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Abstract—Compared to constraint-based causal discovery,
causal discovery based on functional causal models is able to
identify the whole causal model under appropriate assumptions.
Functional causal models represent the effect as a function of the
direct causes together with an independent noise term. Exam-
ples include the linear non-Gaussian acyclic model (LiNGAM),
nonlinear additive noise model, and post-nonlinear (PNL) model.
Currently there are two ways to estimate the parameters in the
models; one is by dependence minimization, and the other is
maximum likelihood. In this paper, we show that for any acyclic
functional causal model, minimizing the mutual information
between the hypothetical cause and the noise term is equivalent
to maximizing the data likelihood with a flexible model for the
distribution of the noise term. We then focus on estimation
of the PNL causal model, and propose to estimate it with
the warped Gaussian process with the noise modeled by the
mixture of Gaussians. As a Bayesian nonparametric approach,
it outperforms the previous one based on mutual information
minimization with nonlinear functions represented by multilayer
perceptrons; we also show that unlike the ordinary regression,
estimation results of the PNL causal model are sensitive to the
assumption on the noise distribution. Experimental results on
both synthetic and real data support our theoretical claims.

I. INTRODUCTION

There has been a long history of debate on causality
in philosophy, statistics, machine learning, data mining, and
related fields. In particular, people have been concerned with
the causal discovery problem, i.e., how to discover causal
information from purely observed data. Traditionally, it has
been noted that under the causal Markov condition and the
faithfulness assumption, based on conditional independence
relationships of the variables, one could recover an equiva-
lence class of the underlying causal structure [1], [2]. This
approach involves the conditional independence test, which
would be a difficult task if the data dependence relationship
is unknown [3]. Furthermore, the solution of this approach for
causal discovery is usually non-unique, and in particular, it
does not help in the two-variable case, where no conditional
independence relationship is available.

Recently several causal discovery approaches based on
functional causal models have been proposed. A functional
causal model represents the effect Y as a function of the direct
causes X and some unmeasurable noise:

Y = f(X,N ;θ1), (1.1)

where N is the noise that is assumed to be independent from
X , the function f ∈ F explains how Y is generated from

X , F is an appropriately constrained functional class, and
θ1 is the parameter set involved in f . We assume that the
transformation from (X,N) to (X,Y ) is invertible, such that
N can be recovered from the observed variables X and Y .

For convenience of presentation, let us assume that both
X and Y are one-dimensional variables. Without precise
knowledge on the data-generating process, the functional
causal model should be flexible enough such that it could be
adapted to approximate the true data-generating process; more
importantly, the causal direction implied by the functional
causal model has to be identifiable, i.e., the model assumption,
especially the independence between the noise and cause,
holds for only one direction, such that it implies the causal
asymmetry between X and Y . Under the above conditions,
one can then use functional causal models to determine the
causal direction between two variables, given that they have
a direct causal relationship in between and do not have any
confounder: for both directions, we fit the functional causal
model, and then test for independence between the estimated
noise and the hypothetical cause, and the direction which gives
independent noise is considered plausible.

Several functional causal models have been shown to be
able to produce unique causal directions, and have received
practical applications. In the linear, non-Gaussian, and acyclic
model (LiNGAM [4]), f is linear, and at most one of the
noise N and cause X is Gaussian. The nonlinear additive
noise model [5], [6] assumes that f is nonlinear with additive
noise N . In the post-nonlinear (PNL) causal model [7], the
effect Y is further generated by a post-nonlinear transformation
on the nonlinear effect of the cause plus the noise; the post-
nonlinear transformation could represent the sensor distortion
or measurement distortion, which is frequently encountered
in practice. In particular, the PNL causal model has a very
general form (the former two are its special cases), but it has
been shown to be identifiable in the general case (except five
specific situations given in [7]).

