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Abstract

It is known that the solution of regularization and
interpolation problems with Hilbertian penalties
can be expressed as a linear combination of the
data. This very useful property, called the rep-
resenter theorem, has been widely studied and
applied to machine learning problems. Anal-
ogous optimality conditions have appeared in
other contexts, notably in matrix regularization.
In this paper we propose a unified view, which
generalizes the concept of representer theorems
and extends necessary and sufficient conditions
for such theorems to hold. Our main result shows
a close connection between representer theorems
and certain classes of regularization penalties,
which we call orthomonotone functions. This re-
sult not only subsumes previous representer the-
orems as special cases but also yields a new class
of optimality conditions, which goes beyond the
classical linear combination of the data. More-
over, orthomonotonicity provides a useful crite-
rion for testing whether a representer theorem
holds for a specific regularization problem.

1. Introduction

One of the dominant approaches in machine learning and
statistics is to formulate a learning problem as an optimiza-
tion problem to be solved. In particular, regularization has
been widely used for learning or estimating functions or
models from input and output data, particularly in super-
vised and semisupervised learning.

Regularization in a Hilbert space ‘H frames the problem of
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learning from data as a minimization of the type
min{ f((w,w1),. .., (w,wp)) +7Q(w) : we H}. (1)

The objective function is the sum of an error term f which
depends on prescribed data' w1, ..., w,, € H, and a reg-
ularization penalty ), which favors certain desirable prop-
erties of the solution. An optimal solution of problem (1)
yields the desired function or vector, depending on the con-
text of the original learning problem.

It is known that, for a certain class of regularization and
interpolation problems, the optimal solution of (1) can be
expressed as a linear combination of the data. More specif-
ically, this is the case when the penalty (2 is the Hilbertian
norm (or a nondecreasing function of that). This property,
known as the representer theorem, has proven very useful
because it renders many high or infinite dimensional reg-
ularization problems amenable to practical computation.
This “classical” representer theorem was formulated in var-
ious guises in (Girosi, 1998; Kimeldorf & Wahba, 1970;
Scholkopf et al., 2001) and has been the topic of extensive
further study in later work (Argyriou et al., 2009; De Vito
et al., 2004; Dinuzzo & Scholkopf, 2012; Dinuzzo et al.,
2007; Mukherjee & Wu, 2006; Steinwart, 2003; Yu et al.,
2013). In machine learning, the representer theorem is the
main factor that enables application of the so-called “kernel
trick” and underpins all of the widely used kernel methods
(Scholkopf & Smola, 2002), such as support vector ma-
chines, regularization networks etc.

Besides the classical result, more recently new types of rep-
resenter theorems have been proven and studied. For exam-
ple, it has been realized that analogous optimality condi-
tions apply to the learning of vector-valued functions (Mic-
chelli & Pontil, 2005), ¢s-regularized multitask learning
(Evgeniou et al., 2005) and structured prediction (Lafferty
et al., 2004).

Further developments occurred with the advent of matrix

'We use the term “data” in a more general sense than input
vectors in Euclidean space — see Section 3 for examples.
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regularization problems used for multitask learning or col-
laborative filtering. Thus it has been shown that a type of
representer theorem holds when the penalty 2 is a spec-
tral function of matrices (Amit et al., 2007; Argyriou et al.,
2009; 2010) or operators (Abernethy et al., 2009). Very
recently these results have been extended to matricizations
of tensors as well (Signoretto et al., 2013). Other related
results have appeared in the contexts of domain adaptation
(Kulis et al., 2011), dimensionality reduction (Jain et al.,
2010) and metric learning (Jain et al., 2012).

Some variants of the classical theorem were shown in
the contexts of semisupervised learning (Belkin et al.,
2006), semiparametric representer theorems and kernel
PCA (Scholkopf et al., 2001). Moreover, there have ap-
peared alternative approaches which lie outside the scope
of this paper, such as a Bayesian variant of the classical
theorem (Pillai et al., 2007) and the theory of reproduc-
ing kernel Banach spaces (Zhang & Zhang, 2012). Clearly
therefore, representer theorems are important and ubiqui-
tous tools in regularization and underly a wide range of
frequently used machine learning methodologies.

In this paper, we address the topic of representer theorems
from a new and more abstract viewpoint. One of our con-
tributions is to provide a unifying framework which sub-
sumes the results that have already appeared in the litera-
ture, such as the classical and multitask ones. In particu-
lar, we show that these theorems are only examples from
a larger family. Each theorem in this family corresponds
to a class of regularization penalties which are character-
ized by an orthomonotonicity property that we introduce.
Another implication of our results is that we can now put
the study of representer theorems on a formal basis and
provide calculus rules and recipes for deriving new results.
Most commonly used kernel methods (support vector ma-
chines, kernel ridge regression etc.), as well as methods for
multitask learning, collaborative filtering and metric learn-
ing, fall within our framework. As an illustration of the
theory, we demonstrate that regularization problems with
a generalized family of matrix penalties, as well as similar
problems on the positive semidefinite cone, admit appropri-
ate representer theorems. In many practical situations this
implies that the number of degrees of freedom and hence
the complexity of solving the learning problem decreases
significantly.

2. Mathematical Preliminaries

In this section, we introduce the notation and the mathe-
matical concepts necessary for our framework and the main
results of Section 3.

2.1. Notational conventions

Let H be a real Hilbert space with inner product (-, -) and
associated norm || - ||. We use .Z(H) to denote the set of
linear operators from H to itself. We denote the identity
operator by Id € .Z(H) and the set of linear subspaces of
H by V(H).

