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Abstract— Screws and gears are a source of periodically
recurring nonlinear effects in mechanical dynamical systems.
Unless the state sampling frequency is much higher than
the periodic effect, model-free controllers cannot always com-
pensate these effects, and good physical models for such
periodic dynamics are challenging to construct. We investigate
nonparametric system identification with an explicit focus on
periodically recurring nonlinear effects. Within a Gaussian
process regression framework, we design a locally periodic
covariance function to shape the hypothesis space, which allows
for a structured extrapolation that is not possible with more
widely used covariance functions. These predictions are then
used in model predictive control to construct a control signal
correcting for the predicted external effect. We show that this
approach is beneficial for state sampling times that are smaller
than, but comparable to, the period length of the external effect.
In experiments on a physical system, an electrically actuated
telescope mount, this approach achieves a reduction of about
20% in root mean square error.

I. INTRODUCTION

Many controlled systems suffer from additive effects
that recur periodically over time, for example arising from
mechanical imprecision in gears and drives or from periodic
movements in biological systems. Since these effects are
often small in comparison to the required control precision,
they are usually considered as errors and are neglected in the
controller design. For high precision control systems, such
errors can be the dominant source of problems. Correcting
errors only after they are measurable necessarily leads to a
delay in the error correction. If these errors can be anticipated,
the control performance can be improved. While errors arising
stochastically or from unknown effects cannot be preempted in
this way, periodic effects are amenable for prediction: Since
their future behaviour resembles their past, extrapolation
(prediction) is easier and more structured. Based on this
idea, we present a framework for identification and control
of unmodelled periodic effects. Our framework continually
performs identification at runtime, and is thus applicable to
stochastic time varying systems.

The correction of periodic errors has repeatedly been
studied. [1] investigated this issue in the “Very Large
Telescope”, using an internal parametric model for the known
error sources, and a Kalman filter as an observer for the
model parameters. High precision tracking of spacecrafts
on periodic trajectories was improved by [2] with the help
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of predictive filtering using an extended Kalman filter. Not
only mechanical systems suffer from periodic errors, but also
systems that compensate the motion of biologic systems, like
a beating heart. [3] also employ an extended Kalman filter
for state estimation in that setting, but allow the nonlinear
model to change over time, because some parameters of the
model vary. [4] used model predictive control in a learning
controller setting to adapt to model mismatch.

In contrast to previous methods, the approach presented
here does not rely on a pre-specific finite-dimensional
model class. Instead, we propose a nonparametric system
identification framework based on Gaussian process (GP)
regression. It is closely related to least-squares regression
used in system identification, but based on a probabilistic
interpretation, which can be used to guide exploration during
identification [5]. There is recent work on using GPs for
state filtering [6] and on modelling and control of nonlinear
systems [7]. While in [7] GPs are used in a reinforcement
learning setting, we are incorporating the GP prediction in
an optimal control framework. The idea of using the learned
model in predictive control is conceptually similar to [4], with
the key difference that we use a GP to predict time varying
effects. The textbook by [8] provides a general introduction
to Gaussian processes.

A Gaussian process model is parametrised by two objects
– mean and covariance function. When used in system
identification, in particular the choice of covariance function
has a strong effect on performance, and requires consideration
of the particular dynamics to be identified. The notion of
a “universal kernel” [9], [10] is misleading, because it only
applies in the limit of large datasets, and can be subject to
extremely slow (logarithmic) convergence [11], [12]. In any
case, the notion does not apply to extrapolation, which is
the relevant setting for control (put simply, predicting the
future is harder than interpolating between past events). Even
nonparametric regression methods therefore require careful
modelling decisions.

In this work, we focus on a particular class of models
involving periodicity (§ II), and suggest a family of regression
models for the identification of such systems (§ III-A). In
the case where the system modelled up to the periodic effect
is linear, these predictions can then be used in a modified
Kalman filter to improve state estimation (§ III-C), and in a
linear model predictive control setting to achieve optimal
closed-loop performance (§ III-D). We study qualitative
properties of this framework on a toy problem in the form of
a double integrator with periodic errors acting on both states
(§ IV-A). As the development of this method was driven



by a real problem in astronomy, the method is evaluated
on this problem both in simulation (§ IV-B.1) and hardware
experiments (§ IV-B.2).