For causal discovery based on the nonlinear additive noise
model, some regression methods have been proposed to di-
rectly minimize the dependence between the noise and the
hypothetical cause [8], [9]. Such methods only apply to the
additive noise model, and model selection is usually not well-
founded. As the first contribution, here we show that for any
functional causal model, in which the noise is not necessarily
additive, minimizing the mutual information between the noise
and the predictor is equivalent to maximizing the data likeli-
hood, given that the noise model is flexible. As the second



contribution, we show that for estimation of the functional
causal model where the noise is not additive, the solution
depends on the assumption on the noise distribution. These
results motivate the use of Bayesian inference to estimate
the functional causal model with a flexible noise model. In
particular, as the third contribution, we finally focus on the
PNL causal model, and propose to estimate it by warped
Gaussian processes with the noise distribution represented
by the mixture of Gaussians (MoG), and compare it against
warped Gaussian processes with the Gaussian noise and mutual
information minimization approach with nonlinear functions
represented by multi-layer perceptrons (MLPs) [7].

II. ASYMMETRY OF CAUSE AND EFFECT IN FUNCTIONAL
CAUSAL MODELS

In this section we explain why f in the functional causal
model (1.1) has to be properly constrained, and then give some
examples of the functional forms f , including the PNL causal
model.

A. General Claims

Given any two random variables X and Y with continuous
support, one can always construct another variable, denoted by
Ñ , which is statically independent from X , as suggested by
the following lemma.

Lemma 1: For any two variables X and Y with continuous
support, the quantity Ñ = q ◦ FY |X , where FY |X is the
conditional cumulative distribution function of Y given X and
q is an arbitrary continuous and strictly monotonic function
with a non-zero derivative, is always independent from X .
Furthermore, the transformation from (X,Y )T to (X, Ñ)T is
always invertible.

Proof: See [10] for why Ñ constructed this way is
independent from X . Moreover, the invertibility can be seen
from the fact that the determinant of the transformation from
(X,Y )T to (X, Ñ)T , which is q′ · p(Y |X), is positive every-
where on the support, under the conditions specified in Lemma
1.

Let Ñ be the noise term N in the functional causal model
(1.1), and one can see that without constraints on f , there
always exists the function f such that the independence con-
dition on N and X holds. Similarly, we can always represent
X as a function of Y and an independent noise term. That
is, any two variables would be symmetric according to the
functional causal model, if f is not constrained. Therefore, in
order for the functional causal models to be useful to determine
the causal direction, we have to introduce certain constraints
on the function f such that the independence condition on the
noise and hypothetical cause holds for only one direction.

B. Examples

For simplicity let us assume that the true causal direction
is X → Y . The functional class F is expected to be able to
approximate the data generating process, but very importantly,
it should be well constrained such that the noise cannot
be independent from the assumed cause for the backward
direction. A simple choice for F is a linear model, i.e.,
Y = µ+αX+N , where µ is a constant. It has been shown that

under the condition that in the data generating process at most
one of N and X is Gaussian, Y and NY in the backward
direction are always dependent ([4]); this motivated the so-
called linear, non-Gaussian, and acyclic model (LiNGAM).

In practice nonlinearity is rather ubiquitous in the data
generating process, and should in taken into account in the
functional class. A very general setting for F is given by the
PNL causal model [7]:

Y = f2(f1(X) +N), (2.2)

where both f1 and f2 are nonlinear functions and f2 is assumed
to be invertible. The post-nonlinear transformation f2 could
represent sensor distortion or measurement distortion in the
system. It has been shown that except in several special cases
(including the linear-Gaussian case discussed above), in the
backward direction NY is always dependent on Y , so that one
can find the plausible causal direction with an independent
noise term. If f2 in the PNL causal model is the identity
mapping, this model reduces to the additive noise model [5].

III. RELATIONSHIP BETWEEN DEPENDENCE
MINIMIZATION AND MAXIMUM LIKELIHOOD

Let us now suppose that both X and Y are continuous and
that X is the direct cause of Y ; for simplicity here we assume
that X is one-dimensional and that there is no common cause
for X and Y . The same result will also apply if X contains
multiple variables.