Also let N,,, denote the set of integers {1,...,m}, My,
the set of real d x n matrices and M, the set of real n X n
matrices. Moreover, let Si denote the set of n x n positive
semidefinite matrices and S} , the set of positive definite
ones. We denote the ¢-th column of a matrix W € Mg,
by w;. We use the following notation for operations on
sets AAB C H: A+ B:={a+b:a€ Ab e B},
A—B:={a—-b:ac Abe B} A :={)a:ac A},
for every A € R.

In the following, we will be working with subspace-valued
maps S : H — V(H). This choice is natural, since repre-
senter theorems are statements that solutions of certain op-
timization problems belong to certain subspaces. For more
details, see Section 3 and our general definition of repre-
senter theorems. Given two subspace-valued maps .S; and
So, their sum S7 + Sy maps every x € H to the sum of
subspaces S1(z) + S2(z).

2.2. Quasilinear Subspace-Valued Maps

To extend the concept of representers, we first introduce a
variant of linearity appropriate for subspace-valued maps.”

Definition 2.1. We call the map S : H — V(H) quasilin-
ear if

S(ax + By) C aS(z) + BS(y)
foreveryz,y € H, o, € R.

Proposition 2.1. Let S denote a quasilinear subspace-
valued map. Then

S(az) = aS(x) (2

and

aS(z) C S(az + By) + BS(y) (3)
foreveryx,y € H, a, 5 € R.
Definition 2.2. We call the map S : H — V(H) idempo-
tent if

S(S(z)) = S(z), Vo € H.
Lemma 2.1. Let S be a quasilinear and idempotent

subspace-valued map. Then, for every m € N and every
set {x; 11 € Ny, } CH, it holds that

S (Z S(xi)> C ZS(:E,;).

2Proofs of the lemmas appearing throughout the paper can be
found in the supplement.
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Thus addition of subspaces can be used to generate sub-
spaces invariant under .S.

In addition to the quasilinearity and idempotence assump-
tions, we require that sums of images under S are closed.
This ensures that orthogonal projection on such subspaces
is feasible, which is a crucial step in the proof of representer
theorems. For simplicity, to satisfy this property we assume
that all images under .S are finite dimensional. Another as-
sumption necessary for the proof of our main result is that
any point belongs to its image under .S. Summarizing, we
collect all of the above assumptions in the following defi-
nition.

Definition 2.3. Let r € N. We call the subspace-valued
map S : H — V(H) r-regular quasilinear if it is quasilin-
ear, idempotent and if, for all © € H, S(z) has dimension-
ality at most r and contains x.

The simplest example of regular quasilinear subspace-
valued map S is the map that associates a given vector to
its own linear span, which thus has dimensionality one.

Example 2.1. Suppose that S maps
x +— span{zx} .
Then S is 1-regular quasilinear.

More generally, we can map each point to a subspace by
applying a set of linear transformations and taking the lin-
ear subspace spanned by the resulting vectors.

Example 2.2. Let r € N and suppose that S maps
x> span{T;x : 1 € N, } |

where T; € L (H) for all i € N,.. Then S is quasilinear.
This map is r-regular quasilinear if

e Id e span{T;:i € N,},
o T;T, e span{T; : i € N,} Vj,leN,.

Remark 2.1. It may not hold that S maps any linear sub-
space of ‘H to a linear subspace (as illustrated in Example
2.2 when, say, r = 2, and Tyx, Tox, Ty, Toy are linearly
independent for some x,y € H). Even when this condition
holds, the image of a linear subspace may be a different
subspace (consider S(x) = H, Yz # 0, and span{z}).

A special case of Example 2.2 is the following, defined for
a space of matrices. As we shall see, this example is rele-
vant to representer theorems for multitask learning.

Example 2.3. Let H = Mg, equipped with the standard
inner product, and suppose that S maps

X {XC:CeM,}.

Then S is min{n?, dn}-regular quasilinear.

3. Characterization of the General
Representer Theorem

Our focus of interest is the variational problem of minimiz-
ing, over a Hilbert space, a regularization functional of the
form

J(w) = f({w,wi), ... (w, wm)) +7Qw) . (4)

The functional J is the sum of an error term f : R™ — RU
{400}, which depends on prescribed data w1, ..., w, €
H, and a regularization term 2 : H — R U {+o0}, which
enforces certain desirable properties on the solution, scaled
by a regularization parameter v > 0. We allow both f
and (2 to take the value +o0, so that interpolation problems
and regularization problems of the Ivanov type can also be
taken into account.

Since the same functional J might be decomposed into a
form like (4) in multiple ways, we fix m € N and use the
tuple (f, €, v, w1,...,w,) to describe such a regulariza-
tion functional.

Example 3.1 (Interpolation in a Hilbert space). Let
Wiy .oy W € Hand y1,...,ym € R be prescribed data
and

)0 if z=vy
Hz) = {—l—oo otherwise

Then the interpolation problem

Vz € R™.

min {Q(w) : weH, (ww;)=y; YieN,} .

is equivalent to the problem of minimizing (4) over H.

Example 3.2 (Ivanov regularization). Ivanov regulariza-
tion amounts to solving a problem of the form
min {f({(w,w1),...,(w,wy)) : weH, ww) <1},

where w : H — R is a prescribed constraining function.
Defining

0 if wiw) <1
+00 otherwise

Q(U}) = { ’
this problem can be rewritten as the minimization of a func-
tional of the form (4).

