
Random Projections

Lopez–Paz & Duvenaud

November 7, 2013

Random Outline

The Johnson-Lindenstrauss Lemma (1984)

Random Kitchen Sinks (Rahimi and Recht, NIPS 2008)

Fastfood (Le et al., ICML 2013)

Why random projections?

Fast, efficient and & distance-preserving dimensionality reduction!

R40500 R1000

x1

x2

y1

y2

w ∈ R40500×1000

w ∈ R40500×1000

δ δ(1± ε)

(1− ε)‖x1 − x2‖2 ≤ ‖y1 − y2‖2 ≤ (1 + ε)‖x1 − x2‖2

This result is formalized in the Johnson-Lindenstrauss Lemma

The Johnson-Lindenstrauss Lemma

The proof is a great example of Erdös’ probabilistic method (1947).

Paul Erdös Joram Lindenstrauss William B. Johnson
1913-1996 1936-2012 1944-

§12.5 of Foundations of Machine Learning (Mohri et al., 2012)

Auxiliary Lemma 1

Let Q be a random variable following a χ2 distribution with k degrees
of freedom. Then, for any 0 < ε < 1/2:

Pr[(1− ε)k ≤ Q ≤ (1 + ε)k] ≥ 1− 2e−(ε2−ε3)k/4.

Proof: we start by using Markov’s inequality
(

Pr[X > a] ≤ E[X]
a

)
:

Pr[Q ≥ (1 + ε)k] = Pr[eλQ ≥ eλ(1+ε)k] ≤ E[eλQ]

eλ(1+ε)k
=

(1− 2λ)−k/2

eλ(1+ε)k
,

where E[eλQ] = (1− 2λ)−k/2 is the m.g.f. of a χ2 distribution, λ < 1
2 .

To tight the bound we minimize the right-hand side with λ = ε
2(1+ε) :

Pr[Q ≥ (1 + ε)k] ≤
(1− ε

1+ε)
−k/2

eεk/2
=

(1 + ε)k/2

(eε)k/2
=

(
1 + ε

eε

)k/2
.

Auxiliary Lemma 1

Using 1 + ε ≤ eε−(ε2−ε3)/2 yields

Pr[Q ≥ (1 + ε)k] ≤
(

1 + ε

eε

)k/2
≤

(
eε−

ε2−ε3
2

eε

)
= e−

k
4 (ε2−ε3).

Pr[Q ≤ (1− ε)k] is bounded similarly, and the lemma follows by
applying the union bound:

Pr[(1− ε)k ≤ Q ≤ (1 + ε)k] ≤
Pr[Q ≥ (1 + ε)k ∪Q ≤ (1− ε)k] ≤

Pr[Q ≥ (1 + ε)k] + Pr[Q ≤ (1− ε)k] =

2e−
k
4 (ε2−ε3)

Then,

Pr[(1− ε)k ≤ Q ≤ (1 + ε)k] ≥ 1− 2e−
k
4 (ε2−ε3)

Auxiliary Lemma 2

Let x ∈ RN , k < N and A ∈ Rk×N with Aij ∼ N (0, 1). Then, for
any 0 ≤ ε ≤ 1/2:

Pr[(1− ε)‖x‖2 ≤ ‖ 1√
k
Ax‖2 ≤ (1 + ε)‖x‖2] ≥ 1− 2e−(ε2−ε3)k/4.

Proof: let x̂ = Ax. Then,

E[x̂2
j] = E

(N∑
i

Ajixi

)2
 = E

[
N∑
i

A2
jix

2
i

]
=

N∑
i

x2
i = ‖x‖2.

Note that Tj = x̂j/‖x‖ ∼ N (0, 1). Then, Q =
∑k
i T

2
j ∼ χ2

k.

Remember the previous lemma?

