in the Backward Direction

To get an idea what happens in the backward direction, we first want to give an intu-
ition why we expect a violation of the trace multiplicativity there, more precisely, why
the values of (3.1) won’t coincide. Since this is very important, we will formulate our
permanent assumption once again: The sequence ATρAρ is fixed and the matrices C(n)

XX

are chosen at random from a distribution that is invariant under rotations. We will say
ATρAρ and C

(n)
XX are independent. Another assumption we want to make in this part is

the assumption b) of Theorem 3.1, namely that the eigenvalue distributions of both C(n)
XX

and ATρAρ converge to some probability density.
We first describe how Janzing et al. [2010] show this for the large sample case and then
explain why this cannot be applied in our case. Let for a moment m = n and A be
invertible. Given the forward model with ATA and CXX independent and a nontrivial
eigenvalue distribution on ATA, we have (using the shorthand A−T = (A−1)T )

τn(A−TA−1CY Y )− τn(A−TA−1)τn(CY Y ) = τn(CXX)− τn(A−TA−1)τn(ATACXX)

≈ τn(CXX)− τn(A−TA−1)τn(ATA)τn(CXX)

= τn(CXX)(1− τn(A−TA−1)τn(ATA))
= τn(CXX)Cov(1/Z,Z)
< 0,

where Z is a real-valued random variable whose probability measure is given by

µ =
1
n

n∑
i=1

δλı ,

with λi denoting the eigenvalues of ATA. Thus, Z reflects the empirical distribution of
the eigenvalues of ATA and A−TA−1, respectively (cf. equation (2.3), see also Janzing
et al. [2010], Theorem 2).
Why could we get in trouble showing this for the sample-based quantities? First of all, the
estimators of A and Ã do not have full rank and therefore are not inverse to each other.
But we will see that there is a similar nice relationship between these two estimators which
is shown in Lemma 3.3. The other restraint could be that we don’t know what happens
with the distribution of Z if we are given only a small number of samples compared to the
number of dimensions. But this distribution is crucial to establish the asymmetry since
we need to use the fact that Cov(Z, 1/Z) < 0. With this problem we deal in Lemma 3.4.
We start with a relationship between covariance and cross-covariance matrices.
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Lemma 3.2
Let k = r + 1 be the number of samples and let rank(ĈXX) = rank(ĈY Y ) = r <
ρ = min{dim(ĈXX),dim(ĈY Y )}. Then

ĈXY Ĉ
+
Y Y ĈY X = ĈXX

and
ĈY XĈ

+
XXĈXY = ĈY Y .

Proof: Let X and Y be the n × k- and m × k-matrix of observations, respectively. We
define the centralized observation matrices X̄ = X −µ1Tk and Ȳ = Y − ν1Tk where µ and
ν are the row mean of X and Y , respectively, and 1k is the k-dimensional column vector
containing only 1’s. Then

ĈXY =
1
r
X̄Ȳ T , Ĉ+

Y Y =
1
r

(Ȳ Ȳ T )+ and ĈY X =
1
r
Ȳ X̄T .

We use a property of the pseudoinverse

Ȳ T (Ȳ Ȳ T )+ = Ȳ +

and get

ĈXY Ĉ
+
Y Y ĈY X =

1
r
X̄Ȳ T (Ȳ Ȳ T )+Ȳ X̄T =

1
r
X̄Ȳ +Ȳ X̄T .

Ȳ +Ȳ is an orthogonal projector onto the range of Ȳ T which agrees with the orthogonal
complement of the kernel of Ȳ . We already know that the kernel of Ȳ is one-dimensional
(since Ȳ Ȳ T has rank r which is one smaller then the number of columns of Ȳ ). Let
Y = (yij)m×k and ȳi = 1

k

∑k
j=1 yij . Now for any row Ȳi of Ȳ

Ȳi1k =
k∑
j=1

(yij − ȳi) =
k∑
j=1

yij −
k∑
l=1

1
k

k∑
j=1

yij = 0

which implies that ker(Ȳ ) is spanned by 1k. The same is true for ker(X̄), i.e., these two
kernels coincide. range(X̄T ) and range(Ȳ T ) are mappings from Rn → Rk and Rm → Rk,
respectively. We now have range(Ȳ T ) = 1k = range(X̄T ) and so Ȳ +Ȳ is the identity
on range(X̄T ). Thus Ȳ +Ȳ X̄T = X̄T . Changing the roles of X and Y proves the second
inequality. The statement follows. �

Now we look at the estimators of the transfer matrices more carefully. Similar to the
forward direction we estimate Ã in the backward model by

ˆ̃Aρ = ĈρXY Ĉ
+(n)
Y Y . (3.15)

First observe that ˆ̃A ˆ̃AT is the pseudoinverse of ÂT Â (index ρ omitted). This is shown by
the next lemma.
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3.2 The Deterministic (Noiseless) Case

Lemma 3.3
Let Â and Ã be as defined in (3.2) and (3.15), respectively. Then it holds

( ˆ̃A ˆ̃AT )+ = ÂT Â . (3.16)

Proof: We have to show the four properties characterizing the Moore-Penrose pseudoin-
verse:
(1) and (2): Obviously ˆ̃A ˆ̃AT ÂT Â and ÂT Â ˆ̃A ˆ̃AT are both symmetric.
(3) With the help of Lemma 3.2 we derive

ˆ̃A ˆ̃AT ÂT Â ˆ̃A ˆ̃AT = ĈXY Ĉ
+
Y Y Ĉ

+
Y Y ĈY XĈ

+
XXĈXY ĈY XĈ

+
XXĈXY Ĉ

+
Y Y Ĉ

+
Y Y ĈY X

= ĈXY Ĉ
+
Y Y Ĉ

+
Y Y ĈY Y ĈY Y Ĉ

+
Y Y Ĉ

+
Y Y ĈY X

= ĈXY Ĉ
+
Y Y Ĉ

+
Y Y ĈY X

= ˆ̃A ˆ̃AT

(4)

ÂT Â ˆ̃A ˆ̃AT ÂT Â = Ĉ+
XXĈXY ĈY XĈ

+
XXĈXY Ĉ

+
Y Y Ĉ

+
Y Y ĈY XĈ

+
XXĈXY ĈY XĈ

+
XX (3.17)

= Ĉ+
XXĈXY ĈY Y Ĉ

+
Y Y Ĉ

+
Y Y ĈY Y ĈY XĈ

+
XX (3.18)

= Ĉ+
XXĈXY ĈY Y Ĉ

+
Y Y ĈY XĈ

+
XX (3.19)

= Ĉ+
XXĈXY ĈY XĈ

+
XX (3.20)

= ÂT Â (3.21)

where (3.20) follows from the fact that ĈY Y Ĉ+
Y Y is an orthogonal projector onto the range

of ĈY Y which coincides with the range of ĈY X and thus

ĈY Y Ĉ
+
Y Y ĈY X = ĈY X

(cf. also the proof of Lemma 3.2). This proves the Lemma. �

Next we introduce a sequence of random variables Zρ whose distribution is the empirical
distribution of the non-zero eigenvalues of ÂTρ Âρ, which are all positive. Their probability
measures are given by

µρ =
1
r

r∑
i=1

δλi(ρ)

where the λi(ρ) denote the r non-zero eigenvalues of ÂTρ Âρ. Then, because of Lemma 3.3,

1/Zρ reflects the empirical distribution of the non-zero eigenvalues of ˆ̃ATρ
ˆ̃Aρ. Since we

assumed independence of C(n)
XX and ATρAρ, as in the second proof of Theorem 3.1 we

get that Ĉ(n)
XX and ÂTρ Âρ are asymptotically free and furthermore that Ĉ(n)

XXĈ
+(n)
XX and

ÂTρ Âρ are asymptotically free. Thus, again by setting P := limρ→∞ Ĉ
(n)
XXĈ

+(n)
XX and

B := limρ→∞A
T
ρAρ, P and B are free.

29



3 Identifiability Results

Set now
Z := lim

ρ→∞
Zρ . (3.22)

Then

E(Z) = lim
ρ→∞

τr(ÂTρ Âρ) =
n

r
φ[PBP ] =

n

r
φ[BP ] =

n

r
φ[B]φ[P ] = φ[B] . (3.23)

This follows from τn(Pρ) = r/n for all n (r/n→ c in the limit ρ→∞). Also

E(Z2) = lim
ρ→∞

τr

(
(ÂTρ Âρ)

2
)

=
n

r
lim
n→∞

τn
(
(PρBρPρ)2

)
=
n

r
φ
[
(BP )2

]
. (3.24)

Next we prove two statements about the variance of Z that are important for the proof
of the theorem for the backward direction.