Example 3.3 (Regularization in an RKHS). Reproducing
Kernel Hilbert Spaces (RKHS) are Hilbert spaces H of
functions w : X — R defined over a nonempty set X such
that all point-wise evaluation functionals are bounded, that
is, for all x € X there exists a constant C', < 400 such
that

lw(z)| < Caflw]] Vw € H.
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It can be shown that RKHS exhibit the so-called reproduc-
ing property w(z) = (w, Ky), V (x,w) € X xH, where the
representers K, € H are expressible as sections of a sym-
metric and positive semidefinite kernel K : X x X — R
such that K,(y) = K(x,y), Yy € X. The reproducing
property of an RKHS allows for rewriting any regulariza-
tion functional of the form

J(w) = f(w(zr), ..,

in the standard form (4), where the representers w; coin-
cide with the kernel sections K,.

w(m)) +vQ(w)

Example 3.4 (Regularization with averaged data). In some
estimation problems, it may be appropriate to assume that
the measured output data are obtained by averaging a func-
tion w (to be estimated) with respect to suitable probability
measures. Let P, ... P, denote probability measures on
the measurable space (X, A), where A is a o-algebra of
subsets of X, and let H denote a Hilbert space of functions
w: X — R.If, for every i € Ny, the expectation

EPi(W):AW(I)dPi(m)

is a bounded linear functional over H, then one may con-
sider synthesizing a function w by minimizing a functional
of the form

J(w) = f(Ep, (w), ..., Ep,, (w)) +vQ(w)

which can be rewritten in the form (4) by introducing suit-
able representers w;. In particular, if H is an RKHS with a
bounded reproducing kernel, the representers of the expec-
tation functionals Ep, are called kernel mean embeddings
— see, for example, (Sriperumbudur et al., 2010) and refer-
ences therein — and can be explicitly expressed as

wi(t):/K(z,t)dPi(x) Vie Ny, teX.
x

Clearly, we are interested only in cases in which the opti-
mization problem

min{J(w) : w € H}

is well defined, that is, a minimizer of J exists. This always
holds by construction in machine learning and statistics ap-
plications. More generally, existence of a minimizer can
be ensured under lower semicontinuity and coercivity con-
ditions on J. We will avoid specifying such precise con-
ditions since they are not relevant to our purposes, instead
assuming existence of minimizers for each problem of in-
terest.

The main question we address in this paper is to charac-
terize the functions €2 for which minimizers of the regular-
ization functional (4) admit certain convenient representa-
tions.

As already mentioned in the introduction, representer the-
orems have been proven for regularization with the Hilber-
tian norm, Schatten ¢, regularization and in some other
cases. These theorems state that a minimizer must lie in
a subspace which depends on the data points wy, ..., Wy,.
This dependence on the data varies according to the regu-
larization penalty 2. For example, in the classical represen-
ter theorem (2 = || - ||3), the subspace is simply the span
of the data points. In the multitask theorem (€2 is a spec-
tral function on matrices), the subspace is generated by the
columns of the data matrices.

Our goal is to unify this prior work under one framework
and at the same time to extend the applicability of represen-
ter theorems to other regularization problems. The key to
this is to associate representations of minimizers with the
data points in an abstract way, specifically to associate a
subspace to each data point. Hence we assume a subspace-
valued map S : H — V(H) and require that the represen-
tation for a minimizer of (4) be spanned by the elements of
S (wl), 1 € N,p,.

Definition 3.1. Letm € N, S : H — V(H) be a subspace-
valued map and J = (f,Q,~v,w1,...,wy) a regulariza-
tion functional of the form (4). Then J is said to admit a
representer theorem with respect to S if there exists a min-
imizer w of J such that

we D S(w).
i=1

Definition 3.2. Letm € N, S : H — V(H) be a subspace-
valued map and F a family of regularization functionals of
the form (4). Then F is said to admit a representer theo-
rem with respect to S if every J € F admits a representer
theorem with respect to S.

Our main tool for characterizing regularization function-
als that admit representer theorems is the property defined
below, which we call orthomonotonicity. The connection
between orthomonotonicity and representer theorems has
appeared in (Argyriou et al., 2009) in the context of reg-
ularization with the Hilbertian norm or with orthogonally
invariant matrix penalties. In Theorem 3.1, we extend this
connection to a broader class of regularization penalties 2
which arise by varying the choice of the map S.

Definition 3.3. We call the function Q : H — R U {+o0}
orthomonotone with respect to the map S : H — V(H), if

Qz+y)>Qx)  foralzcH, yec S (5
Note that in this definition the left hand side of (5), or even
both sides, may equal +o0.

Theorem 3.1. Let r,m € N, f : R™ — R U {+o0},
Q:H — RU {400} and suppose that S : H — V(H) is
an r-regular quasilinear map. Then the following hold:



A Unifying View of Representer Theorems

1. If Q is orthomonotone w.rt. S then, for any
Wiy, ..., Wy € H and any v > 0 such that the reg-
ularization functional J = (f,Q,v,w1,...,wn) of
the form (4) admits a minimizer, J admits a represen-
ter theorem w.r.t. S.

2. Let F denote the following family of regularization
functionals of form (4)

F:{(f79777w17~~'awm):wlv"'v

(6)

and assume that

o f is lower semicontinuous, admits a unique min-
imizer 2 # 0, and there exists ¢ > 0 such that
the sublevel set {z € H : f(z) < f(2) + ¢} is
bounded.

e O is lower semicontinuous and is minimized at 0

o r < m.

If F admits a representer theorem w.r.t. S then §Q is
orthomonotone w.r.t. S.

Proof. The first part of the theorem (sufficiency) can be
proven by adapting a classical orthogonality argument

Take any wy,...,wm € H,v > 0. Let £ = ZS(wl)

and let £+ denote its orthogonal complement. Due to
the regular quasilinearity of S, £ is a finite dimensional
subspace that contains R = span{wy,...,wy,}. There-
fore any minimizer w of the regularization functional J =
(f,Q,v,w1,...,wy) can be decomposed as
W =u+wv, wel, veltCR:
Applying Lemma 2.1 we obtain that S(u) C £ and hence
that v € S(u)~L. If Q is orthomonotone then

J) = f({u4v,wy), ..., (u+ v, wn)) + 7 Qu+v)
= f({u,w1), ..., (U, W) +7Q(u+v)
Zf(<ua 1> y Wm )+’VQ(U‘)
= J(u),

so that u € £ is also a minimizer.

