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Random Qutline

The Johnson-Lindenstrauss Lemma (1984)

Random Kitchen Sinks (Rahimi and Recht, NIPS 2008)

Fastfood (Le et al., ICML 2013)



Why random projections?

Fast, efficient and & distance-preserving dimensionality reduction!
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This result is formalized in the Johnson-Lindenstrauss Lemma



The Johnson-Lindenstrauss Lemma

The proof is a great example of Erdés’ probabilistic method (1947).
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§12.5 of Foundations of Machine Learning (Mohri et al., 2012)



Auxiliary Lemma 1

Let @ be a random variable following a x? distribution with &k degrees
of freedom. Then, for any 0 < e < 1/2:

Pr{(1 — )k < Q < (1+ k] > 1 — 2e~(—<Ik/4,

a

Proof: we start by using Markov’s inequality (Pr[X >a] < E[X]):

E[e*9]  (1—2))"*/2
— AQ A(1+e)k _
PriQ > (1+e)k] = Pr[e™ > ¢ I< AA+Ok — gr(tok

where E[e*?] = (1 — 2))7%/2 is the m.g.f. of a x? distribution, A < 3.

To tight the bound we minimize the right-hand side with A = m:
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Auxiliary Lemma 1

Using 1 +¢ < e (€#=€%)/2 yields

14+6\*? 65*62553 3
Pr[QZ(lJre)k]g( > <[ ) = iE,
e e

Pr[@ < (1 — €)k] is bounded similarly, and the lemma follows by
applying the union bound:

Pl Ok <Q < (11 0k <

PriQ=(1+6ekUQ < (1—¢)k] <
PriQ = (1+ e)k] + Pr[@Q < (1 — e)k] =
2e~ (=€)

Then,
Pr(1 -k < Q< (1+e)k] > 1—2¢ 5=



Auxiliary Lemma 2

Let z € RN, k < N and A € RF*N with A;; ~ N(0,1). Then, for
any 0 <e<1/2:

_(2_¢3
Pr{(1 = o)elf < | =Aa|? < (1+Oal?) > 1 - 26~

Proof: let € = Ax. Then,

Note that T; = &;/|| ~ N'(0,1). Then, Q = ¥ T2 ~ x3.
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Remember the previous lemma?



Auxiliary Lemma 2

Remember: & = Az, T; = &, /||z| ~ N(0,1), Q = Zf Tj2 ~ X%i

Pr((1—e)fz]* < | an;H? (1+e)llz]?) =

:f32
Pri1—olel? < 25 < (1 4 ) =
PKleWSHﬂQ (14 k] =

k
Pri(l-—ek<> T7 < (l+e)k| =

Pe((l— Ok <Q < (14K >
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The Johnson-Lindenstrauss Lemma

For any 0 < € < 1/2 and any integer m > 4, let k = mlﬁ&. Then,
for any set V of m points in RY 3 f: RN - R*¥ st. V u,v € V:

1= ollu—v* < [f(u) = f@)* < A+ )flu -]

Proof: Let f = L A A e RPN < N and A;; ~N(0,1).

e For fixed u,v € V, we apply the previous lemma with T=u—v
to lower bound the success probability by 1 — 2e™ (?="k/4,

e Union bound again! This time over the m? pairs in V with
k= 201:2gm and € < 1/2 to obtain:

Pr[success] > 1—2m P S L P e I B, V)
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JL

Experiments

Data: 20-newsgroups, from 100.000 features to 300 (0.3%)

Pairwise distances distribution for n_components=300 6 Histogram of pairwise distance rates for n_components=300
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JL

Experiments

Data: 20-newsgroups, from 100.000 features to 1.000 (1%)

Pairwise distances distribution for n_components=1000 ngstogram of pairwise distance rates for n_components=1000
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JL

Experiments

Data: 20-newsgroups, from 100.000 features to 10.000 (10%)

Pairwise distances distribution for n_components=10000
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MATLAB implementation: 1/sqrt (k) .*randn (k,N)%*%X.

2.0



JL Conclusions

But.

Do you have a huge feature space?

Are you wasting too much time with PCA?