Lemma 3.4
Let the limit distribution of the eigenvalues of ATρAρ have non-zero variance. Let
0 < r/ρ→ c < 1 for ρ→∞. Then, if Z is defined like above (see Equation (3.22)
and the paragraph before)

Var(Z) > 0.

Remark 3.5
By limit distribution of the eigenvalues of ATρAρ the following is meant: We can
assign a random variable to each matrix ATρAρ whose probability measure is de-
termined through their eigenvalues by (2.3). Due to the assumptions made on the
sequence Aρ, these random variables converge to a limit random variable whose
distribution we call the limit distribution of the eigenvalues of ATρAρ .

Proof: To investigate Var(Z) we use free probability theory. We use Equations (3.23)
and (3.24) and get

Var(Z) = E(Z2)− E(Z)2 =
1
c
φ[(PB)2]− φ[B]2 .

With (2.5) and c = φ[P ] we calculate

Var(Z) =
1
c
φ[(PB)2]− φ[B]2 =

1
c
φ[PBPB]− φ[B]2 (3.25)

=
1
c

(
φ[PP ]φ[B]φ[B] + φ[P ]φ[P ]φ[BB]− φ[P ]φ[B]φ[P ]φ[B]

)
− φ[B]2 (3.26)

= φ[B]2 + cφ[B2]− cφ[B]2 − φ[B]2 (3.27)

= c(φ[B2]− φ[B]2) (3.28)

= cVar(Z̃) (3.29)
6= 0 . (3.30)

Z̃ denotes here a random variable whose distribution is the limit distribution of the
eigenvalues of ATρAρ. �
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Lemma 3.6
Let Z be a random variable that takes only positive values. Then

Var(Z) 6= 0 =⇒ Cov(Z, 1/Z) < 0.

Proof: If Var(Z) 6= 0 then Z is not constant. Therefore with Cauchy-Schwarz

1 = E(
√
Z
√

1/Z) ≤ E(Z)E(1/Z)

with equality if and only if Z and 1/Z are linearly dependent (f.e. Bickel and Doksum
[1991]) which is not the case here. Thus

0 > 1− E(Z)E(1/Z) = Cov(Z, 1/Z)

�
Finally we derive a systematic violation of the multiplicativity of the traces in the back-
ward direction and describe how to compute the exact values of the emerging difference
in the limit.

Theorem 3.7 (Inequality in the backward direction)
Assume that the eigenvalue distribution of both C(n)

XX and ATρAρ tend to some proba-

bility measure as ρ→∞. Let ATρAρ and C(n)
XX be independent and 0 < r/ρ→ c < 1

for ρ → ∞. Let the limit distribution of eigenvalues of ATρAρ have non-zero vari-
ance. Then

lim
ρ→∞

[
τm( ˆ̃ATρ

ˆ̃AρĈ
(m)
Y Y )− m

r
τm( ˆ̃ATρ

ˆ̃Aρ)τm(Ĉ(m)
Y Y )

]
< 0. (3.31)

Proof: Due to Lemma 3.2 it holds
ˆ̃AρĈ

(m)
Y Y

ˆ̃ATρ = ĈρXY Ĉ
+(m)
Y Y Ĉ

(m)
Y Y Ĉ

+(m)
Y Y ĈρY X = ĈρXY Ĉ

+(m)
Y Y ĈρY X = Ĉ

(n)
XX . (3.32)

Therefore, with the cyclic property of the trace,

lim
ρ→∞

(
τm( ˆ̃ATρ

ˆ̃AρĈ
(m)
Y Y )− τr( ˆ̃ATρ

ˆ̃Aρ)τm(Ĉ(m)
Y Y )

)
(3.33)

= lim
ρ→∞

τm(Ĉ(n)
XX)− lim

ρ→∞
τr(

ˆ̃ATρ
ˆ̃Aρ) lim

ρ→∞
τm(AρĈ

(n)
XXA

T
ρ ) (3.34)

= lim
ρ→∞

τm(Ĉ(n)
XX)− lim

ρ→∞
τr(

ˆ̃ATρ
ˆ̃Aρ)τr(ÂTρ Âρ)τm(Ĉ(n)

XX) (3.35)

= lim
ρ→∞

[(
1− τr( ˆ̃Aρ

ˆ̃ATρ )τr(ÂTρ Âρ)
)
τm(Ĉ(n)

XX)
]

(3.36)

= (1− E(Z)E(1/Z)) lim
ρ→∞

n

m
τn(Ĉ(n)

XX) (3.37)

= Cov(Z, 1/Z) lim
ρ→∞

n

m
τn(Ĉ(n)

XX) (3.38)

< 0 . (3.39)

In (3.34) on the left side we used (3.32) and in (3.35) Theorem 3.1. (3.39) follows from
Lemma 3.4, Lemma 3.6 and the fact that τn(ĈXX) is always positive. Remember that
n/m is a constant. �
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Remark 3.8
Theorem 3.7 already shows that for a given model Y = AX the strength of the vio-
lation of the trace multiplicity in the backward direction depends on the eigenvalue
distribution of ATA, in particular on its variance, and on the quotient r/ρ.

We have just shown that in contrast to the forward direction we found a significant viola-
tion of the trace multiplicity in the backward direction. It is determined by the covariance
of the eigenvalue distribution of A estimated on an r-dimensional subspace and the in-
verse of this distribution. The result is similar to that shown in Janzing et al. [2010] with
the difference that due to the small sample setting it is restricted to the subspace which
is spanned by the samples. Thereby one expects the violation to be weaker here than in
the large sample case.

A natural question which arises now is whether we can determine the term E(1/Z) any
further with the objective of getting an idea about the strength of the violation of the
trace multiplicity. Such a result also would help us to construct a statistical test. It
turns out that this is in principle possible but we end up with an infinite sum that only
depends on the moments of ATρAρ. In the following part we assume that the eigenvalue
distribution of ATρAρ tends to some fixed probability measure with compact support.

The steps are the following: Since we want to compute E(1/Z) we first describe 1/Z in
terms of Z by means of the well known geometric series because we can calculate the
moments of Z. Then we apply free probability theory, in particular Equation (2.6).
The geometric series is given by

1
1− q

=
∞∑
l=0

ql for |q| < 1 .

It follows for x = 1− q

1
x

=
∞∑
l=0

(1− x)l for |1− x| < 1 .

Z is a positive real-valued random variable. Recall our assumption that it has compact
support, i.e., we can find a constant d such that |1 − Z/d| < 1. Thus we can assume
without loss of generality |1− Z| < 1. We get

E(1/Z) = E

( ∞∑
l=0

(1− Z)l
)

= E

( ∞∑
l=0

l∑
s=0

(
l

s

)
(−Z)s

)
=
∞∑
l=0

l∑
s=0

(
l

s

)
(−1)sE(Zs) .

(3.40)
The terms E(Zs) can be determined further with the help of free probability theory.
Since Z was defined by the non-zero eigenvalues of the limit distribution of PρBρPρ its
moments are given by Equation (2.6) through

E(Z l) =
1
c
φ
[
(BP )l

]
=

∑
π∈NC(l)

kπ[B, . . . , B]cl−|π| , (3.41)
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with c = φ[P ] = r/n. With the help of the examples after Definition 2.10 we exemplary
determine the first three summands of (3.41):

E(Z) = φ[B],

E(Z2) = cφ[B2]− φ[B]2,

E(Z3) = c2φ(B3]− 3cφ[B]φ[B2] + 2φ[B]3,

and so forth.

3.2.3 The Case k/n→ 0

We shortly want to discuss the case k/ρ→ 0 here. Then also r/n→ 0. Let for a moment
m = n = ρ and k = (log ρ + 1). Can we still expect a significant violation of the trace
multiplicativity in this situation? Since r is given by log ρ and

τ(Pρ) =
log ρ
ρ

tends to zero if ρ → ∞, the limit distribution of the eigenvalues of P is just zero. This
also renders all moments of Z and 1/Z to be zero. As a consequence the asymmetry
we derived between the forward and the backward direction collapses since all relevant
quantities tend to zero.