We consider the functional causal model (1.1). Denote by
p(X,Y ) the true density of (X,Y ), and by pF (X,Y ) the joint
density implied by (1.1). The model (1.1) assumes p(X,N) =
p(X)p(N); because the Jacobian matrix of the transformation
from (X,N)T to (X,Y )T is

JX→Y =

(
∂X
∂X

∂X
∂N

∂Y
∂X

∂Y
∂N

)
=

(
1 0
∂f
∂X

∂f
∂N

)
, (3.3)

the absolute value of its determinant is |JX→Y | = | ∂f∂N |, and
hence we have

PF (X,Y ) = p(X,N)/|JX→Y | = p(X)p(N)
∣∣∣ ∂f
∂N

∣∣∣−1

, (3.4)

which implies PF (Y |X) = PF (X,Y )/p(X) = p(N)
∣∣∣ ∂f∂N ∣∣∣−1

.

Now let us introduce the concept of mutual informa-
tion ([11]). As a canonical measure of statistical dependence,
mutual information between X and N is defined as:

I(X,N) =

∫
p(X,N) log

p(X,N)

p(X)p(N)
dxdn

= −E log p(X)− E log p(N) + E log p(X,N),
(3.5)

where E(·) denotes the expectation. I(X,N) is always non-
negative and is zero if and only if X and N are independent.

A. Maximum likelihood and dependence minimization for
functional causal models

Suppose we fit the model (1.1) on the given sample D ,
{xi,yi}Ti=1; as the transformation from (X,N) to (X,Y ) is
invertible, given any parameter set θ1 involved in the function



f , the noise N can be recovered, and we denote by N̂ the
estimate. We first show that the attained likelihood of (1.1) is
directly related to the dependence between the estimated noise
N and X . We further denote by θ2 the parameter set in p(N).

LEMMA 3.1: For any parameter set θ , (θ1,θ2), the log-
likelihood attained by the model (1.1) is

lX→Y (θ) =

T∑
i=1

logPF (xi,yi)

=

T∑
i=1

log p(X = xi) +

T∑
i=1

log p(N = n̂i;θ2)

−
T∑
i=1

log
∣∣∣ ∂f
∂N

∣∣
N=n̂i

∣∣∣. (3.6)

On the other hand, the mutual information between X and N̂
for the given parameter set θ is

I(X, N̂ ;θ) = − 1

T

T∑
i=1

log p(X = xi)−
1

T

T∑
i=1

log p(N̂ = n̂i;θ2)

+
1

T

T∑
i=1

log
∣∣∣ ∂f
∂N

∣∣
N=n̂i

∣∣∣+
1

T

T∑
i=1

log p(X = xi, Y = yi),

(3.7)

where the last term does not depend on θ and can then be
considered as constant.

Hence, for any value of the parameter set θ, we have

1

T
lX→Y (θ) =

1

T

T∑
i=1

log p(X = xi, Y = yi)− I(X, N̂ ;θ).

(3.8)
Therefore, the parameter set θ∗ that maximizes the likelihood
of the model (1.1) also minimizes the mutual information
I(X, N̂).

Proof: (3.6) directly follows (3.4), and now we prove
(3.7). Note that the absolute value of the determinant of
the transformation from (X,Y ) to (X, N̂) is |JY→X | =

|JX→Y |−1. Recalling |JX→Y | =
∣∣∣ ∂f∂N ∣∣∣, consequently, we have

p(X, N̂) = p(X,Y )/|JY→X | = p(X,Y )
∣∣∣ ∂f∂N ∣∣∣.

According to (3.5), one can see

I(X, N̂ ;θ) = −E log p(X)− E log p(N̂) + E
{

log p(X,Y )

+ log
∣∣∣ ∂f
∂N

∣∣∣},
whose sample version is (3.7). (3.8) can be directly seen from
(3.6) and (3.7).

We then consider the likelihood of the direction Y → X
can attain, denoted by lY→X . That it, we fit the sample with
the model

X = g(Y,NY ;ψ) (3.9)

where g ∈ F , NY is assumed to be independent from Y , and ψ
is the parameter set. We shall show that if the functional class
F is appropriately chosen such that X is independent from N
(i.e., (1.1) holds), but the reverse model (3.9) does not hold,

i.e., these does not exist g ∈ F such that NY is independent
from Y in (3.9), one can then determine the causal direction
with the likelihood principle. In fact, the maximum likelihood
attained by the former model is higher than that of the latter,
as seen from the following theorem.