Auxiliary Lemma 2

Remember: x̂ = Ax, Tj = x̂j/‖x‖ ∼ N (0, 1), Q =
∑k
i T

2
j ∼ χ2

k:

Pr[(1− ε)‖x‖2 ≤ ‖ 1√
k
Ax‖2 ≤ (1 + ε)‖x‖2] =

Pr[(1− ε)‖x‖2 ≤ ‖x̂‖
2

k
≤ (1 + ε)‖x‖2] =

Pr[(1− ε)k ≤ ‖x̂‖
2

‖x‖2
≤ (1 + ε)k] =

Pr

[
(1− ε)k ≤

k∑
i

T 2
j ≤ (1 + ε)k

]
=

Pr [(1− ε)k ≤ Q ≤ (1 + ε)k] ≥

1− 2e−(ε2−ε3)k/4

The Johnson-Lindenstrauss Lemma

For any 0 < ε < 1/2 and any integer m > 4, let k = 20 logm
ε2 . Then,

for any set V of m points in RN ∃ f : RN → Rk s.t. ∀ u,v ∈ V :

(1− ε)‖u− v‖2 ≤ ‖f(u)− f(v)‖2 ≤ (1 + ε)‖u− v‖2.

Proof: Let f = 1√
k
A, A ∈ Rk×N , k < N and Aij ∼ N (0, 1).

• For fixed u,v ∈ V , we apply the previous lemma with x = u− v
to lower bound the success probability by 1− 2e−(ε2−ε3)k/4.

• Union bound again! This time over the m2 pairs in V with
k = 20 logm

ε2 and ε < 1/2 to obtain:

Pr[success] ≥ 1−2m2e−(ε2−ε3)k/4 = 1−2m5ε−3 > 1−2m−1/2 > 0.

JL Experiments

Data: 20-newsgroups, from 100.000 features to 300 (0.3%)

MATLAB implementation: 1/sqrt(k).*randn(k,N)%*%X.

JL Experiments

Data: 20-newsgroups, from 100.000 features to 1.000 (1%)

MATLAB implementation: 1/sqrt(k).*randn(k,N)%*%X.

JL Experiments

Data: 20-newsgroups, from 100.000 features to 10.000 (10%)

MATLAB implementation: 1/sqrt(k).*randn(k,N)%*%X.

JL Conclusions

• Do you have a huge feature space?

• Are you wasting too much time with PCA?

• Random Projections are fast, compact & efficient!

• Monograph (Vampala, 2004)

• Sparse Random Projections (Achlioptas, 2003)

• Random Projections can Improve MoG! (Dasgupta, 2000)

• Code for previous experiments: http://bit.ly/17FTfbH

But... What about non-linear random projections?

Ali Rahimi Ben Recht

http://bit.ly/17FTfbH

Random Outline

The Johnson-Lindenstrauss Lemma (1984)

Random Kitchen Sinks (Rahimi and Recht, NIPS 2008)

Fastfood (Le et al., ICML 2013)

A Familiar Creature

f(x) =

T∑
i=1

αiφ(x;wi)

• Gaussian Process

• Kernel Regression

• SVM

• AdaBoost

• Multilayer Perceptron

• ...

Same model, different training approaches!

Things get interesting when φ is non-linear...

A Familiar Solution

A Familiar Solution

A Familiar Monster: The Kernel Trap

K

·

k(xi, xj)

Greedy Approximation of Functions

Approx. f(x) =
∑∞
i=1 αiφ(x;wi) with fT (x) =

∑T
i=1 αiφ(x;wi).

Greedy Fitting

(α?,W ?) = min
α,W

∥∥∥∥∥
T∑
i=1

αiφ(;wi)− f

∥∥∥∥∥
µ

Random Kitchen Sinks Fitting

w?
i , . . . ,w

?
T ∼ p(w), α? = min

α

∥∥∥∥∥
T∑
i=1

αiφ(;w?
i)− f

∥∥∥∥∥
µ

Greedy Approximation of Functions

F ≡ {f(x) =
∑∞
i=1 αiφ(x;wi),wi ∈ Ω, ‖α‖1 ≤ C}

f(x) =
∑T
i=1 αiφ(x;wi),wi ∈ Ω, ‖α‖1 ≤ C

O
(
C√
T

)
(Jones, 1992)

‖fT − f‖µ =√∫
X (fT (x)− f(x))2µ(dx) =

RKS Approximation of Functions

Approx. f(x) =
∑∞
i=1 αiφ(x;wi) with fT (x) =

∑T
i=1 αiφ(x;wi).

