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Flow Cytometry

Image courtesy of American Journal of Clinical Pathology.
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Domain Generalization




Related Works

Domain Adaptation (Bickel, Briickner, and Scheffer 2009)

train fest
IP)X IPDX
X train X fest

Deal with a mismatch between training and test distributions.



Related Works

Multitask Learning (Caruana 1997)

Py P4y
XY, XY, e
fi fo

Learn mulfiple tasks simultaneously.



Domain Generalization
Blanchard, Lee, and Scott 2011
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Generalize from multiple source domains to previously unseen
domains.



Domain Generalization
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Train: The joint distrioutions P}, P2, .....PY, ~ 2.

Prediction: An unseen distribution P} ~ &.
Goal: Learn f: Px X > ¥
Assume: Py ~ Py, & -~ Py
i.e. functional relationship is stable



Domain Generalization
Problem Setting

Train:
Prediction:
Goal:
Assume:
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The joint distributions P}, P4, ,...,P§, ~ 2.
An unseen distribution Py ~ &,
learn f:Px X - ¥.
A2 oA
Phx RPyy P’»\/ﬂx-
i.e. functional relationship is stable

Domain Adaptation under Target and Conditional Shift
K. Zhang, B. Schélkopf, K. Muandet, and Z. Wang (ICML2013)



Objective

Find feature representation, #(X) that is invariant across
domains.

(1 minAimiEe ’rheAdis’rcmce between empirical distribu-
tions P}, P%,...,PY of the fransformed samples #(X).
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® preserve functional relationship between X and Y.



Minimizing Distribufional Variance

Hilbert space embedding

W: Py — A, ]P’i—>/ ) dP(X) = pp.




Minimizing Distribufional Variance

Find transformation % that minimizes

Va2 =y, Z |12 — 12115




Minimizing Distribufional Variance

» Minimizing distributional variance alone does not
necessarily help with generalization!

» Setting % = 0 gives zero distributional variance!

» We also need to preserve the functional relationship
between X and Y encoded in Py|x.



Preserving Functional Relationship

Central Subspace

The central subspace C is the minimal subspace that captures
the functional relationship between X and Y, i.e. Y 1L X|C'X.

Theorem (Li 1991:Kim and Pavlovic 2011;Muandet 2013)
If B maximizes
by T V(E[X| Y]) Zxxby

thenY LL X|B'"X.



Domain-Invariant Component Analysis

C)reserve functional relationship.

f(B)
maix
BRMM ()

minimize distributional varionce.



Domain-Invariant Component Analysis

preserve functional relationship.
bl T V(E[X|Y])Zxbx

minimize distributional variance.
Vo (2) =X, w2 —i2|°,



Domain-Invariant Component Analysis

preserve functional relationship.
b;Z;Q V(E[X]Y])Zxxbk

Ltr (BT L(L+ neln)~'K2B)
mMax
BER™™  tr (BT KQKB -+ BKB)

minimize distributional varionce.
Vo (2) =X W% — 0 B|%,



Domain-Invariant Component Analysis

Maximization Problem

Ltr (BTL(L+ nely)~'K2B)
MaXx
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|

Generalized Eigenvalue Problem

LI(L+ nel)"'K2B = (KQK + K + Al)Br



Learning guarantee

Theorem
Under reasonable assumptions, it holds with probability at least
1— 6 that,

Elerron < &1V (22 %) + L(n,N) .

» Bound depends on the distributional variance.
» L(n,N)— 0 as samples n and domains N go to infinity.



Experimental Results

Synthetic Data
» Generate 10 collections of n; ~ Poisson(200) data points.
» For each collection, x ~ .47(0,%;) where ¥; ~ #(0.2 x I5, 10).

» The output value is y = sign(b{ x + &) -log(|b) X + C + &),
where g1,& ~ A4(0,1).



Experimental Results: synthetic data

COIR

DICA



Experimental Results

Real-world Data
» Flow cytometry dataset (classification).
» Parkinson’s telemonitoring dataset (regression).

Learning algorithms

» Pooling SVM : pool data from all domains and apply
standard SVM.

» Distributional SVM : apply the kernel
k(B x0), (P, X)) = K(B' ) - k(xf )

(Blanchard, Lee, and Scott 2011).
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Experimental Results: Flow cytometry

] Methods Pooling SVM Distributional SVM \

Input 92.03+8.21 93.19+7.20
KPCA 91.99+9.02 903.11+6.83
COIR 92.40+8.63 92.92+8.20
UDICA 92.514+5.09 92.744+5.01
DICA 92.72+6.41 94.80+3.81

Similar results for Parkinson’s telemonitoring dataset.



Conclusion

Domain-Invariaonce Component Analysis (DICA)
finds an invariant representation that

» minimizes “differences” between domains
» while preserving discriminative information.

To learn more, please come to our poster!
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Thank you!
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