II. PROBLEM STATEMENT

We consider linear systems with a nonlinear and time
varying additive function g(t).

ẋ(t) = Ax(t) +Bu(t) + g(t) (1a)
y(t) = x(t) + v(t) (1b)

with state x ∈ RE , input u ∈ RF , output y ∈ RE
and system matrices A and B of appropriate size. For
simplicity, we assume full state measurement, where v
denotes an independently and identically Gaussian distributed
measurement noise. The approach can be extended to the case
of partial state measurement (i.e. y = Cx with rank-deficient
matrix C) by using an observer to estimate the remaining
states. The function g : R+ → RD captures nonlinear
time dependent effects. In particular, we are concerned
with systems exhibiting some form of periodic behaviour in
g(t). For a strictly periodic function, there exists a constant
period ω, such that g(t + nω) = g(t) for n ∈ N. However,
not all error sources in real systems are perfectly periodic
in this sense, they show various forms of phase-shift and
desynchronisation. To address this issue, we generalise our
framework to consider “locally-periodic” functions. Intuitively
speaking, these are functions for which g(t) ≈ g(t+nω) for
nω � ` and g(t) 6≈ g(t+ nω) for nω � `, where ` is some
measure of locality.

A more technically precise formulation of this notion is:
We consider a hypothesis class of functions g(t) to which we
assign a prior probability measure such that the covariance
between two function values at t and t′ is

cov(g(t), g(t′)) = kperiodic(|t− t′|) · kdecay(|t− t′|), (2)

where kperiodic is a periodic function with kperiodic(nω) = 1
and kdecay is a monotonically decreasing, positive function.
(See also Figure 1 for an illustration.)

We consider the case where the linear parts of the model
(matrices A and B) are known. Based on this, the discrete-
time model is

xk+1 = Adxk +Bduk + ak, (3)

where Ad and Bd are obtained from a zero-order-hold
discretisation

Ad = eA∆t Gd =

∆t∫
0

eAτdτ Bd = GdB (4)

with sampling time ∆t. ak is the convolution of the periodic
component g(t) with the state transition matrix eAt. The
regression problem is to infer a model for g(t) from
observations of the change in state measurement, ∆y =
y(t)− y(t−∆t). From these we construct observations for
the regressor by local linearisation and correcting with the
linear dynamics on the estimated state x̂k:

g(t) ≈ G−1
d (∆y − (Ad − I)x̂k −Bduk) . (5)

Before we proceed, it should be intuitively clear that
the performance gain one can expect from the use of a
periodic model for nonlinear effects depends on the sampling
rate of the control system: If states are measured, and the
control signal adjusted, at a frequency much higher than the
periodicity of the modelling error, a locally linear model is
sufficient and a periodic model offers almost negligible benefit.
But if the error’s frequency is comparable to that of the state
measurement, explicitly predicting the periodic dynamics in
the “dark” phases between measurements becomes promising.
See Section IV-B.1 for a more detailed discussion.

III. METHODS

A. Gaussian process regression

A Gaussian process GP(g;µ, k) is an (infinite-dimensional)
probability distribution over the space of real-valued functions
g : RD → RD, such that every finite, D-dimensional linear
restriction to function values g(T ) ∈ RD at times T ∈ RD is
a D-variate Gaussian distribution N (g(T );µ(T ), k(T, T )). It
is parametrised by two objects: A mean function µ : RD →
RD, and a covariance function k : RD1 × RD2 → RD1×D2 .
The mean has a relatively straightforward role; it simply shifts
predictions. The covariance function’s responsibility is more
intricate. It can be interpreted as a similarity measure over
function values over R and controls the shape of the Gaussian
process belief in the space of functions. It has to be chosen
such that, for any T, T ′ ∈ RD, the matrix k(T, T ′) ∈ RD×D,
also known as the kernel, is positive semidefinite.