Now, let us prove the second part of the theorem (neces-
sity). Let us fix arbitrary z € H and y € S(x)~+. The goal
of the proof is to establish orthomonotonicity, namely the
inequality

Oz +y) > Qa). (7)

The proof is organized in three cases.

1. First, we observe that for z = 0 the inequality follows
directly from the hypothesis on €.

Wy, € H,v > 0}

2. Secondly, observe that if  (x + y)
(7) is trivially satisfied.

= +00, inequality

3. It remains to prove (7) in the case when

r#0 and Q(z+y)=C<+4o0. (8)
Since S is r-regular quasilinear and r < m, S(x) has
dimensionality ;¢ < m. Let us choose a set of vectors
{bi(x) : i € N,,,} spanning S(z) in a way such that

<$, b,(m)) = 27,'

Such a set can always be constructed, since z € S(z),
x # 0and 2 # 0, as follows. Pick uq,...,u,—1 €
S(x), such that {u,,...,u,—1,2} forms an orthogo-
nal basis of S(x). Without loss of generality, we may
assume that 2,, # 0. Then we may define b;(x ) =
w; + ”ij for1 < i< p—1andb;(z) = Hm\lzx
for p < i < m. Clearly these vectors span S(x) and
satisfy (9).

Vi € Ny (9)

For every v > 0, the functional J = (f,Q,~, b1(z),
..,bm(z)) belongs to F. Therefore, by the rep-
resenter theorem w.rt. S, J7 admits a minimizer

w) € Z S(bi(z)) C S(x) (where the last inclusion

follows from the idempotence of S). Let

zp = ((wg, bi(2)) ... (wy, bm(2))) -

Using the facts that f is minimized at 2, J_ is mini-
mized at w) and y € S(z)*, we obtain

f) +vQw]) < f(2]) +vQ(w]) = J)(w])
< JJ(x+y)=f(2)+vQ(@+y) (10)

for all v > 0. Note that f(2) is finite since Z is the
unique minimizer of f. Hence we conclude that

Q(z+y) > Q2 (w)) Yy > 0. (11)
In order to conclude the proof, we show that w] con-
verges to x as v — 0. Using (10), (8) and the hy-
pothesis that €2 is minimized at 0, we obtain

0< F(:0) = F(2) <7 (Qa+y) — 2 wD))
(€ 0 (w]))
<+ (C - 9(0)) (12
< +00, Vv >0

Now, let 4 denote a sequence of positive real num-
bers such that limy_, o, 7% = 0. From (12) it follows
that

lim f(=3) = F(3).

k—oc0
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It follows that there exists an index M such that, for
all k > M, z)* belongs to the bounded set {z € H :
f(z) < f(2) + e}. Therefore, the sequence z)* is
bounded and it has a convergent subsequence. Now,
take an arbitrary convergent subsequence of z)* and
let Z denote its limit. Since f is lower-semicontinuous
and Z is its only minimizer, it must be Z = 2. Hence,
the whole sequence z])* converges to Z, namely

lim <wgk,bi(x)> =% Vi € N,,.
k—o0

In view of (9) we have, for every ¢ € N,,,,

lim (w)* — x,b;(z)) = lim (w)*,b;i(z)) — 2, =0
k—o0 k—ro0
and therefore

lim (w)* —z,u) =0  Vue S(z). (13)

k—o0
Since z,w)* € S(x), the sequence w)* — x is con-
fined to the subspace S(z). Since S(z) is finite-
dimensional, (13) implies that w]* converges strongly
to x. By passing to the limit inferior in (11) and using
the lower semicontinuity of €, inequality (7) follows.

O

3.1. Loss Functions Which Lead to Orthomonotonicity

Observe that part 1 of Theorem 3.1 (sufficiency of or-
thomonotonicity) only requires existence of minimizers of
J, without any specific additional assumptions on the error
term. On the other side, part 2 (necessity of orthomono-
tonicity) holds under additional assumptions on f. In the
following, we provide examples of functions f that satisfy
such assumptions, showing that most of the error functions
considered in practice do so. The vast majority of error
functions used are additively separable, namely of the form

m

F(2) = V(z,), (14)
=1

where V : R x R = RU {400} and y; € R are prescribed
output data.

3.1.1. REGRESSION LOSS FUNCTIONS

In this section we show that, for a broad class of regres-
sion loss functions, it is possible to find output data such
that, if the family of regularization functionals (6) admits a
representer theorem, then €2 is orthomonotone.

Definition 3.4. We call the function V : Rx R = R U
{400} a regression loss function if

V(z,y) = ¢z —y),

where ¢ : R — R U {400} is lower semicontinuous with
bounded sublevel sets and minimized at zero.

The class of functions defined above includes any loss of
the form ¢(¢) = [¢|P with p > 0 (in particular, square and
absolute loss), the interpolation loss

¢>(t)—{0 if t=0

. b
+00 otherwise

as well as the e-insensitive loss ¢(t) = max{0, |[t| — e},
which is not uniquely minimized at zero.

Lemma 3.1. Assume that V is a regression loss function.
Then, for every p € N, there exist output data {y; : i €
Ny, } C Rand a function f,, : RP — RU {400} satisfying
the hypothesis of Theorem 3.1, Part 2, such that the error
functional

w = f((w,wr), ..., (W, wp), (w,wi), ..., (w,wpy)) ,

with f defined by (14) for m = 2p, equals the error func-
tional

w = fu((w,wi), ..., (w,wp)) .