Random Projections are fast, compact & efficient!
Monograph (Vampala, 2004)

Sparse Random Projections (Achlioptas, 2003)

Random Projections can Improve MoG! (Dasgupta, 2000)
Code for previous experiments: http://bit.1ly/17FTfbH

.. What about non-linear random projections?

Ali Rahimi Ben Recht


http://bit.ly/17FTfbH

Random Qutline

The Johnson-Lindenstrauss Lemma (1984)

Random Kitchen Sinks (Rahimi and Recht, NIPS 2008)

Fastfood (Le et al., ICML 2013)



A Familiar Creature

T
flx) = Zaz‘¢($; w;)

Gaussian Process

Kernel Regression
SVM

AdaBoost

Multilayer Perceptron

Same model, different training approaches!

Things get interesting when ¢ is non-linear...



A Familiar Solution




A Familiar Solution




A Familiar Monster: The Kernel Trap
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k(l’i,l'j)



Greedy Approximation of Functions

Approx. f(z) = 300, aip(a;w;) with fr(z) = 1| ai(a; w;).

Greedy Fitting

T
Z i p(;w;) — f
i=1

*W*: :
(o, W?) min

m



Greedy Approximation of Functions

F={f(x) =272 a;p(x;w;), w; € Q, ||a|l; < C}

<

Y1 i@ wy), w; € Q, [lafy < C

I = fllu =
VIeUfr(@) = (@) 2u(da) =

o (%) (Jones, 1992)




RKS Approximation of Functions

Approx. f(x) = 221 a;(x; w;) with fr(z) = 23;1 a;(x; w;).

Greedy Fitting
T

> igw) — f
1=1

*W*: :
(o, W7) mnin

m

Random Kitchen Sinks Fitting
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Just an old idea?

REVIEWS OF MODERN PHVYSICS VOLUME 34, NUMBER 1 JANUARY,

1962

The Perceptron: A Model for Brain Functioning. I"

H. D. Brock
Cornell University, Ithaca, New York

HE Perceptron is a self-organizing or adaptive
system proposed by Rosenblatt.! Its primary
purpose is to shed some light on the problem of explain-
ing brain function in terms of brain structure. It also
has technological applications as a pattern-recognizing
device, but here our emphasis is on the brain function-
structure problem. The technological aspects are not
completely irrelevant however, since a model, no
matter how appealing it may appear from the point of
view of structural similarity, must also be judged on
the basis of its performance.

In brief a perceptron consists of a retina of sensory
units (for example photocells); these are connected Sensory Reting Associators
(for example by wires) to assoctalor units. The connec-
tions are many to many and random. The associator
units may be connected to each other or to response
units. When a stimulus is presented to the retina
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Just an old idea?

Liquid state machine

From Wikipedia, the free encyclopedia

A liquid state machine (LSM) is a computational construct like a neural network. An
LSM consists of a large collection of units (called nodes, or neurons). Each node receives
time varying input from external sources (the inputs) as well as from other nodes. Nodes
are randomly connected to each other. The recurrent nature of the connections turns the
time varying input into a spatio-temporal pattern of activations in the network nodes. The
spatio-temporal patterns of activation are read out by linear discriminant units.

The soup of recurrently connected nodes will end up computing a large variety of
nonlinear functions on the input. Given a large enough variety of such nonlinear functions,
it is theoretically possible to obtain linear combinations (using the read out units) to
perform whatever mathematical operation is needed to perform a certain task, such as
speech recognition or computer vision.

W. Maasss, T. Natschlaeger, H. Markram, Real-time computing without stable
states: A new framework for neural computation based on perturbations, Neural
Computation. 14(11), 2531-2560, (2002)



How does RKS work?

For functions f(x fQ ¢(x; w)dw, define the p—norm as:

|o(w)]

sup
weq p(w)

and let F, be all f with || f||, < C. Then, for wy,...,wr ~ p(w),
w.p. at least 1 — 6§, & > 0, there exist some « s.t. fr satisfies:

I~ fﬂ—0<f 1+2log(1;>

Why? Set a; = :a(w;). Then, the discrepancy is given by || f| »:

= 7 L asw)otwin)

I1fll» =

With a dataset of size N, an error O (LN) is added to all bounds.



