How to Test the Quality of Reconstructed Sources in Independent Component
Analysis (ICA) of EEG/MEG Data

Moritz Grosse-Wentrup*, Stefan Harmeling*, Thorsten Zander*T, Jeremy Hill* and Bernhard Schélkopf*
*Max Planck Institute for Intelligent Systems, Department Empirical Inference, 72076 Tiibingen, Germany
tTU-Berlin, Institut fiir Psychologie und Arbeitswissenschaft, 10587 Berlin, Germany
Y Wadsworth Center, New York State Dept. of Health, Albany, NY 12201, USA
Email: {moritzgw,stefan.harmeling,bs} @tuebingen.mpg.de; tzander@gmail.com; jezhill@ gmail.com

Abstract—We provide a simple method, based on volume
conduction models, to quantify the neurophysiological plau-
sibility of independent components (ICs) reconstructed from
EEG/MEG data. We evaluate the method on EEG data
recorded from 19 subjects and compare the results with two
established procedures for judging the quality of ICs. We argue
that our procedure provides a sound empirical basis for the
inclusion or exclusion of ICs in the analysis of experimental
data.
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I. INTRODUCTION

Independent Component Analysis (ICA) is applied with
great success in the analysis of EEG and MEG recordings,
e.g. for artifact attenuation [1], [2], to separate sources into
task-related and non task-related components [3]-[5], or as a
pre-processing step for source localization [4], [6], [7]. Sort-
ing reconstructed independent components (ICs) into cortical
current sources and unwanted noise components, however,
is often based on heuristics. Criteria invoked to identify
cortical ICs include the dipolarity of source topographies [8]
and the 1/ f-spectrum of reconstructed ICs [9]. Even though
these criteria are neurophysiologically plausible, they lack
a rigorous analytical justification. Furthermore, scientists
need to be trained to visually identify neurophysiologically
plausible ICs, introducing an undesirable subjective element
into the analysis. A more objective criterion for judging the
quality of ICs is their stability [10]. This criterion is based
on the reasonable assumption that ICs representing noise
components are unlikely to be reproducible on different data
subsets. Splitting the data into multiple subsets, however,
reduces the amount of data for each ICA fold, thereby dimin-
ishing the overall quality of the decomposition. Furthermore,
this criterion may fail to reject ICs representing muscular
artifacts, as these are often systematically correlated with
experimental conditions and may thus remain stable across
different data subsets.

We address this problem by deriving a method that quan-
tifies the neurophysiological plausibility of reconstructed
ICs. Given an unmixing matrix computed by ICA, we use
EEG/MEG volume conduction models to derive an estimate

of the corresponding mixing matrix under the assumption
of mutually independent cortical current sources. Deviations
between expected- and observed source topographies then
enable us to decide whether or not ICs are neurophysio-
logically plausible. We evaluate this method on EEG data,
acquired from 19 subjects during a neurofeedback paradigm,
and compare the obtained results with the two sorting
schemes discussed above.

This paper is organized as follows. In Section II-A, we
introduce the general ICA model and derive an equivalence
relation between the unmixing- and mixing matrices involv-
ing the data covariance matrix. We then discuss how this
relation can be used in conjunction with volume conduction
models to quantify the neurophysiological plausibility of ICs
(Section II-B). We apply this method to empirical data in
Section III, and conclude with a brief discussion of various
applications of our method in Section IV.

II. METHODS

A. The ICA mixing model
We begin by stating the general ICA mixture model

x = As (D

with s, € RY the N original sources and EEG/MEG
observations, respectively. The columns of the full-rank
mixing matrix A € RNV*N describe the projection of each
source to every recording channel. The original source com-
ponents are assumed to be mutually statistically independent,
ie. p(s) = H7N=1 p(s;). Without loss of generality, we
assume each source to have zero mean and unit variance.
Throughout this section we disregard further assumptions on
p(8) (such as non-Gaussianity) that are required to carry out
blind source separation (cf. [11], [12]). Instead, we assume
that we have access to an oracle that provides us with an
unmixing matrix W € RY*N guch that the reconstructed
ICs s = Wz are mutually statistically independent. We then
have W = A~! (up to scaling and permutation [13]) and can
estimate the topographies associated with s as the columns
of A=W~



Next, we note that the covariance matrix of (1) can be
written as

e = E{zx"} = E{AssTAT} = Ax, AT Q)

with X5 € RV*N the source covariance matrix. Multiplying
by W from the left we find that

WEe = WAL AT = AT, 3)

as W = A~! and X, the unit matrix by assumption of
mutually independent sources with unit variance. We further
note that the above relation holds for each individual IC, i.e.

w S, =a; 4)
with w] the ith row of W and a; the ith column of A. If the
ICA model assumptions are fulfilled, we may thus multiply
an IC’s spatial filter by the data covariance matrix to obtain
its associated source topography.

