Domain Generalization via Invariant Feature Representation

Krikamol Muandet¹, David Balduzzi², Bernhard Schölkopf¹

¹Empirical Inference Department, MPI for Intelligent Systems ²Machine Learning Laboratory, ETH Zurich

June 18, 2013

Flow Cytometry

Domains = Patients (\mathbb{P}_{XY}), Train Data $\{X_i^{(i)}, Y_i^{(i)}\}_{i=1}^{n_i}$.

Related Works

Domain Adaptation (Bickel, Brückner, and Scheffer 2009)

Deal with a mismatch between training and test distributions.

Related Works

Multitask Learning (Caruana 1997)

Learn multiple tasks simultaneously.

Blanchard, Lee, and Scott 2011

Generalize from multiple source domains to previously unseen domains.

Problem Setting

Train: The joint distributions $\mathbb{P}^1_{XY}, \mathbb{P}^2_{XY}, \dots, \mathbb{P}^N_{XY} \sim \mathscr{P}$.

Prediction: An unseen distribution $\mathbb{P}_X^* \sim \mathscr{P}$.

Goal: Learn $f: \mathfrak{P} \times \mathscr{X} \to \mathscr{Y}$. Assume: $\mathbb{P}^1_{Y|X} \approx \mathbb{P}^2_{Y|X} \approx \cdots \approx \mathbb{P}^N_{Y|X}$.

i.e. functional relationship is stable

Problem Setting

Train: The joint distributions $\mathbb{P}^1_{XY}, \mathbb{P}^2_{XY}, \dots, \mathbb{P}^N_{XY} \sim \mathscr{P}$.

Prediction: An unseen distribution $\mathbb{P}_X^* \sim \mathscr{P}$.

Goal: Learn $f: \mathfrak{P} \times \mathscr{X} \to \mathscr{Y}$. Assume: $\mathbb{P}^1_{Y|X} \approx \mathbb{P}^2_{Y|X} \approx \cdots \approx \mathbb{P}^N_{Y|X}$.

i.e. functional relationship is stable

Domain Adaptation under Target and Conditional Shift

K. Zhang, B. Schölkopf, K. Muandet, and Z. Wang (ICML2013)

Objective

Find feature representation, $\mathcal{B}(X)$ that is *invariant* across domains.

 $lackbox{0}$ minimize the distance between empirical distributions $\widehat{\mathbb{P}}^1_X, \widehat{\mathbb{P}}^2_X, \dots, \widehat{\mathbb{P}}^N_X$ of the transformed samples $\mathscr{B}(X)$.

$$\mathbb{P}^1_{Y|X} \cdot \mathbb{P}^1_X$$
 $\mathbb{P}^2_{X} \cdot \mathbb{P}^2_X$ \cdots $\mathbb{P}^N_{Y|X} \cdot \mathbb{P}^N_X$

 \odot preserve functional relationship between X and Y.

Minimizing Distributional Variance

Hilbert space embedding

$$\mu: \mathfrak{P}_{\mathscr{X}} \to \mathscr{H}, \quad \mathbb{P} \mapsto \int_{\mathscr{X}} k(x,\cdot) d\mathbb{P}(x) =: \mu_{\mathbb{P}}.$$

Minimizing Distributional Variance

Find transformation \mathscr{B} that minimizes

$$\mathbb{V}_{\mathscr{H}}(\mathscr{P}) = \frac{1}{N} \sum_{i=1}^{N} \|\mu_{i}\mathscr{B} - \bar{\mu}\mathscr{B}\|_{\mathscr{H}}^{2}$$

Minimizing Distributional Variance

- Minimizing distributional variance alone does not necessarily help with generalization!
 - ▶ Setting $\mathscr{B} = \mathbf{0}$ gives zero distributional variance!
- ▶ We **also** need to preserve the functional relationship between X and Y encoded in $\mathbb{P}_{Y|X}$.

Preserving Functional Relationship

Central Subspace

The central subspace C is the minimal subspace that captures the functional relationship between X and Y, i.e. $Y \perp \!\!\! \perp X | C^{\top}X$.

Theorem (Li 1991; Kim and Pavlovic 2011; Muandet 2013)

If B maximizes

$$\mathbf{b}_{k}^{\top} \Sigma_{xx}^{-1} \mathbb{V}(\mathbb{E}[X|Y]) \Sigma_{xx} \mathbf{b}_{k}$$

then $Y \perp \!\!\!\perp X \mid B^{\top}X$.

Maximization Problem

$$\max_{B \in \mathbb{R}^{n \times m}} \frac{\frac{1}{n} \operatorname{tr} \left(B^{\top} L (L + n \varepsilon I_n)^{-1} K^2 B \right)}{\operatorname{tr} \left(B^{\top} K \mathsf{Q} K B + B K B \right)}$$

Generalized Eigenvalue Problem

$$\frac{1}{n}L(L+n\varepsilon I)^{-1}K^2B = (KQK + K + \lambda I)B\Gamma$$

Learning guarantee

Theorem

Under reasonable assumptions, it holds with probability at least $1 - \delta$ that,

$$\mathbb{E}[error] \leq c_1 \mathbb{V}_{\mathscr{H}}(\mathscr{P} \cdot \mathscr{B}) + \frac{L(n,N)}{L(n,N)}.$$

- ▶ Bound depends on the distributional variance.
- ▶ $L(n,N) \rightarrow 0$ as samples n and domains N go to infinity.

Experimental Results

Synthetic Data

- ▶ Generate 10 collections of $n_i \sim \text{Poisson}(200)$ data points.
- ▶ For each collection, $x \sim \mathcal{N}(\mathbf{0}, \Sigma_i)$ where $\Sigma_i \sim \mathcal{W}(0.2 \times I_5, 10)$.
- ▶ The output value is $y = \text{sign}(b_1^\top x + \varepsilon_1) \cdot \log(|b_2^\top x + c + \varepsilon_2|)$, where $\varepsilon_1, \varepsilon_2 \sim \mathcal{N}(0, 1)$.

Experimental Results: synthetic data

Experimental Results

Real-world Data

- Flow cytometry dataset (classification).
- Parkinson's telemonitoring dataset (regression).

Learning algorithms

- Pooling SVM: pool data from all domains and apply standard SVM.
- Distributional SVM: apply the kernel

$$\kappa((\mathbb{P}^i, X_k^i), (\mathbb{P}^j, X_l^j)) = K(\mathbb{P}^i, \mathbb{P}^j) \cdot k(X_i^k, X_l^j)$$

(Blanchard, Lee, and Scott 2011).

Experimental Results: Flow cytometry

Methods	Pooling SVM	Distributional SVM
Input	92.03±8.21	93.19±7.20
KPCA	91.99 ± 9.02	93.11 ± 6.83
COIR	92.40 ± 8.63	92.92 ± 8.20
UDICA	92.51 ± 5.09	92.74±5.01
DICA	92.72±6.41	94.80±3.81

Similar results for Parkinson's telemonitoring dataset.

Conclusion

Domain-Invariance Component Analysis (DICA) finds an **invariant representation** that

- minimizes "differences" between domains
- while preserving discriminative information.

To learn more, please come to our poster!

Thank you!