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Abstract
We propose one-class support measure machines (OCSMMs) for group anomaly detection. Unlike
traditional anomaly detection, OCSMMs aim at recognizing anomalous aggregate behaviors of data
points. The OCSMMs generalize well-known one-class support vector machines (OCSVMs) to a
space of probability measures. By formulating the problem as quantile estimation on distributions,
we can establish interesting connections to the OCSVMs and variable kernel density estimators
(VKDEs) over the input space on which the distributions are defined, bridging the gap between
large-margin methods and kernel density estimators. In particular, we show that various types
of VKDEs can be considered as solutions to a class of regularization problems studied in this
paper. Experiments on Sloan Digital Sky Survey dataset and High Energy Particle Physics dataset
demonstrate the benefits of the proposed framework in real-world applications.
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One-Class Support Measure Machines (OCSMMs)
Kernel Mean Embedding: The kernel mean map from a space of distributions PX into an RKHS
H is defined as

µ : PX → H, P 7−→

∫

X

k(x, ·) dP(x) . (1)

OCSMM Formulation: Using (1), the primal optimization problem for one-class SMM can be sub-
sequently formulated in an analogous way to the one-class SVM [Sch+01] as follow:

minimize
w,b,ξ,ρ

1

2
〈w,w〉H − ρ+

1

νℓ

ℓ∑

i=1

ξi subject to 〈w, µPi
〉H ≥ ρ− ξi, ξi ≥ 0. (2)

By introducing Lagrange multipliers α, we have w =
∑ℓ

i=1 αiµPi
=

∑ℓ
i=1 αiEPi

[k(x, ·)] and the dual
form of (2) can be written as

minimize
α

1

2

ℓ∑

i=1

ℓ∑

j=1

αiαj〈µPi
, µPj

〉H subject to 0 ≤ αi ≤
1

νℓ
,

ℓ∑

i=1

αi = 1 . (3)

Kernel on Probability Distributions: From (3), we can see that µP is a feature map associated with
the kernel K : PX ×PX → R, defined as K(Pi,Pj) = 〈µPi

, µPj
〉H. It follows from Fubini’s theorem and

reproducing property of H that

〈µPi
, µPj

〉H =

∫∫
k(x, y) dPi(x) dPj(y) =⇒ K(P̂i, P̂j) =

1

ni · nj

ni∑

k=1

nj∑

l=1

k(x
(i)
k , x

(j)
l )

where x
(i)
k ∈ Si, x

(j)
l ∈ Sj, and ni is the number of samples in Si for i = 1, . . . , ℓ.

OCSMM and Kernel Density Estimation
The KDE of an unknown density f from an i.i.d. sample x1, x2, . . . , xn is

f̂(y) =
1

nh

n∑

i=1

k

(
y − xi

h

)

Identical Bandwidth

If σi = σj for all 1 ≤ i, j ≤ n, the OCSMM is
equivalent to the OCSVM on the training sam-
ples m1,m2, . . . ,mn with Gaussian RBF kernel
kσ2+σ2

i
. Hence, the OCSMM corresponds to

the OCSVM on the means of the distributions
with kernel of larger bandwidth.

Variable Bandwidth

If σi 6= σj for some 1 ≤ i, j ≤ n, the OCSMM is
equivalent to the OCSVM on the training sam-
ples m1,m2, . . . ,mn with Gaussian RBF kernel
kσ2+σ2

i
. The kernel bandwidth may be differ-

ent at each training samples, i.e., OCSMM ≡
OCSVM with variable bandwidth parameters.

Geometric Interpretation of OCSMMs

Kernel Mean Embedding in RKHS
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The two dimensional representation of the RKHS of Gaussian
RBF kernels. Since the kernels depend only on x − x′, k(x, x) is
constant. Therefore, all feature maps Φ(x) (black dots) lie on a
sphere in feature space. Hence, for any probability distribution
P, its mean embedding µP always lies in the convex hull of the
feature maps, which in this case, forms a segment of the sphere.

Theorem 1. There exists a unique separating hyperplane w as a

solution to (2) that separates µP1
, µP2

, . . . , µPℓ
from the origin.

OCSMM and Minimum Enclosing Sphere
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In general, the solution of OCSMM is different from the mini-
mum enclosing sphere [TD99; TD04]. However, we can apply the
spherical normalization

〈µP, µQ〉H 7−→
〈µP, µQ〉H√

〈µP, µP〉H〈µQ, µQ〉H
.

After the normalization, ‖µP‖H = 1 for all P ∈ PX . That is, all
mean embeddings lie on the unit sphere in the feature space.

Spherical Normalization

Origin
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Three dimensional sphere in the feature space. For the Gaussian
RBF kernel, the kernel mean embeddings of all distributions al-
ways lie inside the segment of the sphere. In addition, the an-
gle between any pair of mean embeddings is always greater than
zero. Consequently, the mean embeddings can be scaled, e.g., to
lie on the sphere, and the map is still injective.

Theorem 2. Assume that k is characteristic and the samples are

linearly independent in the feature space H. Then, the spherical

normalization preserves the injectivity of the mapping µ : PX → H.

Experimental Results

We compare the following group anomaly detection algorithms:

1. k-nearest neighbor with NP-L2 divergence (KNN-L2)

2. k-nearest neighbor with NP-Renyi divergence (KNN-Renyi)

3. Multinomial genre model (MGM)

4. One-class support vector machine (OCSVM)

5. One-class support measure machine (OCSMM)

Noisy Data

uncorrupted data corrupted data one−class SVM one−class SMM

uncorrupted data corrupted data one−class SVM one−class SMM

Figure 1: The density functions estimated by the OCSVM
and the OCSMM using the corrupted data.

Synthetic Data

One-Class Support Vector Machine One-Class Support Measure Machine

Figure 2: The results of group anomaly detection on syn-
thetic data obtained from the OCSVM and the OCSMM.

Figure 3: The results of the OCSMM on the synthetic data
of the mixture of Gaussian. The shaded boxes represent the
anomalous groups that have different mixing proportion.

High Energy Particle Physics
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Figure 4: The ROC of different group anomaly detection algo-
rithms on Higgs boson datasets with various Higgs masses.

Table 1: The associated AUC scores for different settings
mH KNN-L2 KNN-Renyi MGM OCSVM OCSMM

100 GeV 0.6835 0.6655 0.6350 0.5125 0.7085
115 GeV 0.5645 0.6783 0.5860 0.5263 0.7305
135 GeV 0.8190 0.7925 0.7630 0.4958 0.7950
150 GeV 0.6713 0.6027 0.6165 0.5862 0.7200

Sloan Digital Sky Survey
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Figure 5: The average precision (AP) and area under the ROC
curve (AUC) of different group anomaly detection algorithms.

Conclusions
• We propose a simple and efficient algorithm for detecting group anomalies called one-class

support measure machine (OCSMM).

• To handle aggregate behaviors, groups are represented as probability distributions which ac-
count for higher-order information arising from those behaviors. The set of distributions are
represented as mean functions in the RKHS via the kernel mean embedding.

• We also extend the relationship between the OCSVM and the KDE to the OCSMM in the context
of variable kernel density estimation, bridging the gap between large-margin approach and
kernel density estimation.
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