3.3 The Averaged Trace of the Covariance Estimator

Up to now we often used the terms τn(ĈXX) and τn(ĈY Y ) but it is not clear how close
these quantities are to their exact values. Without loss of generality we only speak about
ĈXX here. One can imagine that if there are no dependencies among the dimensions,
i.e. xi ⊥⊥ xj for i 6= j (the covariance matrix is diagonal), the normalized trace of the
sample covariance matrix should converge quite rapidly for k and n going to infinity with
equal rate. The following lemma, mainly based on observations made by Hoeffding [1963]
for independent variables shows that even if there are dependencies among the different
dimensions of X, the normalized trace of their covariance matrix converges independently
from the number of dimensions, i.e., the only relevant factor in this convergence is the
sample size k = r + 1.

Lemma 3.9 (Sum of Dependent Variables)
Let X1, . . . , Xn be (dependent) random variables with µi = E(Xi). Assume that
a ≤ Xi ≤ b for every i = 1, . . . , n. Then

Pr

[∣∣∣∣∣ 1n
n∑
i=1

(Xi − µi)

∣∣∣∣∣ ≥ t
]
≤ 2 exp

(
−2t2

(b− a)2

)
. (3.42)
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Proof: Note that this lemma is a slightly easier version of Theorem 2.1 in Janson [2004].
We follow the proof given there which is based on Hoeffding [1963].
Let B =

∑n
i=1Xi. Subtracting the mean, we assume E(Xi) = 0 for all 1 ≤ i ≤ n. And

thus E(B) = 0. Then by Hoeffding [1963] (4.16), for every real h,

E exp(hAi) ≤ exp
(

1
8
h2(b− a)2

)
.

By Jensen’s inequality, for real u,

exp(uB) = exp

(
n∑
i=1

1
n
nuXj

)
≤

n∑
i=1

1
n

exp (nuXi) .

Taking the expectation leads to

E exp(uB) ≤
n∑
i=1

1
n

E exp (nuXi) ≤
n∑
i=1

1
n

exp
(
n2u2

8
(b− a)2

)
.

We set T := n(b− a), and find

E exp(uB) ≤ exp
(

1
8
T 2u2

)
, u ∈ R .

Hence, for u ≥ 0, using Markov’s inequality,

Pr[B ≥ t] = P (euB ≥ eut) ≤ e−utEeuB ≤ exp
(

1
8
T 2u2 − ut

)
,

and the optimal choice u := 4t/T 2 yields

Pr[B ≥ t] ≤ exp(−2t2/T 2).

Thus we have

Pr[B ≥ nt] ≤ exp
(
−2(nt)2

(n(b− a))2

)
= exp

(
−2t2

(b− a)2

)
By considering −B we get the same result for Pr[B−EB ≤ −t] and hence the statement
follows. �

Remark 3.10
We can view the sample variances σ̂i on the main diagonal of ĈXX as random vari-
ables Xi with expectation σi. Since we assumed that X has finite second moment
these variances are finite, too. With growing sample size k the interval [a, b] gets
smaller and smaller, independent from n. Thus, the larger m and n (and therefore
also k), the closer are τn(ĈXX) and τm(ĈY Y ) to its theoretical values τn(CXX)
and τm(CY Y ), respectively. Note that if the dimensions are independent from each
other, a larger dimension would speed up the convergence rate. This can be derived
from a classical result made by Hoeffding [1963].
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3.4 The Noisy Case

3.4 The Noisy Case

The noisy case is much more involved and we haven’t found a completely satisfying
solution yet. Still we want to say a few words about what the problems are and how one
possibly can tackle them. Recall the model

Y = AX + E

with A ∈ Rm×n and E ⊥⊥ X. We assume τm(CEE) 9 0 as m tends to infinity. We
further assume that the norm of ATρAρ is growing slower than n, i.e., ‖ATρAρ‖/n→ 0 as
ρ tends to infinity. This is fulfilled if all moments of ATρAρ converge. We first show that
in the deterministic case we had consistent estimators for τn(CXX), τn(ATACXX) and
τn(ATA). Under consistency we want to understand here that if we have an estimator
Tρ for some parameter θρ (also dependent on ρ) we claim that for every ε > 0

lim
ρ→∞

Pr [|Tρ − θρ| ≥ ε] = 0 .

Let us recall our estimation of A,

Â = ĈY XĈ
+
XX = AĈXXĈ

+
XX . (3.43)

This definition lead to the estimator

TAρ =
r

n
τn(Âρ

T
Âρ) for τn(ATρAρ)

and
TACρ = τn(ÂTρ ÂρĈ

(n)
XX) for τn(ATρAρC

(n)
XX)

in the case that r < ρ. The consistency of τn(ĈXX) for τn(CXX) is shown by Lemma 3.9.
Due to the equalities

τn(ÂT ÂĈXX) = τn(Ĉ+
XXĈXXA

TAĈXXĈ
+
XXĈXX) = τn(ATAĈXX) = τn(ĈY Y )

and
τn(ATACXX) = τn(ACXXAT ) = τn(CY Y )

and again with Lemma 3.9 we conclude that also TACρ is a consistent estimator. It remains
to show the consistency of TAρ . This is done with the help of Lévy’s Lemma (Lemma
2.14) and applying the first theorem from Janzing et al. [2010] which states:

Theorem 3.11 (Traces are typically multiplicative)
Let C be a symmetric, positive definite n×n-matrix and A an arbitrary m×n-matrix
(with entries in R). Let U be randomly chosen from O(n) according to the unique
O(n)-invariant distribution (i.e. the Haar measure). Introducing the operator norm

‖B‖ := max
‖x‖=1

‖Bx‖,

we have
|τn(ATAUCUT )− τn(C)τn(ATA)| ≤ 2ε‖C‖‖ATA‖

with probability at least q := 1−exp(−κ(n−1)ε2) for some constant κ (independent
of C,A, n,m, ε).
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A proof can be found in Janzing et al. [2010].
As done before we can write τn(ÂTρ Âρ) = τn(Ĉ(n)+

XX Ĉ
(n)
XXA

T
ρAρĈ

(n)
XXĈ

(n)+
XX ) = τn(PρATρAρPρ)

with Pρ = Ĉ
(n)
XXĈ

(n)+
XX . We can prove

Corollary 3.12
With the above model and r + 1 given samples under the condition r < n, it holds

n

r
τn(ÂTρ Âρ) is a consistent estimator for τn(ATρAρ) .

Proof: For an arbitrary ε > 0 we have with Theorem 3.11∣∣∣τn(ÂTρ Âρ)− τn(ATρAρ)τn(Pρ)
∣∣∣ ≤ 2ε (3.44)

with probability at least 1 − exp(−κ(n − 1)ε2/‖ATρAρ‖) since ‖Pρ‖ = 1. Due to the
assumption ‖ATρAρ‖/n→ 0 and τn(Pρ)→ r/n it follows

Pr
[∣∣∣n
r
τn(Âρ

T
Âρ)− τn(ATρAρ)

∣∣∣ > ε
]
→ 0

as ρ tends to infinity. Thus we have shown consistency. �

Remark 3.13
One could also argue with free probability theory: since Bρ = ATρAρ and Pρ are
independent there limit elements B and P are free and thus φ[BP ] = φ[B]φ[P ].

In the noisy case though, estimating A by (3.43) does not lead to a consistent estimator
of τn(ATACXX) since τn(ÂT ÂĈXX) contains some error terms that do not vanish if not
k � n. More precisely

τn(ÂT ÂĈXX) = τn(Ĉ+
XXĈXY ĈXY Ĉ

+
XXĈXX)

= τn(ATAĈXX) + 2τn(AĈXXĈ+
XXĈXE) + τn(ĈEXĈ+

XXĈXE) .

Under the condition that r < n, the last term

τn(ĈEXĈ+
XXĈXE) = τn(ĈEE)

by a slight variation of Lemma 3.2 and therefore does not vanish for n → ∞. We will
encounter a similar term in τn(ÂT Â). This brings us to the challenge of either finding
consistent estimators for these two quantities or reducing dimensionality, for example
with the help of projections.

3.4.1 Dimensionality Reduction

In the following we will sketch an idea which aims to reduce dimensionality. This idea
came up in a discussion with Kun Zhang2.