Greedy Fitting

(α?,W ?) = min
α,W

∥∥∥∥∥
T∑
i=1

αiφ(;wi)− f

∥∥∥∥∥
µ

Random Kitchen Sinks Fitting

w?
i , . . . ,w

?
T ∼ p(w), α? = min

α

∥∥∥∥∥
T∑
i=1

αiφ(;w?
i)− f

∥∥∥∥∥
µ

Just an old idea?

Just an old idea?

W. Maasss, T. Natschlaeger, H. Markram, Real-time computing without stable

states: A new framework for neural computation based on perturbations, Neural

Computation. 14(11), 2531-2560, (2002)

How does RKS work?

For functions f(x) =
∫

Ω
α(w)φ(x;w)dw, define the p−norm as:

‖f‖p = sup
w∈Ω

|α(w)|
p(w)

and let Fp be all f with ‖f‖p ≤ C. Then, for w1, . . . ,wT ∼ p(w),
w.p. at least 1− δ, δ > 0, there exist some α s.t. fT satisfies:

‖fT − f‖µ = O

(
C√
T

√
1 + 2 log

1

δ

)

Why? Set αi = 1
T α(wi). Then, the discrepancy is given by ‖f‖p:

fT (x) =
1

T

T∑
i

ai(wi)φ(x;wi)

With a dataset of size N , an error O
(

1√
N

)
is added to all bounds.

RKS Approximation of Functions

Fp ≡ {f(x) =
∫

Ω
α(w)φ(x;w)dw, |α(w)| ≤ Cp(w)}

wi ∼ p(w)

αi ≤ C
K

f(x) =
∑T
i=1 αiφ(x;wi)

◦f

O
(
‖f‖p√
T

)

Random Kitchen Sinks: Auxiliary Lemma

LetX = {x1, · · · , xK} be i.i.d. rr.vv. drawn from a centered C-radius

ball of a Hilbert Space H. Let X̄ = 1
K

∑K
k xk. Then, for any δ > 0,

with probability at least 1− δ:

‖X̄ − E[X̄]‖ ≤ C√
K

(
1 +

√
2 log

1

δ

)

Proof: Show that f(X) = ‖X̄ − E[X̄]‖ is stable w.r.t. perturbations:

|f(X)− f(X̃)| ≤ ‖X̄ − ¯̃X‖ ≤ ‖xi − x
′
i‖

K
≤ 2C

K
.

Second, the variance of the average of i.i.d. random variables is:

E[‖X̄ − E[X̄]‖2] =
1

K
(E[‖x‖2]− ‖E[x]‖2).

Third, using Jensen’s inequality and given that ‖x‖ ≤ C:

E[f(X)] ≤
√
E[f2(X)] =

√
E[‖X̄ − E[X̄]‖2] ≤ C√

K

Fourth, use McDiarmid’s inequality and rearrange.

Random Kitchen Sinks Proof

Let µ be a measure on X , and f∗ ∈ Fp. Let w1, . . . ,wT ∼ p(w).

Then, w.p. at least 1− δ, with δ > 0, ∃ fT (x) =
∑T
i βiφ(x;wi) s.t.:

‖fT − f∗‖µ ≤
C√
T

(
1 +

√
2 log

1

δ

)

Proof:

Let fi = βiφ(x;wi), 1 ≤ k ≤ T and βi = α(wi)
p(wi)

. Then, E[fi] = f∗:

E[fi] = Ew

[
α(wi)

p(wi)
φ(;wi)

]
=

∫
Ω

p(w)
α(w)

p(w)
φ(;w)dw = f∗

The claim is mainly completed by describing the concentration of the
average fT = 1

T

∑
fi around f∗ with the previous lemma.

Approximating Kernels with RKS

Bochner’s Theorem: A kernel k(x− y) on Rd is PSD if and only if
k(x− y) is the Fourier transform of a non-negative measure p(w).

k(x− y) =

∫
Rd
p(w)ejw

′(x−y)dw

≈ 1

T

T∑
i=1

ejw
′
i(x−y) (Monte-Carlo, O(T−1/2))

=
1

T

T∑
i=1

ejw
′
ix︸ ︷︷ ︸

φ(x;W)

e−jw
′
iy︸ ︷︷ ︸

φ(y;W)

=
1√
T
φ(x;W)∗

1√
T
φ(y;W)

Now solve least squares in the primal in O(n) time!