THEOREM 1: Assume that the model (1.1) is true and that
θ∗ maximizes the likelihood of the model (1.1) on the given
sample D. Further assume that ψ∗ maximizes the likelihood
of the model (3.9), but at T → ∞, the resulting noise N̂Y is
dependent on Y , i.e., the model (3.9) does not hold. Then as
T → ∞, the maximum likelihood lX→Y (θ∗) is higher than
lY→X(ψ∗), and the difference is

1

T
lX→Y (θ∗)− 1

T
lY→X(ψ∗) = I(Y, N̂Y ;ψ∗). (3.10)

Proof: According to (3.8), we have

1

T
lX→Y (θ∗) =

1

T

T∑
i=1

log p(X = xi, Y = yi)− I(X, N̂ ;θ∗),

(3.11)

1

T
lY→X(ψ∗) =

1

T

T∑
i=1

log p(X = xi, Y = yi)− I(Y, N̂Y ;ψ∗).

(3.12)

Bearing in mind that I(X, N̂ ;θ∗) → 0 as T → ∞, one
substracts (3.12) from (3.11) and obtains (3.10).

B. Loss Caused by a Wrongly Epecified Noise Distribution

As claimed in Lemma 3.1, estimating the functional causal
model by maximum likelihood or mutual information mini-
mization aims to maximize

JX→Y =

T∑
i=1

log p(N = n̂i)−
T∑
i=1

log
∣∣∣ ∂f
∂N

∣∣
N=n̂i

∣∣∣. (3.13)

In the linear model (i.e., f in (1.1) is a linear function of X
plus the noise term N ) or the nonlinear additive noise model
(i.e., f is a nonlinear function of X plus N ), ∂f

∂N ≡ 1, and
the above objective function reduces to

∑T
i=1 log p(N = n̂i),

whose maximization further reduces to the ordinary regression
problem. It is well known that in such situations, if N
is non-Gaussian, parameter estimation under the Gaussianity
assumption on N is still statistically consistent.

This might not be the case for the general functional
causal models. In fact, Bickel and Doksum [12] investigated
the statistical consistency properties of the parameters in the
Box-Cox transformation, which is a special case of the PNL
formulation (2.2) where f1 is linear and f2 is in a certain
nonlinear form. They found that if the noise distribution
is wrongly specified, one cannot expect consistency of the
estimated parameters in the Box-Cox transformation.

Roughly speaking, if the noise distribution is set to a wrong
one, one cannot guarantee the consistency of the estimated f
for the functional causal models where ∂f

∂N is not constant,
for instance, for the PNL causal model (2.2), where ∂f

∂N =
f ′2 is not constant if the post-nonlinear transformation f2 is
nonlinear. Theoretical proof is very lengthy, and here we give



an intuition. If p(N) is wrongly specified, the estimated f is
not necessarily consistent: in this situation, compared to the
true solution, the estimated f might have to sacrifice in order
to make the estimated noise closer to the specified distribution
such that the first term in (3.13) becomes bigger; consequently,
(3.13), a trade-off of the two terms, is maximized.

IV. ESTIMATING POST-NONLINEAR CAUSAL MODEL BY
WARPED GAUSSIAN PROCESSES WITH A FLEXIBLE NOISE

DISTRIBUTION

In this section we focus on the PNL causal model, since its
form is very general and the causal direction is nevertheless
identifiable in the general case (apart from the five special
situations [7]). It has been proposed to estimate the PNL
causal model (2.2) by mutual information minimization [7]
with the nonlinear functions f1 and f−1

2 represented by multi-
layer preceptrons (MLPs). This implementation suffers two
drawbacks. First, it is difficult to do model selection for
those nonlinear functions, i.e., selection of the numbers of
hidden units in the MLPs; here with a too simple model, the
estimated noise tends to be more dependent on the hypothetical
cause, and a too complex one tends to cause over-fitting,
such that the considered causal direction could be incorrectly
plausible. Second, the solution was found to be dependent on
initializations of the nonlinear functions, i.e., it is prone to
local optima.