The utility of Gaussian process priors arises from the clo-
sure of the Gaussian exponential family under multiplication:
If data points zi are observed at times ti with Gaussian noise ε

zi = g(ti) + ε ε ∼ N (0, σ2), (6)

then the posterior distribution under the Gaussian process
prior and the Gaussian likelihood encoding this observation
is also a Gaussian process [8, §2.2], with the posterior mean
and covariance

µ(t∗) = kᵀt∗TK
−1z (7)

Σ(t∗, t∗) = kt∗t∗ − k
ᵀ
t∗TK

−1kTt∗ , (8)

where K = k(T, T ) + σ2I is the kernel Gram matrix with
observation noise σ2, z is the set of observations and t∗, t∗
are prediction times. For notational brevity, we are using
the short-hand ktT := k(t, T ). GP regression is a very
general framework for nonlinear regression. In the context
of our particular setup, it may in fact also be used to
construct probabilistic models for fully nonlinear systems
g = g(x, t), without any major changes. For the purposes of
this paper, however, we focus on the simpler case of g = g(t),
allowing for the use of linear control techniques, which can
be efficiently implemented in practice.

GP regression is related to least-squares regression as the
maximum of the Gaussian process posterior under a GP prior
with zero mean and kernel k is identical to the least-squares
estimator regularised in the reproducing kernel Hilbert space
(RKHS) reproduced by k. The difference in the frameworks



is chiefly conceptual. Gaussian process regression interprets
the exponential of the RKHS regulariser ‖g‖2k as a generative
(Gaussian process) model (prior) for g. The added value of
this probabilistic interpretation is manifold. For example, it
provides, after finitely many observations, a description of the
system to be identified in terms of a stochastic differential
equation. Here, we are making use of this description to
reason about the structure of the hypothesis class, but it can
also be used for more advanced ends, for example to guide
active system identification [5].
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Fig. 1. (a): The compound kernel kC (green) of Equation (11) is the product
of kSE (black, Eq. (9)) and kP (red, Eq. (10)). (b): Samples drawn from
Gaussian process priors using these covariance functions (same colours).
Samples using the periodic kernel are perfectly periodic, while samples using
the compound kernel are only periodically similar on a scale controlled
by the parameter `SE of Eq. (11). This ”local periodicity” can be used to
increase modelling flexibility.

The way to construct a periodic hypothesis class, and the
central idea of this work, is to construct a covariance function
that focuses prior probability mass on periodic functions (or,
in least-squares parlance, whose RKHS consists of functions
that are locally periodic): Among the most popular kernels
for regression purposes is the square-exponential (aka. radial
basis function, Gaussian) kernel

kSE(t, t′; `SE) = exp

(
− (t− t′)2

2`2SE

)
, (9)

with length-scale `SE. This kernel gives a stationary model
which does not allow for structured extrapolation. [13]
proposed constructing periodic priors, through a sine-
transformation of the input:

kP(t, t
′; `P, ω) = exp

(
−

2 sin2
(
π
ω (t− t′)

)
`2P

)
, (10)

with length-scale `P and period-length ω. Function values
g(t), g(t′) jointly sampled from Gaussian process priors with

this covariance function are perfectly correlated if t− t′ = ω,
thus sampled functions are perfectly periodic with period
ω. Within this period length, samples vary on a typical
regularity length scale of δ = sin−1(`P/2)ω/π, over a range
with standard deviation θ (see Figure 1). For many systems,
strict periodicity is too strong an assumption. To weaken the
perfect correlation, we use the fact that the kernel property
is closed under multiplication and addition (i.e. kernels form
a semiring, [8, Section 4.2.4]): Although the product of two
Gaussian processes is not a Gaussian process, the product of
two kernel functions is also a kernel and therefore a valid
covariance function for a Gaussian process. The same holds
true for the summation of kernels.

A suitable kernel can thus be constructed in a qualitative
manner, using physical knowledge about the system. Multi-
plying the periodic kernel with a broader square-exponential
gives another kernel whose corresponding Gaussian process
condenses mass at functions that change over time-scales:

kC(t, t′; θ2, `SE, `P, ω) = θ2 · kSE(t, t′; `SE) · kP(t, t
′; `P, ω),

(11)
with signal variance θ2 and the other parameters as stated
above. This kernel considers two input times similar if they are
similar under both the square-exponential and the periodic
kernel. If `SE � ω, this allows encoding a decay in the
periodic behaviour over several oscillations. The different
covariance functions are shown in Figure 1a, exemplary
randomly sampled functions from Gaussian processes with
those covariance functions are shown in Figure 1b. The pos-
terior mean of GPs with nonperiodic and periodic covariance,
trained on periodic data, is shown in Figure 2. Predictions far
away from datapoints are equal, whereas close predictions
show more structure with the locally periodic kernel.
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Fig. 2. Comparison of Gaussian process posteriors (posterior mean function
as thick line, shaded region covers two marginal standard deviations) arising
from the same, periodic data (black) for the square-exponential kernel (top)
and a product of periodic and square-exponential kernel (bottom). The
locally periodic kernel provides a richer extrapolation, which can be used
for improved model predictive control.