Random Kitchen Sinks: Implementation

% Training
function ytest = kitchen_sinks(X, y, Xtest, T, noise)

Z = randn(T, size(X,1)); % Sample feature frequencies
phi = exp(i*Z*X); % Compute feature matrix

% Linear regression with observation noise.
w = (phi*phi’ + eye(T)*noise)\(phi*y);

% testing
ytest = w’*exp(i*Z*xtest);

from http://www.keysduplicated.com/~ali/random-features/

• That’s fast, approximate GP regression! (with a sq-exp kernel)

• Or linear regression with [sin(zx), cos(zx)] feature pairs

• Show demo

http://www.keysduplicated.com/~ali/random-features/

Random Kitchen Sinks and Gram Matrices

• How fast do we approach the exact Gram matrix?

• k(X,X) = Φ(X)TΦ(X)

Random Kitchen Sinks and Gram Matrices

• How fast do we approach the exact Gram matrix?

• k(X,X) = Φ(X)TΦ(X)

Random Kitchen Sinks and Gram Matrices

• How fast do we approach the exact Gram matrix?

• k(X,X) = Φ(X)TΦ(X)

Random Kitchen Sinks and Gram Matrices

• How fast do we approach the exact Gram matrix?

• k(X,X) = Φ(X)TΦ(X)

Random Kitchen Sinks and Gram Matrices

• How fast do we approach the exact Gram matrix?

• k(X,X) = Φ(X)TΦ(X)

Random Kitchen Sinks and Gram Matrices

• How fast do we approach the exact Gram matrix?

• k(X,X) = Φ(X)TΦ(X)

Random Kitchen Sinks and Gram Matrices

• How fast do we approach the exact Gram matrix?

• k(X,X) = Φ(X)TΦ(X)

Random Kitchen Sinks and Posterior

• How fast do we approach the exact Posterior?

x

f (x)

3 features

GP Posterior Mean
GP Posterior Uncertainty
Data

Random Kitchen Sinks and Posterior

• How fast do we approach the exact Posterior?

x

f (x)

4 features

GP Posterior Mean
GP Posterior Uncertainty
Data

Random Kitchen Sinks and Posterior

• How fast do we approach the exact Posterior?

x

f (x)

5 features

GP Posterior Mean
GP Posterior Uncertainty
Data

Random Kitchen Sinks and Posterior

• How fast do we approach the exact Posterior?

x

f (x)

10 features

GP Posterior Mean
GP Posterior Uncertainty
Data

Random Kitchen Sinks and Posterior

• How fast do we approach the exact Posterior?

x

f (x)

20 features

GP Posterior Mean
GP Posterior Uncertainty
Data

Random Kitchen Sinks and Posterior

• How fast do we approach the exact Posterior?

x

f (x)

200 features

GP Posterior Mean
GP Posterior Uncertainty
Data

Random Kitchen Sinks and Posterior

• How fast do we approach the exact Posterior?

x

f (x)

400 features

GP Posterior Mean
GP Posterior Uncertainty
Data

Kitchen Sinks in multiple dimensions

D dimensions, T random features, N datapoints

• First: Sample T ×D random numbers: Z ∼ N (0, σ−2)

• each φj(x) = exp(i[Zx]j)

• or: Φ(x) = exp(iZx)

Each feature φj(·) is a sine, cos wave varying along the direction given
by one row of Z, with varying periods.

Can be slow for many features in high dimensions. For example,
computing Φ(x) is O(NTD).

But isn’t linear regression already fast?

D dimensions, T features, N Datapoints

• Computing features: Φ(x) = 1√
T

exp(iZx)

• Regression: w =
[
Φ(x)TΦ(x)

]−1
Φ(x)Ty

• Train time complexity:
O(DTN︸ ︷︷ ︸

Computing Features

+ T 3︸︷︷︸
Inverting Covariance Matrix

+ T 2N︸ ︷︷ ︸
Multiplication

)

• Prediction: y∗ = wTΦ(x∗)

• Test time complexity: O(DTN∗︸ ︷︷ ︸
Computing Features

+ T 2N∗︸ ︷︷ ︸
Multiplication

)

• For images, D is often > 10, 000.

Random Outline

The Johnson-Lindenstrauss Lemma (1984)

Random Kitchen Sinks (Rahimi and Recht, NIPS 2008)

Fastfood (Le et al., ICML 2013)

Fastfood (Q. Le, T. Sarlós, A. Smola, 2013)

Main idea: Approximately compute Zx quickly, by replacing Z with
some easy-to-compute matrices.