B. Quantifying the neurophysiological plausibility of ICs

For any data set recorded by EEG or MEG the data
covariance matrix will not solely be determined by cortical
current sources. Instead, noise sources as well as non-cortical
artifacts, such as ocular- or muscular current sources, will
also contribute to its shape. However, if the original sources
can be recovered by a linear transformation, (4) holds
independently of the origin of each source. Nevertheless, we
argue in the following that (4) can be used to test whether a
reconstructed source s; = w/ z is likely to represent cortical
current sources, or whether it may have been confounded
by noise or non-cortical artifacts. Towards this goal, we first
model the EEG/MEG data as

xz=1Ls, (5)

with L € RN*K 3 leadfield matrix that describes the
projection of K > N cortical current sources distributed
throughout the brain to /N recording channels [14]. Without
loss of generality, we assume each source to have zero mean.
We consider this model more realistic than the original
ICA model (1), as it allows an arbitrary number of cortical
columns to contribute to the brain’s electromagnetic field.
Under this model, the data covariance matrix is given by

EI;/IOdel _ LES/LT (6)

with ¥y € REXK the source covariance matrix of all
cortical current sources. While L can be computed from bio-
physical volume conduction models [15], ¥ is in general
unknown. In the absence of any further knowledge, we
assume firstly that all cortical current sources are uncorre-
lated, and secondly that they contribute equally to the brain’s
electromagnetic field. We then have that >,/ = I the identity
matrix. While the first assumption can be justified as a
consequence of the ICA assumption of mutually independent
sources, it remains to be established empirically whether the

second assumption is warranted. Leaving this issue aside for
the moment, we then have that

Z];/IOdel — LLT (7)

If Y:Model i an accurate model of ¥, we should find due to
(4) that
wiTEm = wZTLLT = a}. (8)

How well this relation is fulfilled in practice depends on
whether ¥, and XM are similar in the direction that w!
points to. As YM°%! has been derived from the leadfields
of cortical sources only, we argue that a violation of (8)
indicates that s; = w] x represents a non-cortical source. In
the following, we quantify such violations by the percentage
of variance in the original topography that is not accounted
for by the model-based topography, i.e.
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Here, o; € R is chosen by least-squares regression to
minimize (9), thereby ensuring that rg; 4 is not confounded
by different scaling of ¥, and XM°%! Sorting reconstructed
ICs in ascending order according to their 1, -values then
allows us to rank ICs from most to least plausible. In the
next section, we investigate empirically whether this ranking
agrees with established methods for identifying cortical ICs.
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III. EXPERIMENTS
A. Experimental data

We recorded a 121-channel EEG, with active electrodes
placed according to the extended 10-20 system, at 500 Hz
from 19 healthy subjects during a neurofeedback paradigm.
In this paradigm, subjects were trained in three 20-minute
sessions to modulate parietal «-range oscillations. All sub-
jects gave informed consent in agreement with guidelines
set by the Max Planck Society. A more detailed description
of the data set is given in [16].

B. ICA analysis

For each subject’s last two recording sessions, we first re-
referenced the data to common average reference and high-
pass filtered it with a third order Butterworth filter (cut-off
frequency 3 Hz). We then computed the data covariance
matrices ¥, and XIS on the data of the first and
second recording session, respectively. The data of the first
recording session was then separated into ICs by running the
SOBI algorithm with default parameters [11]. As electrodes
sometimes had to be switched off due to high impedances,
the number of ICs varied between 112 and 119 across
subjects. This resulted in a total of 2238 ICs.

We then computed a leadfield matrix [ € R21x15028
modeling the projection of K = 15028 current dipoles
distributed throughout cortex to the N = 121 recording
channels, using the Brainstorm toolbox [15]. Specifically,



we used a four-shell spherical head model with standardized
electrode locations. We then used this leadfield matrix to
compute 73,4 for each individual IC according to (9).

C. Empirical evaluation of IC ranking

We sorted the ICs of all subjects in ascending order
according to their rg ., -values, and then compared this
ranking with previously established methods for identifying
plausible ICs. Firstly, we investigated whether ICs with small
values of r%,lode] exhibit a dipolar topography, as dipolar
topographies are considered typical for ICs representing
mutually independent cortical current sources [8]. Secondly,
we replaced YMod4! in (9) by STranster ¢ obtain a measure of
session-to-session stability of ICs. This score is subsequently
termed 7%, .- We then investigated whether ICs with small
values of 72, 4., are also stable across recording sessions, as
stable ICs are unlikely to represent noise sources [10].