The combined kernel from Equation (11) has four hy-
perparameters (which we will subsume in the vector η :=



(θ2, `SE, `P, ω)), including the frequency ω of the periodicity.
Inferring these hyperparameters η is important for good
modelling performance. The fundamental framework for
such inference is provided by Bayes’ theorem. However, the
likelihood for η under z is a nontrivial (and non-Gaussian)
function of η, given by

p(z|T, η) =

∫
p(z|g, T, η)p(g)dg = N (z; 0,K(η)). (12)

A fast, popular, and theoretically well-founded way of
achieving at least a point estimate for η (as opposed to a full
posterior) is to find the maximum of the posterior, an approach
known as evidence maximisation, or as the regularised form
of “type-II maximum likelihood” [8].
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Fig. 3. Slice through the hypothesis space of hyperparameters along
the dimension of the hyperparameter ω defining the period length of g.
logarithm of the type-II (marginal) likelihood in thin blue, logarithm of
posterior distribution (sum of log likelihood and vague log prior, not shown)
in green. The shape of the log posterior is dominated by the likelihood,
indicating that most prior assumptions are dominated by the observed data.

The optimisation of the hyperparameters is easier when
performed on the logarithm of the likelihood, which is

log p(z|T, η) = −1

2
zᵀK(η)−1z

− 1

2
log |K(η)| − D

2
log 2π. (13)

Even in the log domain, this objective function is not likely
convex. Regularisation, by adding the logarithm of a prior,
makes the optimisation problem identifiable, and more regular
(albeit not necessarily convex)

arg max
η

p(η|z, T ) = arg max
η

p(z|T, η)p(η)

= arg max
η

(log p(z|T, η) + log p(η)). (14)

The computational cost of adding a prior is negligible
compared to the matrix inversion needed for the calculation
of the likelihood in Equation (13). An advantage of using
this kind of hierarchical (“type II”) inference over other,
ad-hoc estimators is that it automatically enjoys theoretical
guarantees: Since the set of hyperparameters is finite, the
shape of the posterior is more and more dominated by the
likelihood as the number of data points increases. If the
likelihood is identifiable and sufficiently regular, the prior
eventually becomes irrelevant and, if the other modelling

assumptions are correct, converges to correct values [14],
[15].

As priors for the hyperparameters, we use Gamma distri-
butions of the following form, which provide a comparably
flexible family of priors for non-negative variables

log p(ηi) = (k − 1) log(ηi)−
ηi
t
− Γ(k)− tk, (15)

where ηi is one single hyperparameter, t and k are the
parameters of the Gamma prior and Γ is the Gamma function.
To illustrate the process, the negative log likelihood and
posterior are shown for one hyperparameter, the period length
ω, in Figure 3.

B. The discrete-time model

To utilise the identified error dynamics in control, a time-
varying affine discrete-time model is derived, which can
then be directly incorporated in standard linear control and
estimation techniques. Since the periodic function g(t) cannot
be modelled, an approximation is derived by using the mean
prediction g̃(t) of the previously described Gaussian process,
evaluated at time t

˙̃x = Ax+Bu+ g̃(t). (16)

With the discretisation of Equation (4), the approximate
discrete-time model results to

xk+1 = Adxk +Bduk + ãk, (17)

where ãk is obtained by integrating system (16) (with a
numerical ODE-solver) and subtracting the linear terms:

ãk =

(k+1)∆t∫
k∆t

˙̃x(x, u, τ)dτ −Adx̂k −Bduk. (18)

The discrete model (17) can in principle be applied to all
linear state estimation or control methods. We show how to
use the advanced model prediction in a Kalman filter and in
model predictive control in the next sections.