RKS Approximation of Functions

Fp =1{f(x) = [ a(w)d(@; w)dw, [a(w)] < Cp(w)}

/




Random Kitchen Sinks: Auxiliary Lemma

Let X = {z1,-- ,zx} beiid. rr.vv. drawn from a centered C-radius

ball of a Hilbert Space H. Let X = % ZkK Zk. Then, for any 6 > 0,
with probability at least 1 — §:

c / 1
X - E[X ]||<\/—?<1+ 210g5>

Proof: Show that f(X) = || X — E[X]| is stable w.r.t. perturbations:

P—
o — @il _ 2C
K - K

Second, the variance of the average of i.i.d. random variables is:

B[|X - E[X]|*] = %(EHISCIIQ] — | E[]|?).

Third, using Jensen’s inequality and given that ||z| <

< VEP(X)] = \/EIX - EX)|7 < 5

Fourth, use McDiarmid’s inequality and rearrange.

F(X) - f(X) < |X - X| <

Sl



Random Kitchen Sinks Proof

Let 1 be a measure on X, and f* € F,. Let wy,...,wr ~ p(w).
Then, w.p. at least 1 — ¢, with § > 0, 3 fr(z) = Z? Bid(x; w;) s.t.:

C
I =17l < = (1+ ,/210%)
Proof:

Let f; = Bid(z;w;), 1 <k < T and B; = O‘““l)) Then, E[f;] = f*:

E[f;] = Euw {‘“(“’i)a:(;wi)} = /Q p(10) 21 4 ap)daw = f*

p(w;) p(w)

The claim is mainly completed by describing the concentration of the
_1 . o .
average fr = £ y_ fi around f* with the previous lemma.




Approximating Kernels with RKS

Bochner’s Theorem: A kernel k(z — y) on R? is PSD if and only if
k(x — y) is the Fourier transform of a non-negative measure p(w).

k(x —y) = / p(w)ejw’(m—y)dw
Rd

T
1 !
N E /i@ =Y)  (Monte-Carlo, O(T~1/2))
i=1

1 T

_ LN gwlr —jwly
T L N ——
=1 (W) p(y; W)

1 L1 .
= ﬁcﬁ(m; W) ﬁcﬁ(y, W)

Now solve least squares in the primal in O(n) time!



Random Kitchen Sinks: Implementation

o

% Training
function ytest = kitchen_sinks( X, y, Xtest, T, noise)

Z = randn(T, size(X,1)); ¢ Sample feature frequencies
phi = exp(i*Z*X); % Compute feature matrix

% Linear regression with observation noise.
w = (phi*phi’ + eye(T)*noise)\(phix*y);

% testing
ytest = w’*xexp(i*Z*xtest);

from http://www.keysduplicated.com/~ali/random-features/

e That’s fast, approximate GP regression! (with a sq-exp kernel)
e Or linear regression with [sin(zz), cos(zz)] feature pairs

e Show demo


http://www.keysduplicated.com/~ali/random-features/

Random Kitchen Sinks and Gram Matrices

e How fast do we approach the exact Gram matrix?
e k(X,X) =o(X)"®(X)

exact

10 20 30 40 SO 6D 70 80 S0 100



Random Kitchen Sinks and Gram Matrices

e How fast do we approach the exact Gram matrix?
e k(X,X) =o(X)"®(X)

exact

10 20 30 40 SO 6D 70 80 S0 100 40 s0 B0 70 80 90 100



Random Kitchen Sinks and Gram Matrices

e How fast do we approach the exact Gram matrix?
e k(X,X) =o(X)"®(X)

exact




Random Kitchen Sinks and Gram Matrices

e How fast do we approach the exact Gram matrix?
e k(X,X) =o(X)"®(X)

exact 270 features




Random Kitchen Sinks and Gram Matrices

e How fast do we approach the exact Gram matrix?
e k(X,X) =o(X)"®(X)

exact

10 20 30 40 SO 6D 70 80 S0 100 10 20 30 40 S0 60 70 80 80 100



Random Kitchen Sinks and Gram Matrices

e How fast do we approach the exact Gram matrix?
e k(X,X) =o(X)"®(X)