D. Experimental results

The experimental results are illustrated in Figure 1. The
blue line in Figure 1.A displays 73,4, of every IC, sorted
in ascending order. The steep slope of this line indicates
that only a small percentage of ICs exhibit topographies
that conform to those expected for purely cortical sources.
The first column of Figure 1.B displays the topographies
of a representative IC with a small 73 ,.,-value, marked in
Figure 1.A by a red I. Its original topography, shown in the
first row, displays a clear dipolar structure that is very well
reproduced by the model-based topography in the second
row. In general, we found all ICs with a r ,-value below
20% to exhibit a clear dipolar structure. Between 20% and
40% the majority of ICs still showed a dipolar topography,
albeit less smooth than those with smaller rd . -values.
Above 40% source topographies appeared mostly cluttered
(cf. the IC shown in the last column of Figure 1.B, marked
in Figure 1.A by a red IV). As such, our method ranks those
ICs as plausible that exhibit a dipolar topography considered
typical for ICs representing mutually independent cortical
current sources [8].

The capability of our method to rank sources according
to their neurophysiological plausibility is further illustrated
by a comparison of the 7% 4~ and r#, . -values in Figure
1.A, where each IC is represented by a black square:

1) Low 13,50 & low T?‘mmj‘ér: In this case, both, the
model- and the stability-based criterion, rank an IC as
plausible (left/bottom quadrant of Figure 1.A). The first
column of Figure 1.B displays the topographies of an IC
representative of this situation. Here, all three topographies
exhibit the same dipolar structure considered typical of
cortical current sources.

2) Low T30y & high 13, In this case, the model-
based criterion ranks an IC as plausible, while the session-
to-session criterion would lead to a rejection of this IC. As
evident from the right/bottom quadrant of Figure 1.A, only

a few ICs fall into this category. We found that these ICs
exhibited a clear dipolar structure in the original recording
session that was not reproducible in the second session
(cf. the topographies in the second column of Figure 1.B).
We interpret this situation as a noise source corrupting the
second recording session.

3) High 13, & low r%mmfﬂ: The ICs falling into
this category are ranked as stable across sessions, yet do
not conform to the model-based topography. A very large
percentage of ICs fall into this category (left/top quadrant
of Figure 1.A). Inspecting these ICs revealed that their
topographies exhibited foci over peripheral electrodes that
are typical for ICs representing muscular artifacts. The
third column of Figure 1.B displays an IC representative of
this class. As muscular artifacts are often consistent across
recording sessions, these non-cortical ICs are not rejected
based on their stability. The model-based criterion, however,
correctly identifies these ICs as not representing cortical
current sources.

4) High 73,40 & high 73, ICs ranked as non-
plausible by both criteria (right/top quadrant of Figure 1.A)
consistently exhibited cluttered topographies as the ones
displayed in the last column of Figure 1.B. These ICs most
likely represent non-physiological noise sources.

In summary, our model-based ranking assigned a high
plausibility to ICs that were found to be stable across
recording sessions and did not exhibit topographies typical
of muscular sources.

IV. CONCLUSION

In this work, we have presented a simple method to quan-
tify the neurophysiological plausibility of reconstructed ICs.
We presented empirical evidence that our method assigns
low values of 7'1%,[0del to ICs that show a dipolar topography,
are stable across recordings sessions, and are not focused on
peripheral electrodes. We interpret this as strong evidence
for the capability of our method to identify neurophysiolog-
ically plausible ICs. This result also provides an empirical
justification for the assumptions made in Section II-B.

At present, the inclusion or exclusion of ICs in the
analysis of experimental data is often based on heuristics.
Our method, on the other hand, provides a sound empirical
basis for such decisions. We hope that this will contribute to
a more objective decision on whether or not to reject an IC
that is also easier to communicate to fellow researchers than
a decision based on visual inspection of source topographies.
We advise to reject all ICs with 72, -values greater than
20%, but note that this rejection threshold depends on the
intended level of rigour.

Finally, we would like to point out that another potential
application of our method is the systematic evaluation of
the quality of different ICA algorithms and data processing
pipelines. For instance, an ICA decomposition can be scored
according to the mean of rg; 4., With lower values indicating
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Figure 1. A) rf,lodel of all ICs sorted in ascending order (blue line) and relation of rf/lodel with r%ransfer of individual ICs (black squares). B) Representative
examples of IC topographies with the original source topography in the top row, the model-based topography in the second row, and the session-to-session
topography in the third row. Topographies plotted with EEGLAB [6].

a better decomposition. Once a leadfield matrix has been
computed for a given setup, our method is computationally
cheap and fully automatic. This makes it feasible to auto-
matically optimize pre-processing pipelines or parameters of
ICA algorithms with the goal of extracting a maximum of
neurophysiologically plausible ICs from a given data set.
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