2Kun Zhang. Private communication, 2010
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Assume m = n. First we choose an n-dimensional unit vector θ at random according to
the Haar measure on Sn. We multiply our model Y = AX +E from the left with θT and
get

θTY = θTAX + θTE,

which we rewrite as
Y̌ = ǍX + Ě,

with Y̌ and Ě now being one-dimensional and Ã is a 1× n-vector. With Lévy’s Lemma
one can show that then

ǍǍT ≈ τn(ATA) .

Thus we are thrown back to an ordinary regression problem with n-dimensional X and
one-dimensional Y̌ . But since we still have the limitation of k < n with k denoting
the number of samples, we cannot apply traditional tools designed for solving this sort of
regression problem. On the other hand this is a common problem in modern statistics and
machine learning since growing computing power and other technology made it possible to
collect data of unprecedented size and complexity. One has to find the relevant dimensions
in X, those who carry the majority of the information and ignore the others. This problem
is called “variable selection” in the statistics literature. For a recent review on this subject,
see Fan and Lv [2010].
To solve this task one has to find additional assumptions that usually hold in practice
and that may help to estimate the transformation matrix Ǎ. Although X and Y are
high-dimensional, often only a subset of all Xi’s is significant for Y̌ . In other words, the
large matrix A only has a small number of non-zero entries, making it possible to find a
consistent estimator even if k < n. Therefore, we assume Ǎ to be sparse and would like
to find its estimate by making use of this assumption.
Fan and Lv [2008] propose a method to deal with this kind of problem. To find out which
Xi are significant for Y̌ they use sure independence screening (SIS), a method explained
more detailed in Fan et al. [2009]. With SIS and the right sparsity assumption it is
possible to estimate Ǎ reliably and then test the quantities on the trace multiplicativity.
For the backward direction just exchange the variables and repeat the whole procedure.
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4 Inference Algorithm and Experiments

In this chapter we want to use our insights obtained from Chapter 3 to develop an
algorithm for deciding whether

X → Y or Y → X

for a deterministic relationship between X and Y . The asymmetry we developed is based
on the trace multiplicativity of ATACXX in the forward direction and the fact that this
is violated in the backward direction. We therefore introduce a scale-invariant measure
for the strength of this violation similar to that of Janzing et al. [2010].

Definition 4.1 (A scale-invariant measure)
Given the estimators ĈXX , Â = ĈY XĈ

+
XX and r = rank(ÂT Â) we define

∆(CXX , A) := log τn(ÂT ÂĈXX)− log τn(ĈXX)− log
(n
r
τn(ÂT Â)

)
.

Then ∆(CY Y , Ã) is given by

∆(CY Y , Ã) := log τm( ˆ̃AT ˆ̃AĈY Y )− log τm(ĈY Y )− log
(m
r
τm( ˆ̃AT ˆ̃A)

)
.

We can state a “theorem” that should not be taken too strict (cf. Janzing et al. [2010]):

Theorem 4.2
If the dimensionality of X and Y is sufficiently high and the sample size is a sig-
nificant fraction of the dimensionality it holds

∆(CXX , A) + ∆(CY Y , Ã) < 0. (4.1)

The prove is immediate from Theorem 3.1 and Theorem 3.7.
The idea of the inference method now works indirectly: We assume that for the right
direction the effect Y is given by a linear transformation of X, i.e., Y = AX and that
ATA and CXX are independent. We calculate both ∆(CXX , A) and ∆(CY Y , Ã). These
numbers indicate how strong the trace multiplicativity is violated. Since it should hold
∆(CXX , A) ≈ 0 for the forward direction we propose the following inference rule:

Inference method: Given ∆(CXX , A) and ∆(CY Y , Ã), infer that X → Y if ∆(CXX , A)
is closer to zero and Y → X if ∆(CY Y , Ã) is closer to zero (see Algorithm 1).

With the help of experiments we would like to clarify: Does the result obtained for
dimension to infinity already hold for moderate dimensions? Is the multiplicativity of
trace sufficiently violated with a rather small sample size? How large must we choose
ε in Algorithm 1 to obtain reliable results? In real data sets, is the causal structure
sufficiently close to our model with independent choices of ATA and CXX?
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4 Inference Algorithm and Experiments

Algorithm 1 Identifying linear causal relations via traces
1: Input: (x1, y1), . . . , (xk, yk), (k ≤ m,n; with n = dim(xi), m = dim(yi))

2: Compute ĈXX and Â = ĈY XĈ
+
XX

3: Compute ĈY Y and ˆ̃A = ĈXY Ĉ
+
Y Y

4: Compute r1 = rank(Â) and r2 = rank( ˆ̃A)
5: if

∣∣∣log τn(ÂT ÂĈXX)− log τn(ĈXX)− log
(
n
r1
τn(ÂT Â)

)∣∣∣ > ε +∣∣∣log τm( ˆ̃AT ˆ̃AĈY Y )− log τm(ĈY Y )− log
(
m
r2
τm( ˆ̃AT ˆ̃A)

)∣∣∣ then
6: write “Y is the cause”
7: else
8: if

∣∣∣log τm( ˆ̃AT ˆ̃AĈY Y )− log τm(ĈY Y )− log
(
m
r2
τm( ˆ̃AT ˆ̃A)

)∣∣∣ > ε +∣∣∣log τn(ÂT ÂĈXX)− log τn(ĈXX)− log
(
n
r1
τn(ÂT Â)

)∣∣∣ then
9: write “X is the cause”

10: else
11: write “cause cannot be identified”
12: end if
13: end if

4.1 Experiments with Simulated Data

We present experiments with simulated data. First we will explain how the data were
created. Focusing on the deterministic case, we want to generate random models

Y = AX.

To this end we constructed them×nmatrix A as follows: We set l := min(m,n) and chose
a random l-dimensional diagonal matrix DA with i.i.d. entries from some distribution
with finite moments. We filled it up with zeros and obtained an m× n matrix. Then we
multiplied it on one side with a random m-dimensional orthogonal matrix, on the other
side with an n-dimensional one, i.e.,

A = UAmD
AUAn

(
UAm ∈ O(m), UAn ∈ O(n)

)
.

This ensures that the eigenvalues of ATA coincide with the square of the eigenvalues of
DA and therefore all moments of ATA converge.
Next we generated a random covariance matrix CXX in the same fashion: A diagonal
matrix DC with i.i.d. entries taken at random from a distribution which only takes
positive values was multiplied with a random orthogonal matrix from both sides:

CXX = UCn D
CUCn

(
UCn ∈ O(n)

)
.

Let now BX be the unique square root of CXX , i.e., BX =
√
CXX . We sampled an

n× k-matrix X̃ by drawing each entry i.i.d. from some distribution with finite moments
and multiplied it from the left with BX , i.e.

X = BXX̃.
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4.2 Uniform Distributed Random Orthogonal Matrices

Then X is a data matrix whose columns consist of k different samples xi chosen inde-
pendent at random from a certain distribution with covariance matrix CXX . Finally we
set Y = AX.
The random orthogonal matrices are created following the algorithm of Diaconis and
Shahshahani [1987], Method B, explained in the next section. This is the fastest known
algorithm that produces random orthogonal matrices ensuring rotation invariance.

4.2 Uniform Distributed Random Orthogonal Matrices

In this section we will explain an algorithm which outputs uniform distributed random
orthogonal matrices of dimension n. We follow a paper from Diaconis and Shahshahani
[1987]. We first give a short theory part where we introduce the idea of the algorithm. It
needs some elements from group theory.

4.2.1 The Subgroup Algorithm

Let G be a finite group. Let G0 = G ⊃ G1 ⊃ · · · ⊃ Gr be a nested chain of subgroups
(not necessarily normal). Let Ci be coset representatives for Gi+1 in Gi, 0 ≤ i < r. A
coset representative is a representative in a equivalent class sense. What this will be will
become clearer in the next section. G can be represented as

G ∼= C0 × C1 × · · · × Cr−1 × Cr (4.2)

in the sense that each g ∈ G has a unique representation g = g0g1 · · · gr with g0 ∈ Ci
and gr ∈ Gr. It follows that if the gi are chosen uniformly at random in their respec-
tive domains and multiplied together, the resulting product element g will be uniformly
distributed on G.
The subgroup algorithm works, in essentially the same way, for any compact topological
groupG. For an illustration of this take a look at Diaconis and Shahshahani [1987], section
4. The algorithm was first developed by G. W. Stewart. He gives a clear discussion in
Stewart [1980]. The idea is to find a closed subgroup H ⊂ G, chose an element of H at
random, chose a coset representative at random, and multiply.