3.1.2. BINARY CLASSIFICATION LOSS FUNCTIONS

Definition 3.5. We call the function V : R x {—1,+1} —
R a regular binary classification loss function if

V(Z> y) = (b(yz)a

where ¢ : R — R is lower semicontinuous, nonincreasing,
there exists o > 0 such that the function

Ya(t) = o(t) + ¢(—at),

admits a unique minimizer t # 0 and there exists ¢ > 0
such that the sublevel set {t € R : 1, (t) < mint, +¢} is
bounded.

It can be seen easily that this definition is satisfied by most
commonly used binary classification loss functions, includ-
ing the logistic loss ¢(t) = log(1 + e~*), the exponential
loss ¢(t) = e~ and the hinge loss ¢(t) = max{0,1 — t}.
To verify the uniqueness of the minimizer for these three
losses, choose for instance o = 1/2.

Lemma 3.2. Assume that V' is a regular binary classifi-
cation loss function. Then, for every p € N, there exist
output data {y; : i € Nop} C {—1,+1} and a function
fu @ RP — R satisfying the hypothesis of Theorem 3.1,
Part 2, such that the error functional

w = f(<w7w1>7 LR <w7wp>7 (w,aw1>, LR <’w,0¢’UJp>) )

with f defined by (14) for m = 2p, equals the error func-
tional

w = fu((w,wr), ..., (w,wy)) .
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3.2. Properties of Orthomonotone Functions

An obvious first fact about orthomonotone functions is that
nesting of maps preserves orthomonotonicity.

Proposition 3.1. If S,5 : H — V(H) are such that
S(x) C S'(z) forall x € H, thenany Q : H — RU{+oo0}
orthomonotone with respect to S is also orthomonotone
with respect to S’

Thus, enlarging the map S enlarges the class of orthomono-
tone functions as well. In the extreme case when S maps
every point to H, the orthomonotone class includes all
functions. At the other extreme, S maps every point to
{0} and the orthomonotone class equals the set of constant
functions.

A convenient way to obtain new orthomonotone functions
(and hence new representer theorems) is by applying sim-
ple operations to known orthomonotone functions. For
example, shifting the argument inside an orthomonotone
function yields an orthomonotone function with respect to a
larger map. This fact implies that Theorem 3.1 can be mod-
ified to apply to functions €2 that are minimized at points
other than 0.

Proposition 3.2. Leta € Hand Q : H — R U {400}
orthomonotone with respect to the map S : H — V(H).
If S is quasilinear then the function x — Q(x + a) is or-
thomonotone with respect to the map x — S(z) + S(a).

Another useful rule combines functions which are or-
thomonotone with respect to different maps.

Proposition 3.3. Ler )y : H — RU{+0o0} be orthomono-
tone with respect to a map S1 : H — V(H) and Qs :
H — R U {+oo} be orthomonotone with respect to a map
Sy i H — V(H). Alsoleth : (RU {+00})*> — RU{+00}
be elementwise nondecreasing, that is, h(a',b') > h(a,b)
whenever a’ > a and b/ > b. Then the function Q) : H —
R U {400},

Qw) = h (2 (w), Qa(w))

is orthomonotone with respect to the map S1 + So.

Yw € H,

This rule holds more generally for any finite number of
orthomonotone functions. In particular, any nonnegative
linear combination of orthomonotone functions is also or-
thomonotone with respect to the sum of the corresponding
maps. The same applies to the maximum and to the mini-
mum of orthomonotone functions.

Finally, there is a composition rule for orthomonotone
functions, similar to the chain rule for differentiation.
Proposition 3.4. Ler Q : H — R U {+00} be orthomono-
tone with respect to a map S : H — V(H) and let
T € Z(H) be a continuous operator. Then the function
Q o T is orthomonotone with respect to T* o S o T.

4. Examples of Representer Theorems

We now proceed to describe the set of orthomonotone func-
tions for specific regularization problems of interest. For
each problem, we describe the map S, provide a class of
orthomonotone functions and state the resulting represen-
ter theorem.

Example 4.1. Assume that the dimension of H is at least
two and let S be defined as in Example 2.1. Then, the def-
inition of representer theorem 3.1 reduces to the classical
linear combination of the representers

m
W= E CiWi,
i=1

where c; € R and the definition of orthomonotonicity (5)
reduces to
Nz +y) > QUzx)  foralz,yeH: (x,y)=0.
If Q) is lower-semicontinuous, this last condition is satisfied
if and only if
Qw) = h(Jwl])

with h : R — R U {400} nondecreasing.

See Theorem 1 of (Dinuzzo & Scholkopf, 2012) and (Ar-
gyriou et al., 2009; Yu et al., 2013) for related results. This
is a generalized version of the well known “classical” rep-
resenter theorem (Girosi, 1998; Kimeldorf & Wahba, 1970,
Scholkopf et al., 2001) which has found wide application to
regularization methods in Hilbert spaces.

Another known result can be recovered by applying the
shifting property of orthomonotone functions (Proposition
3.2) and Theorem 3.1. Then the resulting representer theo-
rem is an extension of the semiparametric representer the-
orem from (Scholkopf et al., 2001).

Example 4.2. Let H and S be defined as in Example 2.3.
Then the representer theorem 3.1 reduces to

=3 Wi
i=1
where C; are matrices in M,, and the definition of or-
thomonotonicity (5) reduces to
QX+Y) > QX)) forall X,Y € My, : XY =0.
Moreover, in this case the orthomonotonicity property is
equivalent to
QW) =h(WTW)

with h : ST — R U {400} being a matrix nondecreas-
ing function (with respect to the partial order of positive
semidefinite matrices).
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See (Argyriou et al., 2009; Yu et al., 2013) as well as (Amit
et al., 2007; Argyriou et al., 2008; 2010; Evgeniou et al.,
2005) for special cases. The above representation extends
the classical representer theorem to matrix learning prob-
lems, such as regularization with penalties involving the
Frobenius norm, the trace norm and general spectral penal-
ties. These methods have been used for multitask learn-
ing, collaborative filtering, kernel learning, domain adapta-
tion and other problems. Problems like multitask learning
benefit substantially from the representer theorem since in
those cases the data matrices are rank-one (and in collab-
orative filtering they are also sparse). Indeed, whenever
the data matrices are rank-one, that is, W; = a;b%, we

i o
m

can let v; = bZTCl- and write W = > aiviT , so that an
equivalent optimization problem withz silbstantially fewer
degrees of freedom can be obtained. This last representa-
tion ensures that (4) is equivalent to an optimization prob-
lem whose number of variables is mn, which can be much
smaller than dn, the size of matrix W.