C. State filtering

Since the state measurements are subject to noise, a Kalman
filter is introduced to estimate the state. The Kalman filter
consists of two basic steps: The prediction of the state
through the dynamic equations and the correction of this
prediction with the current measurement. To incorporate the
nonlinear prediction from the GP without complicating the
Kalman filter equations, the Kalman filter utilises Equation (3)
where the approximation ãk from Equation (18) is used. The
measurement update of the Kalman filter remains unchanged.

Without the incorporation of the predicted affine part
ãk, the periodic error would be classified as process noise,
leading to an increase in the Kalman gain. This increase then
puts more weight on the noisy measurements in the update
equation, which in turn deteriorates estimation performance.



D. Control

Model predictive control (MPC) is a widely used technique,
which has become standard in many industrial applications,
particularly the process industry. See [16] for an introduction.
Because MPC requires the solution of an optimal control
problem at every sampling time, it was classically used for
rather slow dynamic systems. In recent years, research has
focused on expanding the scope of MPC and enable it for
systems with fast dynamics.

MPC uses a prediction of the dynamics in order to
compute an optimal sequence of control inputs according
to a given cost function. The first control input is applied to
the system and the optimisation is repeated for the estimated
(or measured) state at the next sampling time in a so called
receding horizon fashion. This framework allows to directly
incorporate the derived discrete-time model

min J =

N−1∑
n=0

l(xn, un) (19a)

s.t. xn+1 = Adxn +Bdun + ãn (19b)

x0 = x̂k xn ∈ X un ∈ U, (19c)

where x̂k is the current estimated state at the k’th time step,
l : RE × RF → R+ is the cost, which is assumed to be
a convex, positive definite function and X,U are polytopic
sets. N is the length of the prediction horizon. The resulting
problem is a convex optimisation problem that can be solved
efficiently using available optimisation software.

IV. EXPERIMENTS

A. Toy problem

As a simple problem for providing intuition, consider the
following linear dynamic (double integrator) system with an
additive time-periodic component g:

ẋ =

[
0 1
0 0

]
x(t) +

[
0
1

]
u(t) + g(t) (20)

g(t) =

[
sin(t)

cos(1.3t)

]
. (21)

The goal is to control the first state of the system to the
origin. We use a quadratic cost function

l(xn, un) =
1

2
xᵀnQxn +

1

2
uᵀnRun. (22)

We set the state cost to a diagonal matrix Q = diag(1000, 1),
which is mainly penalising the first state, while keeping the
second state bounded. The weight on the control inputs is set
to R = 10, allowing for aggressive control behaviour. The
horizon length of the MPC is set to N = 15. State and input
constraints are omitted for simplicity.

This system was simulated numerically with a sampling
rate of 1 Hz. Figure 4 shows control inputs and resulting
state trajectories, for a model predictive controller without
information about the nonlinearity g, and a model predictive
controller using the posterior mean function of a periodic
Gaussian process regressor as a model for g. The behaviour

shown in these plots is relatively robust to changes in the cost
functions Q and R, because, by Equation (20), this system
can only correct for errors in the first state.

After an identification phase in the first 5s of the experi-
ment, the GP based controller shows a drastic performance
improvement. Omitting the first 5 seconds of identification
phase, RMS error drops by almost 90 %, from 0.94 for the
linear model to 0.099 for the GP based controller. Speaking
more qualitatively, Figure 4 also shows less residual structure
in the controlled state x1.

While the GP based controller is effective at removing the
periodic structure from the first controlled state, the regression
model itself remains able to predict the periodic error correctly
into the future, even when trained exclusively on controlled
states. This is possible because the regression model explicitly
models the controlled dynamics, so it can account for the shift
of periodicity from the states to the control input. This feature
of the framework is crucial for for identifying controlled
systems (see next section). In contrast, a fixed parametric
model of the dynamics could over time result in misaligned
predictions and, in the worst case, even lead to resonant
amplification of error.
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Fig. 4. Closed-loop state and input trajectories under the MPC controller.
MPC using a linear model is shown as thin lines, the GP based MPC
controller as thick lines.

B. Periodic error correction for telescope mounts

The original motivation for the work presented here is
the control of periodic errors in astrophotography systems.
Telescope mounts correct for Earth’s rotation relative to the
sky by a linear motion at the sidereal velocity. This motion is
typically produced by mechanical devices using worm gears,
which gives rise to periodic deviations. Because contemporary
telescopes, even those used by amateurs, have high optical
resolution, and images are taken with long exposure times,
these mechanical imprecisions are frequently the dominant
source of error on astronomical photographs.