4.2.2 Generation of Random Orthogonal Transformations

We now want to apply the above theory to a concrete example, namely the orthogonal
group. Let O(n) be the group of n× n orthogonal matrices. O(n) has a natural uniform
distribution called Haar measure. In probabilistic notation, the random matrix X is
uniform distributed if

Pr{X ∈ A} = Pr{X ∈ ΓA}

for every A ⊂ O(n) and Γ ∈ O(n).
In two dimensions, a random X can be specified as(

cos(θ) sin(θ)
−b sin(θ) b cos(θ)

)
,
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4 Inference Algorithm and Experiments

with θ uniform on [0, 2π] and b = ±1 with probability 1
2 .

The algorithm is based on the tower

O(n) ⊃ O(n− 1) ⊃ O(n− 2) ⊃ · · · ⊃ O(2),

with O(n − 1) the subgroup of O(n) fixing the vector e1. If we knew how to choose a
random element of O(n − 1) and coset representatives for O(n − 1) in O(n) at random,
then the subgroup algorithm and induction finish the job.
Coset representatives for O(n−1) in O(n) can be specified by saying where e1 goes. Thus
the coset space O(n)/O(n−1) can be identified with Sn−1 – the (n−1)-dimensional sphere
in Rn. For x ∈ Sn−1 (as a column vector) define the Householder reflection

I − 2xxT .

For every v ∈ Sn−1 this reflection with x chosen as

x = (e1 − v)/c and c =
√

(e1 − v)T (e1 − v) (4.3)

takes e1 into v. Choosing v at random results in a randomly chosen coset representative.
This results in the following:

Lemma 4.3 (Uniform distribution on O(n))
Let v be chosen at random on the (n − 1)-sphere. Let Γ1 be chosen at random on
O(n− 1). Then, with x defined as in (4.3)

(I − 2xxT )


1 0 · · · 0
0
... Γ1

0

 (4.4)

is uniformly distributed on O(n).

This follows from the observations made around (4.2). The standard way of choosing
v at random on Sn−1 is to take v = (z1, . . . , zn)/

√
(z2

1 , . . . , z
2
n) with zi independent

standard normal. From here, induction gives a simple algorithm for choosing a uniformly
distributed element of O(n). It is an O(n3) algorithm, but with a smaller constant than
other classical algorithms with the same complexity, making a substantial difference in
computing time.

4.3 Results of Experiments with Simulated Data

We present results of experiments with simulated data for the deterministic model. We
sampled the singular values of A, i.e., the diagonal entries of DA independently from
a standard normal distribution. The eigenvalues of CXX , i.e., the entries of the diago-
nal matrix DC were drawn independently from absolute values of the standard normal
distribution.
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4.4 Experiments with Real World Data

In all experiments shown in the following part we used ρ = m = n. Nevertheless, we
also did experiments with m 6= n and got similar results. Figure 4.1 shows both the
performance and the values of delta for both directions. The sample size is half of the
dimensionality, i.e., k = n/2. As can be seen, already at around 20 dimensions, the
performance of the method exceeds 90%. Figure 4.2 shows the performance and the
values of delta as a function of sample size while the dimensionality is fixed to fifty. A
samples size of around 20 seems to be enough to reliably distinguish between cause and
effect in that case. In Algorithm 1 we need to specify an ε as an indicator when the
difference of the values of the two deltas is big enough to decide in favor for one direction.
For the two Figures 4.1 and 4.2 we chose ε = 0.3.
To show the fact that it is crucial that the quotient k/n does not tend to zero, Figure
4.4 shows similar plots as Figure 4.1, except that now the sample size equals two times
the logarithm of the number of dimensions and hence k/ρ tends to zero as ρ tends to
infinity. As one can see in the right plot of Figure 4.4, ∆Y→X tends to zero with growing
dimensionality and while doing so the performance drops. In this setting we used ε = 0.2.

We also tested the method with small noise, still using Algorithm 1. CEE was generated
in the same way as CXX , although with an adjustable parameter σ governing the scaling
of the noise with respect to the signal: σ = 0 yields the deterministic setting, σ = 1
equates the power of the noise to that of the signal. Figure 4.3 shows the results obtained
with σ = 0.3. As already remarked in the last chapter, if X → Y , ∆X→Y does not
converge to zero as dimensionality rises. However, it is still much closer to zero than
∆Y→X . Of course, this could be due to the manner of sampling. We will further discuss
this point in Section 4.4.1.

4.4 Experiments with Real World Data

We will present experiments with real world data from the field of climate research.
We took several variables from Reanalysis data.3 Reanalysis data is a technique to
produce multiple climate variables. Previously observed climate data for temperature,
wind speed, and pressure is recorded, observations are analyzed and interpolated onto a
system of grids. Then a 3-D forecasting model is initialized with this observational data.
The output is a simulated data set at 6-hourly, daily, and monthly time steps of many
unobservable climate variables. For our purposes we used monthly mean data on a T62
Gaussian grid (192× 94 grid points, latitude × longitude, see Figure 4.6).
Out of the big pool of possible variables, we chose five, where we are relatively sure about
the ground truth. We took precipitation rate, volumetric soil moisture, specific humidity
at two meters, upward longwave radiation flux and near infrared beam downward solar
flux. Data is given in monthly means from 1/1948 until 6/2010. This gives us in total a
dimensionality of 18048 (= 192×94 points) and a sample size of 750 (= 12×62.5 months).

3We thank the NCEP/NCAR 40-year reanalysis project (Kalnay et al. [1996]). NCEP Re-
analysis Derived data is provided by the National Oceanic and Atmospheric Administration
(NOAA/OAR/ESRL/PSD), Boulder, Colorado, USA. We took the data from their Website at
http://www.esrl.noaa.gov/psd/.
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4 Inference Algorithm and Experiments

We first examine the two pairs

X = precipitation rate (prate), Y1 = volumetric soil moisture (soilm) (4.5)

and

X = precipitation rate (prate), Y2 = specific humidity at two meters (sphum).

More precisely, X and Y1 are multidimensional random variables

X =


prate at grid point x1

prate at grid point x2
...

prate at grid point xn

 , Y1 =


soilm at grid point x1

soilm at grid point x2
...

soilm at grid point xn

 . (4.6)

Different samples of this random variables are now given by the values for the different
months. For the whole chapter it will hold that the definition of random variables as in
(4.5) is meant in the spirit of (4.6).
The meaning of precipitation rate is clear. Volumetric soil moisture is a measure of how
much water is contained in the soil and is given in fraction of a volume unit. Specific
humidity is the ratio of water vapor to air. Since we believe that precipitation strongly
effects soil moisture and humidity whereas the effect in the other direction is nearly
negligible we get the ground truths X → Y1 and X → Y2, respectively (of course one can
argue that in regions with high soil moisture or humidity the formation of clouds rises
which can result in rain but the effect in the other direction should be much stronger.
Additionally, if we take points lying far away from each other we this backward relation
should get even more random).
For the variable Y2 we have two options, namely the level from 0−10cm or the level from
10− 200cm. Since the results did not differ much we will report here only the results of
the former. Volumetric soil moisture can only be measured over land, such that the 18048
grid points boil down to 5914 points (n = 5914), which are exactly the grid points lying
over land. Now we take the different locations as different dimensions and the points in
time as samples. It is clear the there are a lot of inner-structural dependencies. For this
reason we do not take all points into account but choose a widely spread fraction out of
them.

Table 4.1 to Table 4.4 show the values for ∆X→Y1 , ∆Y1→X , ∆X→Y2 and ∆Y2→X , respec-
tively, for different subsets out of the whole dataset. The subsets are the following:

[1 : i : 5914, 1 : j : 750]

where i and j are the step size for the grid and time points, respectively. i takes values
from 10 to 100 with step size 10, j takes values from 2 to 12 with step size 2. Taking for
example every sixth month and every 10th grid point we obtain dimensionality 591 and
sample size 125.
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4.4 Experiments with Real World Data

The calculated delta values were clipped to two digits behind the point. As one can see,
except in one position (i = 100, j = 10), every value of Table 4.1 is closer to zero than its
corresponding value for the backward direction in Table 4.2. The results for the second
pair of variables are similar: Only two values in the first column of Table 4.4 are closer to
zero than the corresponding values in Table 4.3. Choosing ε = 0.3 would give us a wrong
direction only in one case.