As stated in Section III, for any functional causal model,
minimizing the mutual information between the noise and the
hypothetical cause is equivalent to minimum likelihood with
a flexible model for the noise distribution; moreover, it was
claimed that for estimation of the functional causal model
where the noise is not additive, especially the PNL causal
model, the solution would be sensitive to the assumed noise
distribution. Therefore, we propose an approach for estimating
the PNL causal model based on Bayesian inference, which
allows automatic model selection, and a flexible model for the
noise distribution.

We adopt the warped Gaussian process [13] framework,
which can be interpreted as a two-step generative model of
the output variable with values yi ∈ R given input variable
with values xi ∈ Rd, i ∈ {1, . . . , n}, to specify the nonlinear
functions and noise term in the PNL model (2.2). As stated in
Section III-B, for the PNL causal model, parameter estimation
under a wrong noise model is not necessarily statistically
consistent. Hence, a crucial difference between the original
warped Gaussian processes [13] and our formulation is that
the warped Gaussian process assumes Gaussian noise, but in
our formulation the model for the noise distribution has to be
flexible.

We will compare the performance of our proposed warped
Gaussian process regression with the MoG noise (denoted by
WGP-MoG) and that with the Gaussian noise (denoted by
WGP-Gaussian) with simulations.

A. The model and prior

In the first step, an unknown function f1 : Rd → R maps
the value of the input variable, xi to a latent variable

zi = f1(xi) + ni, (4.14)

where ni ∼ p(N ; Ω) is the noise distribution that is unknown.
We approximate this noise distribution by a Mixture of Gaus-
sian (MoG) distribution with parameters Ω = {π,µ,σ}, given
by

p(N |Ω) =

m∑
j=1

πjN (N |µj , σ2
j ), (4.15)

where µj is the mean, σj the standard deviation, and πj the
positive mixing proportions that sum to one. We introduce
latent membership variables θi ∈ {1, . . . ,m} that represent
from which Gaussian components the noises εi were drawn.
The membership variable θi follows a categorical distribution,
i.e., p(θi = j|Ω) = πj . In our implementation we set the
number of Gaussian components m = 5.

We place a Gaussian process prior on the unknown function
f1 ∼ GP(0, k(·, ·)) with a zero mean function. The GP is
then fully determined by the covariance function k(·, ·). In this
paper, we consider the isotropic Gaussian covariance function,
given by

k(xi,xj ; Θ) = α1 exp
(
−α2

2 ‖xi − xj‖2
)

+ α3δxi,xj
, (4.16)

with parameters Θ = {α1, α2, α3}, where xi and xj are two
observations of the variable X .

Given the set of membership variables θ, the log posterior
of the latent variables z is given by

log p(z|x,C,Ω,Θ) = −1

2
log det(K + C)−
1

2
t̄
T
(K + C)−1z̄− n

2
log(2π),

where K is the covariance matrix, i.e., Ki,j = k(xi,xj), C
a diagonal noise variance matrix with Ci,i = σ2

ci , and z̄i =
zi − µθi the latent variable subtracted by the noise mean.

In the second step, the latent variable zi is mapped to the
output space by function f2 : R→ R, whose inverse is denoted
by g, so we have

yi = g−1(zi). (4.17)

The post-nonlinear transformation in (2.2) represents the
sensor distortion or measurement distortion; in practice, it
is usually very smooth. We therefore use a rather simple
representation for it. Following [13], we choose the inverse
warping function that is the sum of tanh functions and the
identity function; for the ith value of Y , we have

g(yi; Ψ) = yi +

k∑
i=1

ai tanh(bi(yi + ci)), (4.18)

where the parameters Ψ = {a,b, c} and ai, bi ≥ 0,∀i,
such that g is guaranteed to be strictly monotonic. Note that
g−1 corresponds to f2 in (2.2); for convenience of parameter
estimation, here we directly parameterize f−1

2 , or g, instead of
f2.