exact 100 features

10 20 30 40 SO 6D 70 80 S0 100 10 20 30 40 S0 60 70 8D 80 100



Random Kitchen Sinks and Gram Matrices

e How fast do we approach the exact Gram matrix?
e k(X,X) =o(X)"®(X)

exact 1000 features

10 20 30 40 SO 6D 70 80 S0 100 10 20 30 40 S0 BOD 70 80 S0 100



Random Kitchen Sinks and Posterior

e How fast do we approach the exact Posterior?
3 features

GP Posterior Mean
GP Posterior Uncertainty
¢ Data

T



Random Kitchen Sinks and Posterior

e How fast do we approach the exact Posterior?
4 features

GP Posterior Mean
GP Posterior Uncertainty
¢ Data

T



Random Kitchen Sinks and Posterior

e How fast do we approach the exact Posterior?
5 features

—
GP Posterior Mean

GP Posterior Uncertainty
¢ Data

T



Random Kitchen Sinks and Posterior

e How fast do we approach the exact Posterior?
10 features

GP Posterior Mean
GP Posterior Uncertainty
¢ Data

T



Random Kitchen Sinks and Posterior

e How fast do we approach the exact Posterior?
20 features

GP Posterior Mean

GP Posterior Uncertainty
¢ Data

T



Random Kitchen Sinks and Posterior

e How fast do we approach the exact Posterior?
200 features

GP Posterior Mean
GP Posterior Uncertainty
¢ Data

T



Random Kitchen Sinks and Posterior

e How fast do we approach the exact Posterior?
400 features

GP Posterior Mean

GP Posterior Uncertainty
¢ Data

T



Kitchen Sinks in multiple dimensions

D dimensions, T random features, N datapoints
e First: Sample T x D random numbers: Z ~ N(0,072)
e each ¢;(x) = exp(i[Zz];)
e or: &(x) =exp(iZz)

Each feature ¢;(-) is a sine, cos wave varying along the direction given
by one row of Z, with varying periods.

i 7

Can be slow for many features in high dimensions. For example,
computing ®(x) is O(NTD).



But isn’t linear regression already fast?

D dimensions, T features, N Datapoints
e Computing features: ®(x) = ﬁ exp(iZx)
e Regression: w = [‘I’(X)T(I’(X)]_l o(x)Ty

e Train time complexity:

O( DTN + T3 + TI°N )
S—— ~—~ S~~~
Computing Features Inverting Covariance Matrix ~ Multiplication

e Prediction: y* = w'®(x*)
o Test time complexity: O DTN* + T?N* )
_— —
Computing Features = Multiplication

e For images, D is often > 10, 000.



Random Qutline

The Johnson-Lindenstrauss Lemma (1984)

Random Kitchen Sinks (Rahimi and Recht, NIPS 2008)

Fastfood (Le et al., ICML 2013)



Fastfood (Q. Le, T. Sarlés, A. Smola, 2013)

Main idea: Approximately compute Zx quickly, by replacing Z with
some easy-to-compute matrices.

o Uses the Subsampled Randomized Hadamard Transform (SRHT)
(Sarlds, 2006)

e Train time complexity:

3 2
O( log(D)TN + T + TN )

Computing Features Inverting Feature Matrix = Multiplication

e Test time complexity: O( log(D)TN* + T?N* )

Computing Features Multiplication

e For images, if D = 10,000, log,,(D) = 4.



Fastfood (Q. Le, T. Sarlés, A. Smola, 2013)

Main idea: Compute Va = Zz quickly, by building V' out of
easy-to-compute matrices.
V has similar properties to the Gaussian matrix Z.

1
V=——SHGIIHB 1
oVd M)

II is a D x D permutation matrix

G is diagonal random Gaussian.
e B is diagonal random {41, —1}.

S is diagonal random scaling.
H is Walsh-Hadamard Matrix.



Fastfood (Q. Le, T. Sarlés, A. Smola, 2013)

Main idea: Compute Va = Zz quickly, by building V' out of
easy-to-compute matrices.

1
V=——=SHGIIHB 2
oVd @)

o H is Walsh-Hadamard Matrix. Multiplication in O(T log(D)). H
is orthogonal, can be built recursively.