There is one assumption concerning the transfer matrix A contained in the method. That
is, that the entries of A are independent and identically distributed. Due to the structure
of our real world data sets, one can object that this assumption is clearly violated here¿
We will discuss this in the next subsection. Nonetheless, the method gives good results.
Moreover, in most of the inference methods in causality, sampled data are assumed to be
independent and identically distributed, too. Taking consecutive months in our examples
with high probability would violate this assumption since weather is dependent on time.
Surprisingly, the method seems to be fairly robust against these two assumptions since
even by taking every second month into account it outputs the right direction in nearly
all cases. This is true for the next pair of variables, too. Note that for some combinations
of i and j the sample size exceeds the number of dimensions.

We present the results of another pair of variables

X = upward longwave radiation flux (uwlrf)

and
Y = near infrared beam downward solar flux (nbdsf)

Radiation fluxes are given in terms of the quantity of radiant energy flowing through
unit area of a surface in unit time. Near infrared beam downward solar flux measures
part of the energy coming from the sun. This energy, measured in radiation, is reflected
at the surface of the earth and one part of the reflected energy happens to be upward
longwave radiation flux. Thus the ground truth here is Y → X. Reflected radiation from
the surface can be reflected again at the clouds and come back to the earth but also here,
this relation is much weaker the that in the other direction. Additionally, since we take
widely spread points in space, it is unlikely that we meet exactly those points, where the
reflected radiation comes back to earth again.
The corresponding tables for ∆X→Y and ∆Y→X are Table 4.5 and Table 4.6. Observe
that every value of the Table 4.6 for ∆Y→X , standing for the right direction is closer to
zero than its corresponding value in Table 4.5, standing for the wrong direction.
In this second real data set we can use the information around the whole globe, i.e. the
dimensionality gets much (approximately three times) larger than in the first case. Still
we observe at no point that the method outputs the wrong direction.

4.4.1 Discussion of Results

The proposed method for the small sample case and Algorithm 1 are designed for the
deterministic case. However, one can expect real world data being never free from noise.
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4 Inference Algorithm and Experiments

Still the algorithm outputs the right direction in nearly all cases. What might be a
plausible explanation? As we already discussed before it could be possible that ∆X→Y
(X being the cause) still converges to a value closer to zero than ∆Y→X in the noisy case.
Another possibility is the following, namely that the difference of both deltas always have
the same sign, i.e., it usually holds

∆X→Y −∆Y→X > 0 .

We made this observation both with simulated data and with experiments on real world
data. Nonetheless, Janzing et al. [2010] have shown that this cannot hold in the generality
of all cases. The authors constructed a counter example by assuming A to be orthogonal.
The value of delta for the backward direction then gets positive. It still might be that
this case rarely appears in nature and therefore is a rather academic exception. This
cannot be clarified satisfyingly in this work and must be postponed to future work.

Let us discuss another point here: The real world data sets we investigated have a spe-
cific structure. For example rain is falling on a certain place, making the soil moist at
this same place which should render A to be diagonal. We tested this by just taking
very few values out of the grid and taking the whole time period into account. Doing
this we should get a quite reliable estimate of this specific A. We found that the val-
ues on the diagonal are quite big compared to the other values. However, the are some
matrices where this relation is not very strong. Figure 4.5 shows an image plot for two
20-dimensional example matrices which nicely show the expected diagonal structure. On
the left side we used the dimensions [1001 : 100 : 2901] whereas on the right side we used
[2050 : 100 : 3950]. Both times we took all 750 sample to estimate the transfer matrices.
Anyway, as it is shown in a small example in Janzing et al. [2010], the method works
even if both A and CXX are diagonal matrices, as long as the diagonal elements have
significant variance.

Moreover, we made an additional observation. That is, the estimated A for the above
data sets seems to have a specific vertical structure. Values in the same column are likely
to be close to each other. Assuming such a structure on A can lead to a simplified vari-
able selection method, which is similar to the idea proposed in Section 3.4.1. We present
a short, rather heuristic algorithm and its results on one of the above data sets in the
following section.

We also tested quadratic regions of 400 grid points. In that setting the inner dependencies
should be very high. Nevertheless, we obtained similarly good results as in the other cases.
That suggests that the proposed method is possibly robust against these dependencies.

4.4.2 A Heuristic Approach towards the Noisy Case

Here we report some results we obtained from a simplified algorithm we derived out of
the ideas of Section 3.4.1. It reduces only the dimensionality of the cause, i.e., if we want
to calculate ∆X→Y we throw out some dimensions of X and hence get a rectangular
A. This algorithm assumes that A has a certain structure, namely that some columns
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are negligible. A parameter α has to be chosen. This parameter will give the final
dimensionality of X and should be significantly smaller than k.
As X → Y we transform Y to an orthonormal basis. Then we measure the correlation
between these basis vectors and the different dimensions of X. More precisely, if X and
Y are the n× k- and m× k-observation matrices, respectively, let then

Ỹ = TY

where T is a transformation matrix such that CỸ Ỹ = I. Now calculate the correlations
between the rows Xi and Ỹ

ci =
1
m

m∑
j=1

XiỸ
T
j

and sort it. Starting from the dimension with the lowest correlation, delete rows Xi until
only α dimensions are left. Now the new A can be estimated by

Â = ĈY XĈ
−1
XX

since ĈXX is invertible now. If α is significantly smaller than k, this new A can be
estimated quite reliably. Additionally, ÂT Â has full rank. Finally, one can test the trace
multiplicativity by calculating ∆X→Y . For the other direction just exchange X and Y .
For this method the parameter α has to be chosen in the beginning. We made good
experiences with α = 2k/3 and α = k/2. Table 4.7 and Table 4.8 show the results for

X = precipitation rate and Y = volumetric soil moisture

with α = 2k/3. Note that we only calculated the values of delta if the dimensionality
exceeds the sample size. As one can see we already got promising results with this simple
method since only on one position (i = 12, j = 30) we would infer the wrong direction by
taking an ε smaller than 0.2. We are also working on a more advanced method to attack
the variable selection problem involving sure independence screening (cf. Section 3.4.1).
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Figure 4.5: Visualization of the estimation of two representative transfer matrices for
X = prate and Y = soilm and the model Y = AX. Out of the 5914 available dimensions
(grid points) only 20 were taken into account, namely [1001:100:2901] and [2050:100:3950]
for the left and the right plot, respectively. A was estimated with all 750 samples by
Â = ĈY XĈ

−1
XX .

47



4 Inference Algorithm and Experiments

Figure 4.6: Visualization of a Gaussian grid4

4Figure taken from http://en.wikipedia.org/wiki/File:NCEP T62 gaussian grid.png
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Figure 4.1: Deterministic setting. (Left) Performance of the method as a function of
the input dimensionality n, when the output dimensionality m = n and sample size is
k = n/2. The green curve (rectangles) denotes the percentage of simulations in which
the true causal direction was selected, while the red curve (triangles) gives the percentage
of wrong answers. We used ε = 0.3 and did 1000 simulations. (Right) Mean values of
∆X→Y (green curve, rectangles) and ∆Y→X (red curve, triangles).
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Figure 4.2: Deterministic setting. (Left) Performance of the method as a function of the
sample size while fixing the input dimensionality n = 50, when the output dimensionality
m = n. The green curve (rectangles) denotes the percentage of simulations in which the
true causal direction was selected, while the red curve (triangles) gives the percentage of
wrong answers. We used ε = 0.3 and did 500 simulations. (Right) Mean values of ∆X→Y
(green curve, rectangles) and ∆Y→X (red curve, triangles).
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Figure 4.3: Deterministic setting. (Left) Performance of the method as a function of
the input dimensionality n, when the output dimensionality m = n and sample size is
k = d2 log ne. The green curve (rectangles) denotes the percentage of simulations in
which the true causal direction was selected, while the red curve (triangles) gives the
percentage of wrong answers. We used ε = 0.3 and did 1000 simulations. (Right) Mean
values of ∆X→Y (green curve, rectangles) and ∆Y→X (red curve, triangles).
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Figure 4.4: Non-deterministic setting, σ = 0.3. (Left) Performance of the method as a
function of the input dimensionality n, when the output dimensionality m = n and sample
size is k = n/2. The green curve (rectangles) denotes the percentage of simulations in
which the true causal direction was selected, while the red curve (triangles) gives the
percentage of wrong answers. We used ε = 0.3 and did 1000 simulations. (Right) Mean
values of ∆X→Y (green curve, rectangles) and ∆Y→X (red curve, triangles).
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HHH
HHHj