Given the set of membership variables θ, the log posterior
log p(y|x,θ,Ω,Θ,Ψ) of the outputs y is given by

L(θ) = −1

2
log det(K + C)− 1

2
z̄T (K + C)−1z̄

+

n∑
i=1

log
∂g

∂y

∣∣∣∣
yi

− n

2
log(2π),

where z̄i = g(yi; Ψ)− µθi .

B. Parameter Learning

We use Monte Carlo Expectation Maximization [14] to
learn the parameters Ω, Θ, and Ψ, with the membership
variables θ marginalized out.

The Monte Carlo EM algorithm seeks to find the maximum
likelihood estimate of the parameters by iteratively applying
the following E-step and M-step.

In the E-step, we estimate

Q(Ω,Θ,Ψ|Ω(t),Θ(t),Ψ(t)) = Eθ|x,y,Ω(t),Θ(t),Ψ(t) [logL(θ)].
(4.19)

However, the computation of Q is intractable. We resort to
estimating

Q̃(Ω,Θ,Ψ|Ω(t),Θ(t),Ψ(t)) =
1

L

L∑
l=1

logL(θl) (4.20)

by sampling θl from

p(θ|x,y,Ω(t),Θ(t),Ψ(t)) ∝ p(y|x,θ,Ω(t),Θ(t),Ψ(t))p(θ),
(4.21)

using Gibbs sampling.

In the M-step, we find the parameters Ω(t+1),
Θ(t+1), and Ψ(t+1) that maximize the estimated
Q̃(Ω,Θ,Ψ|Ω(t),Θ(t),Ψ(t)) using scaled conjugate gradient.

V. SIMULATION

We use simple simulations to illustrate the different behav-
iors of the proposed method for estimating the PNL causal
model, which is based on warped Gaussian processes with
the noise represented by MoG, the original warped Gaussian
process regression with the Gaussian noise [13], and the mutual
information minimization approach with nonlinear functions
represented with MLPs [7].

The simulated data set consisted of 200 data points. The
one-dimensional inputs X were uniformly distributed. For
illustrative purposes, we use linear transformations for both f1

and f2 to see if they can be recovered by different methods:
the latent variable Z = f1(X) + N were generated with a
linear function f1(X) = 2X , and the output Y = f2(Z) were
generated with an identity warping function f2(Z) = Z. The
noise N were drawn from a log-normal distribution. Figure 1a
shows the simulated data points.

Figures 1 and 2 show the estimated results produced by
WGP-Gaussian and WGP-MoG, respectively. One can see that
in this case WGP-Gaussian gives clearly a wrong solution: the
estimated post-nonlinear transformation f2 is distorted in a
specific way such that the estimated noise is closer to Gaussian

that the true noise; as a consequence, the true data-generating
process cannot be recovered by WGP-Gaussian, and finally the
estimated noise is dependent from the input X , as seen from
Figure 1d. With WGP-MoG, both estimated f1 and f2 were
close to the true ones, which are actually linear. We increased
the sample size to 500, and observed the same difference in the
estimated f2 and f1 given by WGP-MoG and WGP-Gaussian.
This illustrates that the estimated f2 and f1 in the PNL causal
model (2.2) might not be statistically consistent if the noise
distribution is set to Gaussian incorrectly.

We also compare the above two approaches with mutual
information minimization approach with nonlinear functions
represented by MLPs [7], whose results are shown in Figure 3.
This approach also uses a MoG to represent the noise distri-
bution, and could estimate both function f1 and f2, as well as
the noise term, reasonably well in this simple situation.

We then by estimating the PNL model followed by testing
if the estimated noise is independent from the hypothetical
cause for both directions. We adopted the Hilbert Schmidt
information criterion (HSIC) [15] for statistical independence
test and set the significance level to α = 0.05. Both WGP-
MoG and the mutual information minimization approach cor-
rectly determined the causal direction, which is X → Y , in that
for X → Y the estimated noise is independent from X while
for Y → X the estimated noise is dependent on Y . When using
WGP-Gaussian, we found that the noise is dependent from the
hypothetical cause for both directions with the significance
level 0.05, although the p-value for the direction X → Y is
larger (0.048 for X → Y and 0.010 for Y → X).