1 1 1
-1 1 -1

1 1 1
-1 1 -1

—_ = =

-1 -1 1 1 -1 -1 1

-1 1 -1 -1 1 -1 1

]
m\w‘H
g i g g
—
[
—
|
—
|
—_
|
—
|
—_
—
w
SN~—

-1 -1 1 -1 1 1 -1



Fastfood (Q. Le, T. Sarlés, A. Smola, 2013)

Main idea: Compute Va = Zz quickly, by building V' out of
easy-to-compute matrices.

1
Vo= —=SHGIIHBx 4
oVd )

Intuition: Scramble a single Gaussian random vector many different
ways, to create a matrix with similar properties to Z. [Draw on board]

o HGIIH B produces pseduo-random Gaussian vectors (of identical
length)

e S fixes the lengths to have the correct distribution.



Fastfood results

Computing Va:

a7 Fustiood [RKS |Spocdup |RAM__|

1024 16384 0.00058s 0.0139s  24x 256x
4096 32768 0.00136s 0.1224s  90x 1024x

8192 65536 0.00268s 0.5360s  200x 2048x

We never store V!



Fastfood results

Regression MSE:

Dataset ™m d Exact | Nystrom
RBF RBF

Insurance Company 5,822 85 0.231 0.232
Wine Quality 4,080 11 0.819 0.797
Parkinson Telemonitor 4,700 21 0.059 0.058
CPU 6,554 21 7.271 6.758
Location of CT slices (axial) 42,800 384 n.a. 60.683
KEGG Metabolic Network 51,686 27 n.a. 17.872
Year Prediction MSD 463,715 90 n.a. 0.113
Forest 522,910 54 n.a. 0.837
Random Kitchen Fastfood | Fastfood Exact | Fastfood
Sinks (RBF) FFT RBF Matern Matern
0.266 0.266 0.264 0.234 0.235

0.740 0.721 0.740 0.753 0.720

0.054 0.052 0.054 0.053 0.052

7.103 4.544 7.366 4.345 4.211

49.491 58.425 43.858 n.a. 14.868

17.837 17.826 17.818 n.a. 17.846

0.123 0.106 0.115 n.a. 0.116

0.840 0.838 0.840 n.a. 0.976




“The Trouble with Kernels” (Smola)

e Kernel Expansion: f(z) = > 1" a;k(z;, )
e Feature Expansion: f(z) = ZiT:1 w;p;(x)

D dimensions, T features, N samples

Method Train Time Test Time Train Mem  Test Mem
Naive O(N"D) O(ND) O(ND) O(ND)
Low Rank O(N TD) O(TD) O(TD) O(TD)
Kitchen Sinks O(NTD) O(TD) O(TD) O(TD)
Fastfood O(NTlog(D)) O(Tlog(D)) O(Tlog(D)) o)

“Can run on a phone”



Feature transforms of more interesting kernels

In high dimensions, all Euclidian distances become the same, unless
data lie on manifold. Usually need structured kernel.

e can do any stationary kernel (Matérn, rational-quadratic) with
Fastfood

e sum of kernels is concatenation of features:

P (x
kj(+)(X, x') = k(l)(x7 X/) + k(2)(X, x/) — o) = |: Q)(Q)Ex) :|

e product of kernels is outer product of features:
ECO(x,x') = kM (x, x)E?) (x, %) = &) (x) = &M (x)0?) (x)T

For example, can build translation-invariant kernel:
f ( ﬁ ) =f ( ﬁ) (5)
11T

k((xlﬂx% v 7xD)7 (x/la‘r/% ce 7$/D)) = Z H k(xja‘r;+jmod D) (6)

i=1j=1

1111
1111




Takeaways

Random Projections Random Features

® Preserve Euclidian distances ® RKS can approximate GP

® while reducing dimensionality posterior quickly

® Fastfood can compute T'
nonlinear basis functions in
O(T log D) time.

® Can operate on structured
kernels.

® Allow for nonlinear mappings

Gourmet cuisine (exact inference) is nice,
but often fastfood is good enough.



	The Johnson-Lindenstrauss Lemma (1984)
	Random Kitchen Sinks (Rahimi and Recht, NIPS 2008)
	Fastfood (Le et al., ICML 2013)

