
Domain Generalization via Invariant Feature Representation
Krikamol Muandet1, David Balduzzi2, and Bernhard Schölkopf 1

1Empirical Inference Department, MPI for Intelligent Systems, Tübingen, Germany
2Machine Learning Laboratory, ETH Zurich, Zurich, Switzerland

Abstract
This paper investigates domain generalization: How to take knowledge acquired from an arbitrary number of related domains and apply it to
previously unseen domains? We propose Domain-Invariant Component Analysis (DICA), a kernel-based optimization algorithm that learns an
invariant transformation by minimizing the dissimilarity across domains, whilst preserving the functional relationship between input and output
variables. A learning-theoretic analysis shows that reducing dissimilarity improves the expected generalization ability of classifiers on new
domains, motivating the proposed algorithm. Experimental results on synthetic and real-world datasets demonstrate that DICA successfully
learns invariant features and improves classifier performance in practice.

Domain Generalization
Standard Setting: Assume that the training data and test data

come from the same distribution, learn a classifier/regressor that
generalizes well to the test data.

Domain Adaptation: the training data and test data may come
from different distributions. The common assumption is that we
observe the test data at the training time. Adapt the classi-
fier/regressor trained using the training data to the specific set
of test data.

Covariate Shift: The marginal P(X) changes, but the condi-
tional P(Y |X) stays the same.

Target Shift/Concept Drift The marginal P(Y ) or condi-
tional P(Y |X) may also change.

Domain Generalization: The training data comes from different
distributions. Learn a classifier/regressor that generalizes well to
the unseen test data, which also comes from different distribution.

Applications: medical diagnosis: aggregating the diagnosis of pre-
vious patients to the new patients who have similar demographic
and medical profiles.

training data unseen test data

P2
XYP1

XY

P

PN
XY

...

(Xk, Yk) ... Xk

PX

(Xk, Yk) (Xk, Yk)

k = 1, . . . , nk = 1, . . . , nNk = 1, . . . , n2k = 1, . . . , n1

Figure 1: A simplified schematic diagram of the domain
generalization framework. A major difference between
our framework and most previous work in domain adap-
tation is that we do not observe the test domains during
training time.

Objective

Domain 1 Domain 2 Domain N New Domain
P1
XY = P1

XP1
Y |X P2

XY = P2
XP2

Y |X · · · PNXY = PNXPNY |X =⇒ PtX
S1 = {x(1)

k , y
(1)
k }

n1
k=1 Si = {x(2)

k , y
(2)
k }

n2
k=1 Si = {x(N)

k , y
(N)
k }

nN
k=1 St = {x(t)

k }
nt
k=1

Given the training sample S, our goal is to produce an estimate f : PX × X → R that generalizes well to test samples St = {x(t)k }
nt

k=1. To
actively reduce the dissimilarity between domains, we find transformation B in the RKHS H that

1. minimizes the distance between empirical distributions of the transformed samples B(Si) and
2. preserves the functional relationship between X and Y , i.e., Y ⊥ X | B(X).

À Minimizing Distributional Variance
Distributional variance VH(P) estimates the variance of PX

which generates P1
X ,P2

X , . . . ,PNX .

Definition 1 Introduce probability distribution P on H with P(µPi) =
1
N and center G to obtain the covariance operator of P , denoted as
Σ := G − 1NG − G1N + 1NG1N . The distributional variance is

VH(P) := 1
N tr(Σ) = 1

N tr(G)− 1

N2

∑N
i,j=1Gij .

The empirical distributional variance can be computed by

V̂H(BS) = tr(K̃Q) = tr(KBB>KQ) = tr(B>KQKB)

Á Preserving Functional Relationship
The central subspace C is the minimal subspace that captures the
functional relationship between X and Y , i.e., Y ⊥ X |C>X.

Theorem 1 If there exists a central subspace C = [c1, . . . , cm] sat-
isfying Y ⊥ X|C>X, and for any a ∈ Rd, E[a>X|C>X] is linear in
{c>i X}mi=1, then E[X|Y ] ⊂ span{Σxxci}mi=1.

It follows that the bases C of the central subspace coincide with the
m largest eigenvectors of V(E[X|Y ]) premultiplied by Σ−1xx . Thus, the
basis c is the solution to the eigenvalue problem V(E[X|Y ])Σxxc =
γΣxxc.

Domain-Invariant Component Analysis
Combining À and Á, DICA finds B = [β1,β2, . . . ,βm] that solves

max
B∈Rn×m

1
n tr
(
B>L(L+ nεIn)−1K2B

)
tr (B>KQKB +BKB)

(1)

which leads to the following algorithms:

DICA Algorithm

Input: Parameters λ, ε, and m� n.
Sample S = {Si = {(x(i)k , y

(i)
k )}ni

k=1}Ni=1.
Output: Projection Bn×m and kernel K̃n×n.

1: Calculate gram matrix [Kij ]kl = k(x
(i)
k , x

(j)
l ) and [Lij ]kl =

l(y
(i)
k , y

(j)
l ).

2: Supervised: C = L(L+ nεI)−1K2.
3: Unsupervised: C = K2.
4: Solve 1

nCB = (KQK +K + λI)BΓ for B.
5: Output B and K̃ ← KBB>K.
6: The test kernel K̃t ← KtBB>K where Kt

nt×n is the joint kernel
between test and training data.