It can also be seen that for other penalties of the type
QW) = g(RTWTGWR), with R € M,,;,, G € S,
and g matrix nondecreasing, other representer theorems can
be derived from the above result, by applying the change of
variable W' = G2 W. These apply, for example, to spec-
tral functions of QW R, with ) € M 4, which have been
proposed for vector valued learning (Dinuzzo & Fukumizu,
2011).

In addition, Example 4.2 relates to certain optimiza-
tion problems with positive semidefinite matrix vari-
ables. Indeed, problem (4) with H = M, QW) =
g(R"WTW R), g matrix nondecreasing and rank-one data,
yields a problem of the type

min{ f(y{ Zz1,...,ypZxm) +v9(R"ZR) : Z € S' }
15)
by the change of variable Z = W T W. Thus a representer
theorem for this family of problems follows directly from
Example 4.2. Some results for special cases of (15), ap-
plied to metric and semisupervised learning, have already

appeared in (Jain et al., 2010; 2012).

Example 4.3. Assume H = Mg, equipped with the stan-
dard inner product, and suppose that S maps

X—={XC+DX:CeM,,DeMy}.

Then S is nd-regular quasilinear. For this map, definition
3.1 reads

m
W = (WiCi + D;W;) ,
=1

and the definition of orthomonotonicity (5) reduces to

QX+Y) > Q(X), forall X, Y € My, : {

which is satisfied by all functions such that
QW) = (WTW, WWT),

where h : S x 8¢ — RU{+oc} is matrix nondecreasing
in each matrix argument.

The family of regularizers described in the last example
includes, for instance, functions of the form

QW) = [lewW | + [WR]| ,

where || - || is any orthogonally invariant norm. Such penal-
ties are of considerable interest in many matrix learning
problems, since they allow for incorporating information
about both row and column dependencies, by designing the
matrices () and R. This can be applied, for instance, to col-
laborative filtering problems when side information about
both users and items is available. When the data matri-
ces are rank-one (such as in multi-task learning and collab-
orative filtering problems), the representer theorem above
makes it again possible to obtain a significant reduction in
the number of degrees of freedom, since the solution W can
m
be rewritten in the form W = > (a;07 +u;bT), where the
i=1
number of variables, m(n + d), can be much smaller than
nd, the size of W.

5. Conclusion

We have presented a framework which unifies existing re-
sults about representer theorems for regularization prob-
lems and allows for a more formal study of these results.
We introduced a new definition of representer theorem to
include a broader family of representation results. We
showed that each theorem in this family corresponds to a
regular quasilinear subspace-valued map. Moreover, we
characterized the class of regularization penalties corre-
sponding to each representer theorem via the orthomono-
tonicity property. Orthomonotone functions exhibit simple
calculus rules, which can be used to obtain new representer
theorems by combining existing ones.

Our new framework opens a number of possibilities for
further investigation. First of all, it calls for more de-
tailed characterizations of regular quasilinear subspace-
valued maps and orthomonotone functions, given their im-
portance in the mathematical construction that leads to the
representer theorems. Secondly, it can lead to the deriva-
tion of new families of regularization penalties and corre-
sponding methodologies, for example, for matrix and ten-
sor regularization. Finally, it lays the foundation for a new
and more general class of kernel methods, obtained by de-

XTy = ( riving nonlinear versions of the family of representations
XYT = ( which we have proposed.



A Unifying View of Representer Theorems

References

Abernethy, J., Bach, F., Evgeniou, T., and Vert, J-P. A new
approach to collaborative filtering: Operator estimation
with spectral regularization. Journal of Machine Learn-
ing Research, 10:803-826, 2009.

Amit, Y., Fink, M., Srebro, N., and Ullman, S. Uncover-
ing shared structures in multiclass classification. In Pro-
ceedings of the Twenty-Fourth International Conference
on Machine learning, 2007.

Argyriou, A., Evgeniou, T., and Pontil, M. Convex multi-
task feature learning. Machine Learning, 73(3):243—
272, 2008.

Argyriou, A., Micchelli, C. A., and Pontil, M. When is
there a representer theorem? Vector versus matrix reg-
ularizers. Journal of Machine Learning Research, 10:
2507-2529, 2009.

Argyriou, A., Micchelli, C.A., and Pontil, M. On spectral
learning. The Journal of Machine Learning Research,
11:935-953, 2010.

Belkin, M., Niyogi, P., and Sindhwani, V. Manifold reg-
ularization: A geometric framework for learning from
labeled and unlabeled examples. Journal of Machine
Learning Research, 7:2399-2434, 2006.

De Vito, E., Rosasco, L., Caponnetto, A., Piana, M., and
Verri, A. Some properties of regularized kernel methods.
Journal of Machine Learning Research, 5:1363—1390,
2004.

Dinuzzo, F. and Fukumizu, K. Learning low-rank output
kernels. Journal of Machine Learning Research, 20:
181-196, 2011.

Dinuzzo, F. and Scholkopf, B. The representer theorem for
Hilbert spaces: a necessary and sufficient condition. In
Advances in Neural Information Processing Systems 25,

pp. 189196, 2012.