i
10 20 30 40 50 60 70 80 90 100

2 -0.69 -1.07 -1.36 -1.07 -1.23 -1.02 -2.12 -1.77 -2.14 -1.63
4 0.00 -1.08 -1.86 -2.08 -2.13 -1.57 -1.68 -2.09 -2.22 -2.09
6 0.18 -0.30 -1.22 -1.39 -1.71 -1.82 -1.89 -2.31 -2.35 -2.02
8 0.44 0.11 -0.45 -1.42 -2.18 -2.48 -2.57 -2.95 -2.69 -2.88
10 0.26 -0.01 -0.26 -1.08 -1.44 -2.32 -3.44 -3.19 -3.29 -3.77
12 -0.42 -0.74 -1.07 -1.69 -2.14 -2.47 -3.94 -4.57 -4.92 -5.73

Table 4.1: Values of ∆X→Y1 for different settings of i and j (X = prate, Y1 = soilm).

HH
HHHHj

i
10 20 30 40 50 60 70 80 90 100

2 -1.54 -1.86 -1.85 -1.82 -2.06 -2.73 -2.24 -2.79 -3.70 -2.95
4 -1.88 -2.31 -2.61 -2.38 -2.42 -2.81 -2.74 -2.84 -3.46 -2.95
6 -1.39 -2.13 -2.07 -2.58 -2.51 -2.11 -2.64 -2.78 -3.27 -2.64
8 -1.46 -2.05 -2.49 -3.14 -3.19 -3.24 -3.57 -3.34 -4.00 -3.36
10 -1.22 -1.62 -1.98 -2.87 -3.07 -3.82 -3.65 -3.67 -4.31 -3.69
12 -0.61 -1.33 -1.97 -3.30 -5.23 -5.21 -5.80 -5.90 -6.22 -6.65

Table 4.2: Values of ∆Y1→X for different settings of i and j (X = prate, Y1 = soilm).

H
HHH

HHj
i

10 20 30 40 50 60 70 80 90 100

2 1.12 0.71 0.16 -0.26 -0.30 -0.09 0.06 -0.25 0.19 -0.01
4 1.28 1.15 0.86 0.62 0.20 -0.17 -0.64 -1.25 -1.37 -1.39
6 1.78 1.69 1.52 1.42 1.18 1.01 0.84 0.56 0.34 -0.07
8 1.35 1.30 1.17 1.09 0.92 0.85 0.67 0.52 0.38 0.17
10 1.32 1.28 1.19 1.12 1.00 0.92 0.82 0.70 0.62 0.44
12 0.02 -0.04 -0.07 -0.21 -0.29 -0.38 -0.42 -0.45 -0.61 -0.81

Table 4.3: Values of ∆X→Y2 for different settings of i and j (X = prate, Y2 = sphum).

HH
HHHHj

i
10 20 30 40 50 60 70 80 90 100

2 -0.73 -1.34 -1.82 -1.80 -2.16 -2.11 -2.02 -1.98 -1.97 -2.23
4 -1.47 -2.05 -2.40 -2.42 -2.73 -2.73 -2.70 -2.74 -3.10 -3.08
6 -1.74 -2.32 -2.72 -2.73 -3.00 -3.01 -3.05 -3.01 -3.50 -3.51
8 -2.11 -2.24 -2.22 -2.41 -2.45 -2.52 -2.70 -2.81 -2.96 -3.31
10 -2.12 -2.16 -2.16 -2.30 -2.32 -2.42 -2.47 -2.60 -2.78 -2.95
12 -0.65 -0.67 -0.75 -0.80 -0.81 -0.92 -1.03 -1.17 -1.12 -1.26

Table 4.4: Values of ∆Y2→X for different settings of i and j (X = prate, Y2 = sphum).
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4 Inference Algorithm and Experiments

HH
HHHHj

i
10 20 30 40 50 60 70 80 90 100

2 1.35 0.64 -0.06 0.09 0.16 0.14 -0.24 -0.25 -0.19 -0.15
4 0.58 -0.15 -0.23 -0.76 -0.67 -0.75 -1.12 -1.15 -1.15 -1.06
6 0.54 -0.23 -1.01 -0.89 -0.80 -1.55 -1.33 -1.4243 -1.38 -1.36
8 -0.47 -1.05 -1.11 -1.46 -1.39 -1.53 -1.76 -1.85 -1.85 -1.89
10 -0.91 -1.18 -1.27 -1.31 -1.40 -1.62 -1.52 -1.64 -1.90 -2.20
12 -1.05 -1.12 -1.13 -1.25 -1.33 -1.39 -1.50 -1.53 -1.71 -1.86

Table 4.5: Values of ∆X→Y for different settings of i and j (X = uwlrf , Y = nbdsf).

HHH
HHHj

i
10 20 30 40 50 60 70 80 90 100

2 0.97 0.30 0.39 -0.04 0.05 0.16 -0.27 -0.19 -0.10 -0.14
4 0.20 -0.21 -0.16 -0.52 -0.48 -0.41 -0.82 -0.84 -0.84 -0.74
6 0.60 0.13 0.11 -0.03 -0.17 -0.09 -0.47 -0.50 -0.47 -0.39
8 -0.05 -0.09 -0.04 -0.19 -0.25 -0.21 -0.47 -0.47 -0.63 -0.72
10 -0.31 -0.32 -0.31 -0.40 -0.53 -0.42 -0.62 -0.66 -0.75 -0.80
12 -0.24 -0.26 -0.27 -0.34 -0.44 -0.45 -0.65 -0.64 -0.78 -0.91

Table 4.6: Values of ∆Y→X for different settings of i and j (X = uwlrf , Y = nbdsf).

HH
HHHHj

i
10 20 30 40 50 60 70 80 90

2 -0.45 - - - - - - - -
4 -0.56 -0.10 -0.34 - - - - - -
6 -1.05 -0.66 -0.04 -0.21 - - - - -
8 -0.90 -0.45 -0.09 -0.25 -0.13 -0.39 - - -
10 -0.93 -0.71 -0.17 -0.42 -0.32 -0.22 -0.39 - -
12 -1.12 -1.17 -1.13 -1.09 -1.04 -1.34 -1.28 -1.67 -1.39

Table 4.7: Heuristic method. Values of ∆Y→X for different settings of i and j (X = prate,
Y = soilm), α = 2k/3.

H
HHH

HHj
i

10 20 30 40 50 60 70 80 90

2 -1.45 - - - - - - - -
4 -2.43 -2.40 -2.24 - - - - - -
6 -2.71 -2.63 -2.14 -2.11 - - - - -
8 -3.12 -2.71 -2.37 -2.68 -2.74 -2.23 - - -
10 -2.93 -2.80 -1.91 -2.03 -2.56 -2.06 -2.19 - -
12 -1.52 -1.25 -0.92 -1.88 -1.26 -2.12 -3.34 -3.95 -4.57

Table 4.8: Heuristic method. Values of ∆Y→X for different settings of i and j (X = prate,
Y = soilm), α = 2k/3.
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5 Extension to the Nonlinear Case

In high dimensions one often restricts the attention to linear models since more complex
classes of functions tend to overfit the data unless the sample size is significantly higher
than the dimension. Nevertheless, we want to say a few words about the nonlinear
case. In Daniusis et al. [2010] we attacked the problem of inferring deterministic causal
relations, i.e., when the underlying model is

Y = f(X)

for a causeX, an effect Y and a nonlinear function f . We assume f to be a diffeomorphism
between the two domains of X and Y . The established theory in the paper is based on
the already cited Postulate 2.1, namely that the probability density of the cause X is
“independent” of the function f . With this formulation is meant That means that the
structure of both is somehow independent in the sense that the peaks of P (X) and
positions where f has steep slop are uncorrelated. Under this assumption we obtain
dependencies between the output and the inverted function. More precisely, no correlation
between pX and the slope of f implies a positive correlation between pY and the slope of
g := f−1.
Figure 5.1 illustrates what kind of dependencies between the output distribution and the
function we can expect in the one-dimensional case. Note that the peaks of pY are exactly
a the same position as the points of steep slope of g = f−1. Such a nice illustration is
not possible for the multidimensional case but one can imagine that we will encounter
the same sort of dependencies there. The probability density of the output is given by

pY (y) =
∣∣∇f(f−1(y)

)∣∣ pX(f−1(y)
)
.

f (x)

x

y

pX(x)

pY (y)

Figure 5.1: Illustration of the depen-
dencies that occur if the density of X
(input density) is uniform. Note that
the output density pY (y) is strongly
peaked where the derivative of f ′ is
small.