VI. ON REAL DATA

We applied different approaches for causal direction deter-
mination on the cause-effect pairs available at http://webdav.
tuebingen.mpg.de/cause-effect/. The approaches include the
PNL causal model estimated by mutual information minimiza-
tion with nonlinear functions represented by MLPs [7], de-
noted by PNL-MLP for short, the PNL causal model estimated
by warped Gausian processes with Gaussian noise, denoted
by PNL-WGP-Gaussian, the PNL causal model estimated by
warped Gausian processes with MoG noise, denoted by PNL-
WGP-MoG, the additive noise model estimated by Gaussian
process regression [5], denoted by ANM, the approach based
on the Gaussian process prior on the function f [16], denoted
by GPI, and IGCI [17]. The data set consists of 77 data pairs.
To reduce computational load, we used at most 500 points
for each cause-effect pair. The accuracy of different methods
(in terms of the percentage of correctly discovered causal
directions) is reported in Table I. One can see that PNL-WGP-
MoG gives the best performance among these methods.

On several data sets PNL-WGP-Gaussian and PNL-WGP-
MoG give different conclusions. For instance, on both data
pairs 22 and 57, PNL-WGP-Gaussian prefers Y → X , and
PNL-WGP-MoG prefers X → Y , which would be the plau-
sible one according to the background knowledge. In fact, for
data pair 22, X corresponds to the age of a particular person,
and Y is the corresponding height of the same person; for data
pair 57, X denotes the latitude of the country’s capital, and Y
is the life expectancy at birth in the same country.



TABLE I: Accuracy of different methods for causal direction determination on the cause-effect pairs.

Method PNL-MLP PNL-WGP-Gaussian PNL-WGP-MoG ANM GPI IGCI
Accuracy (%) 70 67 76 63 72 73
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Fig. 1: Simulated data with log-normal distributed noise and
estimation results by WGP-Gaussian. (a) Simulated data. (b)
Estimated warping function Y = f̂2(Ẑ). (c) Scatter plot of
input xi and the recovered latent variable ẑi = f̂−1

2 (yi), where
the dashed lines showed the GP posterior mean of f1(X), and
the heat maps showed the conditional probability p(Ẑ|X). (d)
Scatter plot of input xi and the estimated noise N̂i, where the
heat maps showed the conditional probability p(N̂ |X).

Let us take data pair 22 as an example. Figures 4 shows
the estimated post-nonlinear transformations f2, functions f1,
and the noise N produced by PNL-WGP-Gaussian, under
both hypothetical causal directions X → Y and Y → X ,
on this data set. For comparison, Figure 5 gives the results
produced by PNL-WGP-MoG on the same data set. One
can see that PNL-WGP-Gaussian tends to push the noise
distribution closer to Gaussian, making the estimated noise
tend to be more dependent on the hypothetical cause. Overall,
PNL-WGP-MoG clearly outperforms PNL-WGP-Gaussian in
terms of the estimation quality of the PNL causal model and
the performance of causal direction determination.

VII. CONCLUSION AND DISCUSSIONS

A functional causal model represents the effect as a func-
tion of the direct causes and a noise term which is independent
from the direct causes. Suppose two given variables have a
direct causal relation in between and that there is no con-
founder. A functional causal model could determine the causal
direction between them if 1) it could approximate the true
data-generating process, and 2) it holds for only one direction.
When using functional causal models for causal direction
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Fig. 2: Simulation results by WGP-MoG. (a) Estimated warp-
ing function Y = f̂2(Ẑ). (b) Scatter plot of input xi and the
recovered latent variable ẑi = f̂−1