Dinuzzo, F., Neve, M., De Nicolao, G., and Gianazza,
U. P. On the representer theorem and equivalent degrees
of freedom of SVR. Journal of Machine Learning Re-
search, 8:2467-2495, 2007.

Evgeniou, T., Micchelli, C. A., and Pontil, M. Learning
multiple tasks with kernel methods. Journal of Machine
Learning Research, 6:615-637, 2005.

Girosi, F.  An equivalence between sparse approximation
and support vector machines. Neural Computation, 10
(6):1455-1480, 1998.

Jain, P., Kulis, B., and Dhillon, I. S. Inductive regularized
learning of kernel functions. In Advances in Neural In-
formation Processing Systems, pp. 946-954, 2010.

Jain, P,, Kulis, B., Davis, J. V., and Dhillon, I. S. Metric and
kernel learning using a linear transformation. The Jour-
nal of Machine Learning Research, 13:519-547, 2012.

Kimeldorf, G. S. and Wahba, G. A correspondence be-
tween Bayesian estimation on stochastic processes and
smoothing by splines. The Annals of Mathematical
Statistics, 41(2):495-502, 1970.

Kulis, B., Saenko, K., and Darrell, T. What you saw is not
what you get: Domain adaptation using asymmetric ker-
nel transforms. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 1785-1792, 2011.

Lafferty, J., Zhu, X., and Liu, Y. Kernel conditional ran-
dom fields: representation and clique selection. In Pro-
ceedings of the Twenty-First International Conference
on Machine learning, pp. 64, 2004.

Micchelli, C. A. and Pontil, M. On learning vector—valued
functions. Neural Computation, 17:177-204, 2005.

Mukherjee, S. and Wu, Q. Estimation of gradients and co-
ordinate covariation in classification. The Journal of Ma-
chine Learning Research, 7:2481-2514, 2006.

Pillai, N. S., Wu, Q., Liang, F., Mukherjee, S., and Wolpert,
R. L. Characterizing the function space for Bayesian
kernel models. Journal of Machine Learning Research,
8:1769-1797, 2007.

Scholkopf, B. and Smola, A. J. Learning with Kernels.
MIT Press, 2002.

Scholkopf, B., Herbrich, R., and Smola., A.J. A general-
ized representer theorem. In Proceedings of the Four-
teenth Annual Conference on Computational Learning
Theory, 2001.

Signoretto, M., De Lathauwer, L., and Suykens, J. A. K.
Learning tensors in reproducing kernel Hilbert spaces
with multilinear spectral penalties.  arXiv preprint
arXiv:1310.4977, 2013.

Sriperumbudur, B. K., Gretton, A., Fukumizu, K.,
Scholkopf, B., and Lanckriet, G.R.G. Hilbert space em-
beddings and metrics on probability measures. Journal
of Machine Learning Research, 11:1517-1561, 2010.

Steinwart, I. Sparseness of support vector machines. Jour-
nal of Machine Learning Research, 4:1071-1105, 2003.

Yu, Y., Cheng, H., Schuurmans, D., and Szepesvari, C.
Characterizing the representer theorem. In Proceedings
of the 30th International Conference on Machine Learn-
ing, pp. 570-578, 2013.



A Unifying View of Representer Theorems

Zhang, H. and Zhang, J. Regularized learning in Banach
spaces as an optimization problem: representer theo-
rems. Journal of Global Optimization, 54(2):235-250,
2012.

6. Supplement
6.1. Subspace-Valued Maps

Proposition 6.1. Let S denote a quasilinear subspace-
valued map. Then

S(az) = aS(x)

and

aS(z) C S(ax + By) + BS(y)
foreveryz,y € H, o, € R.

Proof. The case a = 0 follows directly from the definition.
If o # 0, applying quasilinearity with 5 < 0 we obtain
that S(az) € aS(z) and S(z) € L5(az). From these (2)
follows. (3) follows from (2) and the definition applied to
the difference of ax + By and Sy. O

Lemma 6.1. Let S be a quasilinear and idempotent
subspace-valued map. Then, for every m € N and every
set {x; 11 € N, } C H, it holds that

S (Z S(xi)> c ZS(l‘i).

Proof. From quasilinearity and idempotence we obtain that
S(S(z) +y) C S(x) + S(y) for every z,y € H. The
assertion then follows by induction. O

6.2. Loss Functions Which Lead to Orthomonotonicity

Lemma 6.2. Assume that V is a regression loss function.
Then, for every p € N, there exist output data {y; : i €
Ny, } C R and a function f, : RP — RU {400} satisfying
the hypothesis of Theorem 3.1, Part 2, such that the error
functional

w > f(<w7w1>, R <w>wp>v <w7w1>7 cery <w7wp>) 9

with [ defined by (14) for m = 2p, equals the error func-
tional

w = fu((w,wr), ..., (w,wy)) .

Proof. By the hypothesis on ¢, it follows that the set of
minimizers M = {t € R : ¢(t) = ¢(0)} is closed and
bounded. If ¢ is uniquely minimized at zero, that is M =
{0}, we have immediately that f satisfies the hypothesis of
part 2 of Theorem 3.1 if we select the output data vector to
be nonzero. Otherwise, let « = min M and 8 = max M,
and consider the error function

P

fu(z) = Z‘/u(zuyz) )
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Observe that the function V,,(z, y) is lower semicontinuous
and has bounded sublevel sets. Moreover, it is uniquely
minimized for z = y + 3, since

o if 2 =y + 3, then Vi, (2,y) = ¢(B) + ¢(a) = 2¢(0),
o if 2 > y+0, then Vi (2,y) > ¢(2—y)+(0) > 2¢(0),

o if 2 < y+3,then V (2, 9) > ¢(0)+d(z—y—L+a) >
2¢(0).