A Learning-Theoretic Bound
Theorem 2 Under reasonable technical assumptions, it holds with
probability at least 1− δ that,

sup
‖f‖H≤1

∣∣∣E∗PEP`(f(X̃ijB), Yi)− EP̂`(f(X̃ijB), Yi)
∣∣∣2

≤ c1
1

N
tr(BᵀKQKB)

+tr(B>KB)

(
c2
N(log 1

δ + 2 logN)

n
+
c3 log 1

δ + c4

N

)
.

The bound reveals a tradeoff between reducing the distributional vari-
ance and the complexity or size of the transform used to do so. The
denominator of (1) is a sum of these terms, so that DICA tightens the
bound in Theorem 2.

Preserving the functional relationship (i.e. central subspace) by
maximizing the numerator in (1) should reduce the empirical risk
EP̂`(f(X̃ijB), Yi), but a rigorous demonstration has yet to be found.

Relations to Existing Methods
The DICA and UDICA algorithms generalize many well-known dimen-
sion reduction techniques. In the supervised setting, if dataset S con-
tains samples drawn from a single distribution PXY then we have
KQK = 0. Substituting α := KB gives the eigenvalue problem
1
nL(L+ nεI)−1Kα = KαΓ, which corresponds to covariance opera-
tor inverse regression (COIR) [KP11].

If there is only a single distribution then unsupervised DICA reduces
to KPCA since KQK = 0 and finding B requires solving the eigen-
system KB = BΓ which recovers KPCA [SSM98]. If there are two
domains, source PS and target PT , then UDICA is closely related –
though not identical to – Transfer Component Analysis [Pan+11]. This
follows from the observation that VH({PS ,PT }) = ‖µPS

− µPT
‖2.

Experimental Results

KPCA

COIR

UDICA

DICA

Figure 2: Projections of a synthetic dataset
onto the first two eigenvectors obtained from
the KPCA, UDICA, COIR, and DICA. The col-
ors of data points corresponds to the output
values. The shaded boxes depict the projection
of training data, whereas the unshaded boxes
show projections of unseen test datasets.

Pooling SVM applies standard kernel function on the pooled data from multiple domains.

Distributional SVM uses the kernel K(x̃
(i)
k , x̃

(j)
l ) = k1(Pi,Pj) · k2(x

(i)
k , x

(j)
l ).

Table 1: Average accuracies over 30 random subsamples of GvHD datasets. Pooling SVM
applies standard kernel function on the pooled data from multiple domains, whereas dis-
tributional SVM also considers similarity between domains using kernel on distributions.
With sufficiently many samples, DICA outperforms other methods in both pooling and dis-
tributional settings.

Methods
Pooling SVM Distributional SVM

ni = 100 ni = 500 ni = 1000 ni = 100 ni = 500 ni = 1000

Input 91.68±.91 92.11±1.14 93.57±.77 91.53±.76 92.81±.93 92.41±.98
KPCA 91.65±.93 92.06±1.15 93.59±.77 91.83±.60 90.86±1.98 92.61±1.12
COIR 91.71±.88 92.00±1.05 92.57±.97 91.42±.95 91.54±1.14 92.61±.89
UDICA 91.20±.81 92.21±.19 93.02±.77 91.51±.79 91.74±1.08 93.02±.77
DICA 91.37±.91 92.71±.82 94.16±.73 91.51±.89 93.42±.73 93.33±.86

Table 2: The average leave-one-
out accuracies over 30 subjects
on GvHD data. The distribu-
tional SVM outperforms the pool-
ing SVM. DICA improves classifier
accuracy.

Methods Pooling Distributional
Input 92.03±8.21 93.19±7.20
KPCA 91.99±9.02 93.11±6.83
COIR 92.40±8.63 92.92±8.20
UDICA 92.51±5.09 92.74±5.01
DICA 92.72±6.41 94.80±3.81

 7

 8

 9

 10

 11

 12

 13

 14

 15

Motor UPDRS Total UPDRS

R
M

S
E

LLS Input KPCA UDICA COIR DICA

 7

 8

 9

 10

 11

 12

 13

 14

 15

Motor UPDRS Total UPDRS

R
M

S
E

LLS Input KPCA UDICA COIR DICA

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

Input KPCA UDICA COIR DICA

R
M

S
E

Pooling (Motor)
Distributional (Motor)

Pooling (Total)
Distributional (Total)

Figure 3: The root mean square error (RMSE)
of motor and total UPDRS scores predicted
by GP regression after different preprocess-
ing methods on Parkinson’s telemonitoring
dataset. The top and middle rows depicts the
pooling and distributional settings; the bottom
row compares the two settings. Results of lin-
ear least square (LLS) are given as a baseline.

Conclusions
Domain-Invariant Component Analysis (DICA) is a new algorithm for
domain generalization based on learning an invariant transformation
of the data. The algorithm is theoretically justified and performs well
in practice.

References
[KP11] M. Kim and V. Pavlovic. “Central subspace dimensionality reduction using covariance operators”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence

33.4 (2011), pp. 657–670.

[Pan+11] Sinno Jialin Pan et al. “Domain adaptation via transfer component analysis”. In: IEEE Transactions on Neural Networks 22.2 (2011), pp. 199–210.

[SSM98] B. Schölkopf, A. Smola, and K-R. Müller. “Nonlinear component analysis as a kernel eigenvalue problem”. In: Neural Computation 10.5 (July 1998), pp. 1299–1319.