As one can see pY depends on the shape of ∇f .
Starting with Postulate 2.1 we derived a second pos-
tulate, which in loose words states that the irregu-
larities of the output are given by the irregularities
of the input plus the irregularities of the function.
We measure irregularities by estimating the relative
entropy between the quantity to be measured and
a smooth reference measure, usually an exponen-
tial family. We can view this as a certain kind of
“distance” measure between the complexity of the
probability densities and the function on one side
and some smooth “simple” family of functions on
the other side. Due to its foundation in informa-
tion geometry the method got called Information
Geometric Causal Inference (IGCI).
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5 Extension to the Nonlinear Case

5.1 Information Geometric Causal Inference

ICGI in principle works for arbitrary domains. In our case where X and Y are high-
dimensional random variables with probability densities pX and pY we choose as reference
measures the closest isotropic Gaussians to pX and pY , respectively, as Subsection 3.3 of
Daniusis et al. [2010] suggests. These Gaussians are given by the same mean as X and Y
and the covariances τn(CXX)I and τm(CY Y )I, respectively, where I denotes the identity
matrix. Let us denote them by u and v. Equation (9) in Section 3 of Daniusis et al.
[2010] then tells us how to calculate the crucial quantity, namely

CX→Y = S(u)− S(v) +
∫

log | det Jf |p(x)dx (5.1)

where Jf denotes the Jacobian of f and S(·) denotes the differential entropy, given by

S(p) = −
∫
X
p(x) log(p(x))dx

for some probability distribution p on a probability space X. We found the following
causal inference rule:

Given CX→Y , infer that X causes Y if CX→Y < 0, or that Y causes X if CX→Y > 0.

By whitening the data, i.e., the data are linearly transformed such that they have the
identity as covariance matrix, the reference measures become the same and therefore
S(u) = S(v). Thus, (5.1) boils down to CX→Y =

∫
log | det Jf |p(x)dx and it is decisive

here to have a good estimator for the determinant of the Jacobian of f . We propose the
following:
Denoting the indices of the n-nearest neighbours of xi with n1(xi), . . . , nn(xi), then esti-
mate CX→Y by

ĈX→Y =
1
k

k∑
i=1

log

∣∣∣∣∣∣∣
yTn1(xi)

− yTi
...

yTnn(xi)
− yTi

∣∣∣∣∣∣∣
/∣∣∣∣∣∣∣

xTn1(xi)
− xTi

...
xTnn(xi)

− xTi

∣∣∣∣∣∣∣ , (5.2)

where | · | is shorthand for the absolute value of the determinant. This estimator requires
more samples than the number of dimensions since otherwise the determinant is not
defined. There are several good k-nearest neigbour (kNN) algorithms available, we used
for example one from Arya and Mount [1993]5.
Like it is shown in Daniusis et al. [2010] this inference method is robust in the low noise
regime, i.e., in the case where

Y = f(X) + E

with a small noise term E.
Thus, we have a method to infer causal relations also in the nonlinear case, although in
that case it is required that sample size exceeds dimensions.

5Code packages can be downloaded from Mount and Arya [2006] and Bagon [2009].
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6 Discussion and Outlook

We have presented a method that is able to infer linear causal relations between two
high-dimensional variables. We developed the theory based on concentration of measure
phenomenon and free probability theory and proved identifiability results for the deter-
ministic case. The main results are given by two Theorems in Chapter 3, namely Theorem
3.1 and Theorem 3.7. The proposed algorithm, presented in Chapter 4 is based on these
findings. Although we couldn’t show a similar result for the noisy case, experiments both
on simulated and on real world data suggest that at least in the small noise regime we
can apply the same method as in the deterministic case. A promising idea to attack
the noisy case is an approach towards variable selection. We gave an outline and pre-
sented first experiments in this direction. Future work has to show if this approach can
lead to a satisfactory algorithm. We also gave an idea of how to attack the nonlinear case.

We tested our algorithm both on simulated and real world data. The results are promising
but it should be tested more extensively in particular with real world data sets, also to
question the importance of the i.i.d. assumption for the entries of A. In the real world
data experiments one could expect that if A was chosen randomly its eigenvalues should
follow a semi-circle distribution. But in our case we always considered ATA which is a
positive definite matrix and thus all eigenvalues are positive such that they cannot form
a semi-circle distribution. The same is true for CXX .

6.1 Towards a Statistical Test

We did not discuss the problem of statistical significance in the proposed inference method
yet. In other words: How should we choose the ε in Algorithm 1? One possible approach
here, already suggested in Janzing et al. [2010], may be to generate a large number of
orthogonal matrices U , to apply them on X and then calculate the distribution of the
values ∆UX→Y . The observed value then defines a p-value and we can infer the right
direction by comparing the p-values for both directions. For high dimensions though,
this is computationally very expensive. Even with the fast algorithm for computing ran-
dom orthogonal matrices which we presented in Section 4.2, this becomes intractable
for dimensionality approaching 1000. Nevertheless, it can be used if input and output
dimension is reasonably small.

Another approach could be derived from our insights about the violation of the trace
multiplicativity in the backward direction. With the equations (3.40) and (3.41) we can
determine the values of ∆Y→X for the wrong direction, depending on the sample size. It
is possible then to estimate a distribution of these deltas and choose ε following a simple
statistical test criterion.
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6 Discussion and Outlook

6.2 Outlook

Voiculescu’s theorem from Chapter 2 (Theorem 2.12) already suggests that there are
different types of matrix ensembles resulting in free variables in the infinity limit. This
means that the results shown in this work, in particular Theorem 3.1 and Theorem 3.7
also hold for slight variations in the assumptions made on the transfer matrix A.

We want to discuss another point: The method presented here can be extended in a
natural way: Throughout the whole work, we only discussed the second moment of the
respective distributions, but it is in principle possible to test the trace multiplicity on
higher moments or powers of the covariance matrix, too. For example, one could test
whether

τ
(
(ATACXX)s

)
≈ τ

(
(ATA)s

)
τ (CsXX) .

One can even imagine to use kernel methods for independence testing. Kernel methods
are quite common in machine learning, Schölkopf and Smola [2002] give a good introduc-
tion into the field. There exists a widely used criterion for independence testing based on
kernel methods, which is the so-called Hilbert-Schmidt independence criterion (HSIC).
This criterion is able to detect all kinds of dependencies contained in the data (for a short
description of HSIC see Gretton et al. [2008]). One could think of an adjustment of HSIC
for our case.

The main assumption we made in the model is that the covariance of X is chosen inde-
pendent of the transfer matrix A under a rotation invariant prior. This is a relatively
strong assumption. One may find a way to obtain the same results under weaker condi-
tions, in particular since it is not clear if this assumption holds in nature. It still remains
to be fully clarified whether in the experiments of Section 4.4 the method inferred the
right causal directions because the data sets fulfilled our assumptions, or because some
other inherent structure of the data makes the method to give always these results. In
other words, these few examples still do not verify the method completely. To give an
example why to be precautious: In the examined data sets it is very likely that they
contain a strong confounder, namely the season. That means the season both influences
precipitation and soil moisture (and the other variables, too). Although by taking only
every 12th month (j = 12) we circumvent this problem but still, a better way to do the
experiments would be to use anomaly data. Anomaly data one can obtain in our case by
subtracting from every (monthly) value the mean of that month averaged over all years.
For further verification it is inevitable to extensively test the method, particularly on real
world data sets of different domains.
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Selbstständigkeitserklärung:
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Tübingen, den
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