The error function f, is lower semicontinuous with
bounded sublevel sets and uniquely minimized for z; =
y; + B, thus satisfying the hypothesis of part 2 of Theo-
rem 3.1, provided that y; # —f for some i € N,. Finally,
observe that

f(<wa w1>a R <wva>a <w7w1>a R <w7wP>)
= fu({w,w1),. .., (w,wp)) Yw € H
if we choose yp, i = y; + (8 — «) forall i € N,,. O

Lemma 6.3. Assume that V is a regular binary classifi-
cation loss function. Then, for every p € N, there exist
output data {y; : i € Ng,} C {—1,4+1} and a function
fu : RP — R satisfying the hypothesis of Theorem 3.1,
Part 2, such that the error functional

w = f(w,wi), ..., (w,wp), (w,aw),..., (w,aw,))),

with f defined by (14) for m = 2p, equals the error func-
tional

w = fu((w,wr), ..., (w,wy)) .

Proof. For any p € Nand y € {—1,+1}?, consider the
error function

P

fu2) = valziyi) -

=1

In view of the hypothesis on ¢, the function f, satisfies the
hypothesis of part 2 of Theorem 3.1. Moreover, observe
that

f(<w7w1>7 ceey <U),'LUp>, <w7 aw1>7 ceey <w>awp>) =
= fu{w,w1), ..., (w,wpy)) YweH

if we choose yp4; = —y; forall i € N,,. O

6.3. Properties of Orthomonotone Functions

Proposition 6.2. Lera € H and Q : H — R U {400}
orthomonotone with respect to the map S : H — V(H).
If S is quasilinear then the function x — Q(x + a) is or-
thomonotone with respect to the map x — S(x) + S(a).

Proof. Quasilinearity implies that S(z+a) C S(x)+S(a),
for every « € H, and the assertion follows from the defini-
tion of orthomonotonicity. O

Proposition 6.3. Ler 2y : H — RU{+o0} be orthomono-
tone with respect to a map S1 : H — V(H) and Qg :
H — R U {+00} be orthomonotone with respect to a map
Sy i H — V(H). Alsoleth : (RU {+00})* — RU{+00}
be elementwise nondecreasing, that is, h(a',b') > h(a,b)
whenever a’ > a and b/ > b. Then the function Q : H —
R U {400},

Qw) = h (1 (w), W(w))  Yw e H,

is orthomonotone with respect to the map S1 + So.

Proof. The assertion follows by combining the orthomono-
tonicities of 1,y with the fact that if w € H, p €
(S1 + S2)(w)t then p € S1(w)* N So(w)t. O

Note that such operations enlarge, in general, the class of
orthomonotone functions, since the image of S; + Sy at
any fixed point contains those of Sq,S3. Thus, Proposi-
tion 3.3 can be used to obtain representer theorems for new
penalties, based on known representer theorems. How-
ever, this technique may not provide the complete class
of orthomonotone penalties for the sum of the maps. An
example of this is the multitask representer theorem (see
Example 4.2) which yields a class of penalties of the
form h(WTW). Applying the “classical” representer the-
orem on the space of matrices Mg ,, yields the subclass of
the form h(||W|%,.,)- Considering the maps S;;(X) =
span{XFE;;}, i € Ng,j € N,, each of which corre-
sponds to the class of monotone functions of |w;|, we
could apply Proposition 3.3 and obtain the class of penal-
ties h(||w1]|?, ..., ||wy|/?), whichis strictly nested between
the previous two classes.

Proposition 6.4. Ler Q : H — R U {+00} be orthomono-
tone with respect to a map S : H — V(H) and let
T € Z(H) be a continuous operator. Then the function
Q o T is orthomonotone with respect to T* o S o T.

Proof. Letx € H,y € (T* o SoT)(x):. Then Ty €
S(Tx)* and, by orthomonotonicity of €2, we obtain that
WTx+Ty) > QTx). O

6.4. Tensor Learning

A representer theorem can also be derived for tensor learn-
ing problems. Consider a regularization problem for learn-
ing a 3-way tensor
mln{f((VV, W1>, ceey <W, Wm>) +M Ql(Matl (W))
+Y2 QQ (Mat2 (W)) + 73 Qg (Mat; (W))
(W e R xdaxdsy, (16)
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Here Mat; is the operator that maps a tensor to its -th ma-
trix unfolding and Q1 : My, 4,0, — R U {400}, Qs :
Mdg,d1d3 — RU {+OO}, Qs : Mdg,d1d2 — RU {+OO} are
functions of the form

Qi(X) = hi(XTX)

with h; a matrix nondecreasing function. Examples of such
penalties €2; are spectral functions of the matricizations,
weighted spectral functions of the matricizations, group
Lasso type mixed (2, p) norms of the matricizations etc. Let
T; = Mat; and S; similar to Example 2.3, for i = 1,2, 3.
The case of spectral penalties on matricizations has been
proposed and studied recently — see (Signoretto et al., 2013)
and references therein.

Applying Propositions 3.3 and 3.4, we obtain that the
penalty in (16) is orthomonotone with respect to the map
S’ :TI*OSlOTl +T50520T2+T§0530T3. Since
T} = Mat, !, the map S’ is idempotent and hence regu-
lar quasilinear. Thus we obtain the following representer
theorem.

Corollary 6.1. If problem (16) admits a minimizer then
there exists a minimizer W of the form

W= Em: Mat] ! (Matl(Wi)Ci(l))
=1

+ i Mat; ! (Matz(Wi)C’éi))
=1

+ i Mat; ! (Matg(Wi)O?Ei))
=1

fOF some Cz(l) S MdzdS;Ci(Z) S MdldS,OZ-(S) S Mdldzy
Vi € Npp,.

Clearly the result generalizes to tensors of any order. A
related representer theorem for the special case of spectral
penalties has recently appeared in (Signoretto et al., 2013).