Existing periodic error correction systems require careful
system identification by the user of the telescope. The
corresponding measurements need to be repeated after every
repositioning of the telescope (that is, multiple times per
night), and still regularly lead to unsatisfactory performance.



A problem specific to this astronomical application is that
state measurement is performed by taking photographs of the
night sky, which requires relatively long exposure times, so
that the measurement frequency can reach the order of 1/10

of that of the periodic error. This is precisely the domain in
which we expect to see utility from a periodic model.

We use the presented framework consisting of a GP to
learn the error input, a Kalman filter to estimate the state and
an MPC controller.

1) Simulation: The time constant of the periodic error in
telescopes is relatively slow. To allow rapid prototyping, we
designed a simulated telescope system. This also showed that
the speed is not a relevant state, only the position is relevant
and it can be directly influenced by the input of the system.
The linear component of the system is well controlled, and
can thus effectively be ignored. The telescope system reduces
to

ẋ = u+ g(t), (23)

with an unknown function g(t) that is periodic, but changes
slowly over time.

Figure 5 shows simulation results that empirically confirm
the intuition from Section II that the benefit of periodic
prediction in control depends on the sampling rate: On the
numerical simulation of the telescope, we compare, for various
sampling rates of the state
• a simple Kalman-filter based MPC controller using the

linear model without explicit model for g
• two MPC controllers both using a nonparametric, but

fully stationary (i.e. not periodic) models for g using
a GP model with the square-exponential covariance
function. One of these models uses a length scale smaller
than the periodicity (so it can extrapolate periodic swings
locally, but not beyond one period), the other a scale
longer than the periodicity (so it averages over the
periodic variations)

• two MPC controllers using instances of the periodic
model for g described in this paper; one in which
the hyperparameters are fixed to a good value a priori
(amounting to the assumption that the period of g is
known), the other using the full setup described before,
in which hyperparameters are learnt by type-II maximum
likelihood during identification.

Since we are only interested in the limit performance in
this particular experiment, all the controllers were run for an
extended identification phase of 10 period lengths to avoid
artefacts from the identification. Figure 5 then shows control
RMS error after this phase as a function of the sampling time.
Between measurements, the MPC controllers are operated in
an open-loop mode, the control inputs are obtained from the
last MPC optimisation.

The results are as expected: For sampling rates much
higher than ω, the dynamics are locally linear, and all models
perform equally well. For sampling rates between 10 % and
80 % of ω, the periodic model offers considerable benefit.
When the sampling rates are lower than the periodicity, all
models perform some kind of averaging (each of them a
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Fig. 5. Comparison of the error at different sampling rates (in simulation).
MPC control inputs are computed at the indicated sampling times, shown
as a fraction of the period length. The control rate was 1Hz for every plot.
Between measurements, the MPCs are operated in a open-loop mode. For
this figure only, the velocity is assumed measurable and g(t) is set to be a
sine with fixed frequency ω = 100 s.

different one). In this regime, the Nyquist rate imposes limits
on identifiability of the system, which adversely affects the
performance of the periodic nonparametric model. If ω is
known precisely, very good control is possible even for
sampling rates lower than ω. The green line in Figure 5
represents the performance of a system fully ignorant of ω
in the beginning. One can expect prior information about
ω of varying vagueness to give performance somewhere in
the region between the green and blue curves in Figure 5.
Of course, the case where sampling rate and ω are equal is
special, since then g appears constant, and even the informed
periodic model can only ever learn the behaviour of g at one
unique point during the period.

2) Hardware: We also tested our implementation on the
real physical system. We use a commercially available and
unmodified Vixen Sphinx1 telescope mount for the tests (see
Figure 6). Without closed-loop control, this mount shows
about 20 arcs of RMS error. Because outdoor measurements
are time-consuming and subject to difficult to control ex-
ternal effects, we use an experimental setup with a second,
high precision gearless ASA DDM60Pro2 telescope mount
equipped with a laser “star” as tracking reference. It shows a
typical pointing error of about 0.1 arcs. The measurement is
done with a Canon EF400DO lens3 on a The Imaging Source
DMK 41AU02.AS4 camera.

