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From Data Points to Probability Measures
Data Points Dirac Measures Probability Measures

Potential applications: Learning with noisy/uncertain examples (astronomical/biological data). Learning from groups
of samples (population genetics, group anomaly detection, and preference learning). Learning under changing environ-
ments (domain adaptation/generalization). Large-scale machine learning (data squashing).

Hilbert Space Embedding
The kernel mean map from a space of distributionsP into
a reproducing kernel Hilbert space (RKHS)H:

µ : P → H, P 7−→

∫

X

k(x, ·) dP(x) .

The kernelk is said to becharacteristic if and only if the
mapµ is injective, i.e., there is no loss of information.

Kernels on Distributions
For distributionsP,Q ∈ P, a linear kernel onP is

K(P,Q) = 〈µP, µQ〉H =

∫∫
k(x, z) dP(x) dQ(z),

which can be approximated as

K(P̂, Q̂) =
1

nm

n∑

i=1

m∑

j=1

k(xi, zj), xi ∼ P, zj ∼ Q .

For some distributions and kernelk, the kernelK(P,Q)
has an analytic form. Assume thatPi = N (mi,Σi):

Linear k(x, y) = 〈x, y〉:
K(Pi,Pj) = mT

i mj + δij tr Σi.
Gaussian RBFk(x, y) = exp(− γ

2
‖x− y‖2):

K(Pi,Pj) = exp(− 1

2
(mi − mj)

T(Σi + Σj +

γ−1
I)−1(mi −mj))/|γΣi + γΣj + I|

1

2

Polynomial degree 2k(x, y) = (〈x, y〉+ 1)2:
K(Pi,Pj) = (〈mi,mj〉 + 1)2 + tr ΣiΣj +
mT

i Σjmi +mT

j Σimj

Polynomial degree 3k(x, y) = (〈x, y〉+ 1)3:
K(Pi,Pj) = (〈mi,mj〉 + 1)3 + 6mT

i ΣiΣjmj +
3(〈mi,mj〉+ 1)(tr ΣiΣj +mT

i Σjmi +mT

j Σimj)

A nonlinear kernel can be defined as

K(P,Q) = κ(µP, µQ) = 〈Φ(µP),Φ(µQ)〉F

where κ is a positive definite kernel function onH.
For example,K(P,Q) = exp

(
−‖µP − µQ‖2H/2σ2

)
and

K(P,Q) = (〈µP, µQ〉H + c)d.

The embedding kernelk defines the vectorial rep-
resentation of the distributions, whereas the level-2
kernel κ allows for non-linear learning algorithms
on probability distributions.

Representer Theorem
Given training examples(Pi, yi) ∈ P × R, i =
1, . . . ,m, a strictly monotonically increasing functionΩ :
[0,+∞) → R, and a loss functionℓ : (P × R2)m →
R ∪ {+∞}, anyf ∈ H minimizing the regularized risk
functional

ℓ (P1, y1,EP1
[f ], . . . ,Pm, ym,EPm

[f ]) + Ω (‖f‖H)

admits a representation of the formf =
∑m

i=1
αiµPi

=∑m

i=1
αiEx∼Pi

[k(x, ·)] for someαi ∈ R, i = 1, . . . ,m.

Key Observations
The standard representer theorem is recovered as a special
case whenPi = δxi

. Thus, our framework generalizes the
machine learning framework on data points. Moreover,
our framework is different from minimizing the functional

EP1
. . .EPm

ℓ({xi, yi, f(xi)}
m
i=1

) + Ω(‖f‖H) (1)

for the special case of the additive lossℓ (intractable). It
is also different from minimizing the functional

ℓ({Mi, yi, f(Mi)}
m
i=1

) + Ω(‖f‖H) (2)

whereMi = Ex∼Pi
[x] (loss of information).

The proposed framework does not lose information,
but optimizes a less expensive problem than(1).

Risk Deviation Bound & Flexible SVMs
Risk Deviation Bound: Given an arbitrary distributionP with finite varianceσ2, a Lipschitz continuous functionf :
R → R with constantCf , an arbitrary loss functionℓ : R× R → R that is Lipschitz continuous in the second argument
with constantCℓ, it follows, for anyy ∈ R, that

|Ex∼P[ℓ(y, f(x))]− ℓ(y,Ex∼P[f(x)])| ≤ 2CℓCfσ

Flexible SVMs: Assume that the densities of distributionsP andQ aregx(·) andgz(·), wherex andz are the parameters
in the density family. Hence, we have

K(P,Q) =

〈∫
k(x̃, ·)gx(x̃) dx̃,

∫
k(z̃, ·)gz(z̃) dz̃

〉

H

= kg(x, z),

wherekg is a data-dependent p.d. kernel. That is,kg depends not
only onx, z ∈ X , but also on other parameters ofP,Q ∈ P. For
example, ifP andQ are Gaussian distributions and the kernelk is a
Gaussian RBF kernel, then we have different Gaussian RBF kernels
at each data point, i.e., the means of the distributions (seefigure).

Standard Support Vector Machine Flexible Support Vector Machine

Flexible SVM allows for data-dependent kernel functions, for example, pointwise uncertainties.

Experimental Results
In the experiments, we primarily consider three different learning algorithms: i)SVM trained on the means of the
distributions is considered as a baseline algorithm (cf. (2)). ii) Augmented SVM (ASVM) is an SVM trained on
augmented samples drawn according to the distributions{Pi}mi=1

(cf. (1)). iii) SMM is our distribution-based method
that is applied directly on the distributions.

Figure 1: The decision boundaries of SVM,
ASVM, and SMM on the synthetic dataset of
distributions.
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Figure 2: The parameter sensitivity of em-
bedding kernels and level-2 kernels. The
heatmaps depict the accuracy at different pa-
rameter values.
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Figure 3: The comparison of SVM, ASVM, and SMM on
the USPS handwritten digits dataset. The virtual examples are
generated according to three basic operations, namelyscaling,
translation, androtation. The pseudo-samples are drawn from
the distributions associated with the parameters of each opera-
tion. We consider the linear SMM with Gaussian RBF kernel.
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Figure 4: The computa-
tional cost on the USPS
dataset (top). The results
of different approaches on
natural scene categoriza-
tion using the bag-of-word
representation (bottom).

The results demonstrate the benefits of distribution-basedapproach over sample-based approach.
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