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Abstract

This paper investigates domain generalization: How to take knowledge acquired from an arbitrary number of related domains and apply it to
previously unseen domains? We propose Domain-Invariant Component Analysis (DICA), a kernel-based optimization algorithm that learns an
iInvariant transformation by minimizing the dissimilarity across domains, whilst preserving the functional relationship between input and output
variables. A learning-theoretic analysis shows that reducing dissimilarity improves the expected generalization ability of classifiers on new
domains, motivating the proposed algorithm. Experimental results on synthetic and real-world datasets demonstrate that DICA successfully
learns invariant features and improves classifier performance in practice.
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which leads to the following algorithms:

Domain Generalization DICA Algorithm

Standard Setting: Assume that the training data and test data Input: Parameters )\, €, and m < n.
come from the same distribution, learn a classifier/regressor that Sample S = {Si = {(x(z‘) y(i))}ni N
- - k oIk JIk=1Ji=1

generalizes well to the test data. Output: Projection B,,«., and kernel K,, ...

Domain Adaptation: the training data and test data may come
from different distributions. The common assumption is that we
observe the test data at the training time. Adapt the classi-
fier/regressor trained using the training data to the specific set
of test data.

1: Calculate gram matrix [K;i|lx = k(x,gi), a:l(j)) and (Ll =
1y ).
. Supervised: C' = L(L + nel) K>,
. Unsupervised: C = K?.
l . Solve 2C'B = (KQK + K + M )BT for B.
. Qutput B and I?Ne KBB'K.
. The test kernel Kt +— K'BB' K where K!

ng Xn
between test and training data.

Covariate Shift: The marginal P(X) changes, but the condi-
tional P(Y'|X) stays the same.

Target Shift/Concept Drift The marginal P(Y) or condi-
tional P(Y'|X') may also change.

Is the joint kernel

Domain Generalization: The training data comes from different
distributions. Learn a classifier/regressor that generalizes well to
the unseen test data, which also comes from different distribution.

A Learning-Theoretic Boun

Figure 1: A simplified schematic diagram of the domain e 9 eoretic Bound

generalization framework. A major difference between Theorem 2 Under reasonable technical assumptions, it holds with

our framework and most previous work in domain adap- probability at least 1 — o that,

tation is that we do not observe the test domains during i i

training time. ”fS”up<1 ‘E@Epé(f(XijB), Yi) — Eol(f(Xi;B),Ys;)
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Applications: medical diagnosis: aggregating the diagnosis of pre- 2
vious patients to the new patients who have similar demographic

and medical profiles.
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Preserving the functional relationship (i.e. central subspace) by

Given the training sample S, our goal is to produce an estimate f : Br x X — R that generalizes well to test samples S? = {x,(f)}}j;l. To maximizing the numerator in (1) should reduce the empirical risk
actively reduce the dissimilarity between domains, we find transformation B in the RKHS # that Esl(f(X:;B),Y;), but a rigorous demonstration has yet to be found.

1. minimizes the distance between empirical distributions of the transformed samples 53(S*) and
2. preserves the functional relationship between X and YV, i.e., Y 1 X |B(X).

Relations to Existing Methods

« < - - - . - . . The DICA and UDICA algorithms generalize many well-known dimen-
® Mlnlmlzmg Distributional Vari @ Preservmg Functional Relatic sion reduction techniques. In the supervised setting, if dataset S con-

Distributional variance VH(P) estimates the variance of 2y The central subspace C' is the minimal subspace that captures the tains samples drawp from a single dis?ribution IP)_XY then we have
which generates PL,P%, ..., PY. functional relationship between X and Y,ie.,Y L X|C'X. KQK = 0. Substituting o« := KB gives the eigenvalue problem
L L(L+nel)~'Ka = KaT', which corresponds to covariance opera-

Definition 1 Introduce probability distribution P on H with P(up:) = | | Theorem 1 [f there exists a central subspace C' = [c1, ..., cy] sat- | | tor inverse regression (COIR) [KP11].

L and center G to obtain the covariance operator of P, denoted as | | isfying Y L X|C'' X, and for any a € R?, E[a' X|C'" X] is linear in | | - |
> = G- 115G — G1y + 1xG1ly. The distributional variance is {c; X}, then E[X|Y] C span{Xxc;}i2;. If there is only a single distribution then unsupervised DICA reduces

Vy(P) = Ltr(D) = Ltr(G) — 1 N o | to KPCA since K(QK = 0 and finding B requires solving the eigen-
HATJ TN N N2 &ij=1"1" It follows that the bases C' of the central subspace coincide with the system KB = BT which recovers KPCA [SSM98]. If there are two

g o . m largest eigenvectors of V(E[X|Y]) premultiplied by X_!. Thus, the domains, source Pg and target Pr, then UDICA is closely related —
The empirical distributional variance can be computed by basis c is the solution to the eigenvalue problem V(E[X|Y]|)X.cc = | | though not identical to — Transfer Component Analysis [Pan+11]. This

. - Y i C. i — — 2,
Vi (BS) = tr(KQ) = tr(KBBTKQ) = tr(BT KQK B) Y 2xxC follows from the observation that V4, ({Ps,Pr}) = ||ups — pp, |

Experimental Results

*3 Pooling SVM applies standard kernel function on the pooled data from multiple domains. 51 LS rput KPR UG GO DIOA
Distributional SVM uses the kernel K(7\”, 7)) = ky (P!, P7) - ky (2", 2. 5 w j
Table 1: Average accuracies over 30 random subsamples of GvHD datasets. Pooling SVM S1 LS it i KPCA mm UDICA GO e DICA
applies standard kernel function on the pooled data from multiple domains, whereas dis- 9] l
tributional SVM also considers similarity between domains using kernel on distributions. ‘:éj::
With sufficiently many samples, DICA outperforms other methods in both pooling and dis- - % W
g’ni.« tributional Settings° ’ Motor UPDRS Total UPDRS
Pooling SVM Distributional SVM oI I ol =
Methods 1 100  n, =500  n;=1000 | ni =100  n; =500  n; = 1000 21 m I
Input 91.684+.91  92.11+1.14 93.57+.77 | 91.53+.76  92.81+.93  92.41+.98 - h |Jh
KPCA 91.654+.93  92.06+1.15 93.59+.77 | 91.83+.60 90.864+1.98 92.61+1.12 ;] i i i
COIR 91.71+.88  92.00+1.05 92.574+.97 | 91.42+.95 91.544+1.14 92.61+.89
DICA DICA 91.37+.91 92.71+.82 94.16+.73 | 91.51£.89  93.42+.73  93.33+.86 of motor and total UPDRS scores predicted
. o . Table 2: The average leave-one-  Mpethods Pooling Distributional by GP regression after different preprocess-
Figure 2: Projections of a synthetic dataset out accuracies over 30 subjects — 95 03 L8 51 53 1917 50 ing methods on Parkinson’s telemonitoring
onto the first two eigenvectors obtained from on GvHD data. The distribu- KFF’)EJ) A 91 9949 02 93.11L6 83 dataset. The top and middle rows depicts the
the KPCA, UDICA, COIR, and DICA. The col- tional SVM outperforms the pool- COIR 92 4048 63 8 998 20 pooling and distributional settings; the bottom
ors of data points corresponds to the output ing SVM. DICA improves classifier UDICA 99 £ 15 09 99 74LE 0 row compares the two settings. Results of lin-
values. The shaded boxes depict the projection accuracy. ' ' ' ' ear least square (LLS) are given as a baseline.
of training data, whereas the unshaded boxes DICA 92.72+6.41 94.80-+3.81

show projections of unseen test datasets.
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