• Uses the Subsampled Randomized Hadamard Transform (SRHT)
(Sarlós, 2006)

• Train time complexity:
O(log(D)TN︸ ︷︷ ︸

Computing Features

+ T 3︸︷︷︸
Inverting Feature Matrix

+ T 2N︸ ︷︷ ︸
Multiplication

)

• Test time complexity: O(log(D)TN∗︸ ︷︷ ︸
Computing Features

+ T 2N∗︸ ︷︷ ︸
Multiplication

)

• For images, if D = 10, 000, log10(D) = 4.

Fastfood (Q. Le, T. Sarlós, A. Smola, 2013)

Main idea: Compute V x u Zx quickly, by building V out of
easy-to-compute matrices.
V has similar properties to the Gaussian matrix Z.

V =
1

σ
√
d
SHGΠHB (1)

• Π is a D ×D permutation matrix

• G is diagonal random Gaussian.

• B is diagonal random {+1,−1}.
• S is diagonal random scaling.

• H is Walsh-Hadamard Matrix.

Fastfood (Q. Le, T. Sarlós, A. Smola, 2013)

Main idea: Compute V x u Zx quickly, by building V out of
easy-to-compute matrices.

V =
1

σ
√
d
SHGΠHB (2)

• H is Walsh-Hadamard Matrix. Multiplication in O(T log(D)). H
is orthogonal, can be built recursively.

H3 =
1

2
3
2

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

(3)

Fastfood (Q. Le, T. Sarlós, A. Smola, 2013)

Main idea: Compute V x u Zx quickly, by building V out of
easy-to-compute matrices.

V x =
1

σ
√
d
SHGΠHBx (4)

Intuition: Scramble a single Gaussian random vector many different
ways, to create a matrix with similar properties to Z. [Draw on board]

• HGΠHB produces pseduo-random Gaussian vectors (of identical
length)

• S fixes the lengths to have the correct distribution.

Fastfood results

Computing V x:

We never store V!

Fastfood results

Regression MSE:

“The Trouble with Kernels” (Smola)

• Kernel Expansion: f(x) =
∑m
i=1 αik(xi, x)

• Feature Expansion: f(x) =
∑T
i=1 wiφi(x)

D dimensions, T features, N samples

Method Train Time Test Time Train Mem Test Mem

Naive O(N2D) O(ND) O(ND) O(ND)
Low Rank O(NTD) O(TD) O(TD) O(TD)

Kitchen Sinks O(NTD) O(TD) O(TD) O(TD)
Fastfood O(NT log(D)) O(T log(D)) O(T log(D)) O(T)

“Can run on a phone”

Feature transforms of more interesting kernels

In high dimensions, all Euclidian distances become the same, unless
data lie on manifold. Usually need structured kernel.

• can do any stationary kernel (Matérn, rational-quadratic) with
Fastfood

• sum of kernels is concatenation of features:

k(+)(x,x′) = k(1)(x,x′) + k(2)(x,x′) =⇒ Φ(+) =

[
Φ(1)(x)
Φ(2)(x)

]
• product of kernels is outer product of features:
k(×)(x,x′) = k(1)(x,x′)k(2)(x,x′) =⇒ Φ(×)(x) = Φ(1)(x)Φ(2)(x)T

For example, can build translation-invariant kernel:

f

()
= f

()
(5)

k ((x1, x2, . . . , xD), (x′1, x
′
2, . . . , x

′
D)) =

D∑
i=1

D∏
j=1

k(xj , x
′
i+jmod D) (6)

Takeaways

Random Projections Random Features

• Preserve Euclidian distances

• while reducing dimensionality

• Allow for nonlinear mappings

• RKS can approximate GP
posterior quickly

• Fastfood can compute T
nonlinear basis functions in
O(T logD) time.

• Can operate on structured
kernels.

Gourmet cuisine (exact inference) is nice,
but often fastfood is good enough.

	The Johnson-Lindenstrauss Lemma (1984)
	Random Kitchen Sinks (Rahimi and Recht, NIPS 2008)
	Fastfood (Le et al., ICML 2013)