For the hardware interaction, an open source available
telescope guiding software (“PhD Guiding”5) is used. In
the original implementation this software uses a deadbeat
controller. The telescope is connected to the computer with a

1http://www.vixenoptics.com/mounts/sphinx.htm
2http://www.astrosysteme.at/eng/mount_ddm60.html
3http://www.canon-europe.com/For_Home/Product_

Finder/Cameras/EF_Lenses/Telephoto/EF_400mm_f4_DO_
IS_USM/

4http://www.astronomycameras.com/products/usb/
dmk41au02as/

5http://www.stark-labs.com/phdguiding.html



Fig. 6. The telescope mount used for the tracking experiments. On the
right side is the camera lens used as guiding telescope. A main telescope is
not used for the tests.

Shoestring GPUSB6, a device that sends puls-width modulated
signals to telescopes over a proprietary 4-wire interface.

We altered the software to gain access to the measured
displacement of the camera image. The value is sent through
network socket to MATLAB, where the controller developed
in this paper calculates the optimal control signal which is
in turn sent back to the guiding software. The software then
sends the control signal to the telescope hardware. For plotting
and calculation of the RMS error, the measured displacement
is converted from pixels into arc-seconds (1/3600 of a degree)
with an empirically determined conversion factor.

For real-time implementations, algorithmic complexity is
relevant. The computational cost of the GP prediction scales
with O(D3) in the number of datapoints. In order to prevent
too much computational effort, we limited the number of
stored data points to 90, which gives sufficient coverage over
90 s, or about 3 periods of the main periodic component,
which suffices for predictive control of this component.

For the prediction of the dynamics in the model predictive
control, an ODE-solver is employed to predict the affine term
from the mean of the GP prediction. This has manageable
computational cost because the inference cost of a Gaussian
process is dominated by the initial one-time operation
of inverting the Gram matrix K in O(D3) time, while
subsequent evaluations of the mean function at M times
only has cost O(MD) (see Equation (7)).

The optimisation of the hyperparameters is also an expen-
sive part of this algorithm. As the kernel Gram matrix has to
be built and inverted at every iteration of the optimisation, we
have to keep the number of steps small at every sampling time.
We use a BFGS optimiser, and pre-condition the optimiser
used in time-step k by the Hessian estimate constructed by
the optimiser in the preceding time step k − 1. With this
modification, it is possible to run one single linesearch of the
optimiser during the time the camera needs to take the next
image.

6http://www.store.shoestringastronomy.com/gpusb.
htm

For both setups, one with a MPC based on the linear model
without g and one with the GP prediction for the periodic
error, the algorithm was run 3 times for 25 min each. Both
the sampling and the control time were set to 3 s. The results
of these runs is shown in Table I. The RMS error drops by
22.64 % through the use of GP predictions in this hardware
setup.

Run 1 Run 2 Run 3 Mean

Plain MPC 0.9839 1.0234 0.9353 0.9809
GP-MPC 0.7365 0.7792 0.7605 0.7587

TABLE I
EXPERIMENTAL RESULTS (RMS ERROR, IN ARCS)
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(a) Plain MPC, RMS(e) = 1.023
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(b) GP-MPC, RMS(e) = 0.7792

Fig. 7. Measurements of state for the physical experiments with the telescope,
for plain MPC using only a linear model (a), and periodic Gaussian process
model based MPC (b). Results from run 2 of 3 in our experiments, which
gave the highest (worst) RMS error for both models.

V. CONCLUSION

High precision control of dynamical systems requires
precise models of even minor nonlinearities. Where analytical
models are not available, they need to be constructed numeri-
cally from interaction with the system. Periodic nonlinearities
are an especially promising domain in this regard, as they
can be extrapolated well into the future. We have studied
a nonparametric modelling framework based on a carefully
crafted Gaussian process prior exhibiting a weak, localised
form of periodicity. Because Gaussian regression returns
models in the form of stochastic differential equations, they
can be combined directly with existing control frameworks.
Numerical and physical experiments confirm the intuitive
result that the benefit of periodic models depends on the
relative size of state sampling and disturbance frequencies.
They also show considerable increases in control performance,
confirming the practical utility of this framework.
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