2 (yi) using WGP-MoG,
where the dashed lines showed the GP posterior mean of
f1(X), and the heat maps showed the conditional probability
p(Ẑ|X). (c) Scatter plot of input xi and the estimated noise
n̂i, where the heat maps showed the conditional probability
p(N̂ |X). (d) Estimated noise distribution p(N̂).

determination, one has to find the direction in which the noise
term is independent from the hypothetical cause. Under the
hypothetical causal direction, a natural way to estimate the
function and noise is to minimize the dependence between the
noise and hypothetical cause. In this paper, we have shown that
minimizing the mutual information between them is equivalent
to maximizing the data likelihood if the model for the noise
distribution is flexible. Furthermore, we have discussed that
for a general functional causal model where the noise is not
additive, estimation of the function as well as the noise might
not be statistically consistent if the noise model is wrong. In
light of these two points, we advocate the Bayesian inference
based approach with a flexible noise model to estimation of
functional causal models of a more general form than the
additive noise model.

In particular, we focused on estimation of the post-
nonlinear causal model, and proposed to estimate it by warped
Gaussian processes with the noise distribution represented by
the mixture of Gaussians. We exploited Monte Carlo EM
for inference and parameter learning. Experimental results on
simulated data illustrated that when the noise distribution is
far from Gaussian, this approach is able to recover the data-
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Fig. 3: Simulation results by mutual information minimization
with nonlinear functions represented by MLPs. (a) Estimated
warping function Y = f̂2(Ẑ). (b) Scatter plot of input xi
and the recovered latent variable ẑi = f̂−1

2 (yi) where the
red points show f̂1(xi). (c) Scatter plot of input xi and the
estimated noise n̂i

generating process as well as the noise distribution, while the
warped Gaussian processes with the Gaussian noise could fail.
We used the proposed approach to estimation of the post-
nonlinear causal model for determining causal directions on
real data, and the experimental results showed that the pro-
posed approach outperforms other methods for estimating the
post-nonlinear causal model and other state-of-the-art methods
for causal direction determination.
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Ẑ

Y

 

 

warping function f2

(b) Estimated PNL function f2 for
X → Y

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2

X

Ẑ
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Fig. 4: Estimated PNL causal model for hypothetical causal
direction X → Y (b-d) and direction Y → X (e-g) on cause-
effect pair 22 by PNL-WGP-Gaussian. (a) Data. Here X and
Y represent the age (in years) and height (in centimeters) of
452 patients, so one would believe that X → Y . (b) Estimated
warping function Y = f̂2(Ẑ) under X → Y . (c) Scatter plot of
input xi and the recovered latent variable ẑi = f̂−1

2 (yi) under
X → Y . (d) Scatter plot of input xi and the estimated noise
n̂i under X → Y , with the p-value of the HSIC independence
test 0.0070. (e) Estimated warping function f̂2 under Y → X .
(f) Scatter plot of input yi and the recovered latent variable
f̂−1

2 (yi) under Y → X . (g) Scatter plot of input yi and the
estimated noise n̂Y,i under Y → X , with the p-value of the
HSIC independence test 0.0470.

−4 −2 0 2 4 6 8 10 12 14

0

2

4

6

8

10

Ẑ
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Fig. 5: Estimated PNL causal model for hypothetical causal
direction X → Y (a-d) and direction Y → X (e-h) on cause-
effect pair 22 by PNL-WGP-MoG. (a) Estimated warping
function Y = f̂2(Ẑ) under X → Y . (b) Scatter plot of input xi
and the recovered latent variable ẑi = f̂−1

2 (yi) under X → Y .
(c) Scatter plot of input xi and the estimated noise n̂i under
X → Y , with the p-value of the HSIC independence test
0.3090. (d) Estimated noise distribution p(N̂) under X → Y .
(e) Estimated warping function f̂2 under Y → X . (f) Scatter
plot of input yi and the recovered latent variable f̂−1

2 (yi)
under Y → X . (g) Scatter plot of input yi and the estimated
noise n̂Y,i under Y → X , with the p-value of the HSIC
independence test 0.0480. (h) Estimated noise distribution
p(N̂Y ) under Y → X .


