
 326

Coherent Inference on Optimal Play in Game Trees

Philipp Hennig David Stern Thore Graepel
Cavendish Laboratory

19 J J Thomson Avenue
Cambridge CB3 0HE, UK

Microsoft Research Ltd.
7 J J Thomson Avenue

Cambridge CB3 0FB, UK

Microsoft Research Ltd.
7 J J Thomson Avenue

Cambridge CB3 0FB, UK

Abstract

Round-based games are an instance of dis-
crete planning problems. Some of the best
contemporary game tree search algorithms
use random roll-outs as data. Relying on
a good policy, they learn on-policy values
by propagating information upwards in the
tree, but not between sibling nodes. Here, we
present a generative model and a correspond-
ing approximate message passing scheme for
inference on the optimal, off-policy value of
nodes in smooth and/or trees, given ran-
dom roll-outs. The crucial insight is that
the distribution of values in game trees is
not completely arbitrary. We define a gen-
erative model of the on-policy values using a
latent score for each state, representing the
value under the random roll-out policy. In-
ference on the values under the optimal pol-
icy separates into an inductive, pre-data step
and a deductive, post-data part. Both can
be solved approximately with Expectation
Propagation, allowing off-policy value infer-
ence for any node in the (exponentially big)
tree in linear time.

1 Introduction

Many round-based two-player games, like Chess and
Go, can be represented, up to transpositions, by
graphs with the structure of and/or trees (Nilsson,
1971). If the branching factor b is constant, a tree of
depth d contains bd nodes. For Go, b and d are on
the order of 200, so it seems finding the optimal path
through the game should be intractable. Yet humans
can find good paths through the Go tree in finite time.

Appearing in Proceedings of the 13th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2010, Chia Laguna Resort, Sardinia, Italy. Volume 9 of
JMLR: W&CP 9. Copyright 2010 by the authors.

A crucial property of games that humans use is that
the tree has structure: Winning positions are not ran-
domly distributed among the tree’s leaves, but clus-
tered. This structure can be modeled by a latent score,
representing the amount by which one player is ‘ahead’
or ‘behind’. Random play leads to a random walk,
typically changing the evaluation by small increments.
Critical moves, changing the score drastically, are a
rare occurrence in the tree overall.

Although it is not usually mentioned explicitly, this
smoothness is a crucial intuition behind Monte Carlo
algorithms for ‘best first’ tree search, like UCT (Kocsis
and Szepesvári, 2006), which have been very successful
recently. These algorithms repeatedly play roll-outs—
random descents through the tree to a leaf, generated
by a relatively weak or uniformly random policy. The
search tree is expanded asymmetrically from the root,
based on the frequency of wins and losses in the roll-
outs. If wins and losses were distributed uniformly at
random among the leaves, the roll-out results would be
almost completely uninformative (Pearl, 1985). The
best contemporary Go machines are using UCT as part
of their method (Gelly and Silver, 2008). However,
UCT-like methods base their value estimates directly
on average outcomes of tree-descents, making them
dependent on a good exploration and roll-out policy.
They also do not propagate information laterally in the
tree, although, thanks to the smoothness of the tree,
the value of a node does contain information about the
value of its siblings.

In this paper, we construct an explicit generative
model for the value of game tree nodes under the ran-
dom roll-out policy. Finding the value under the op-
timal policy would amount to solving a min-max op-
timization problem of complexity O(bd) if all nodes
were observed. However, for best-first search algo-
rithms, we will show how an approximate closed form
for the unobserved parts of the tree can be constructed
and used to derive an approximate message passing
scheme. The resulting algorithm tracks a joint poste-
rior belief over the optimal values of all nodes in the

 327

Coherent Inference on Optimal Play in Game Trees

tree. It incorporates a new roll-out at depth k from
the root in O(kb) time (using heuristics, this can be
brought to O(k), the complexity class of UCT), ar-
riving at an intermediate set of local marginals which
is sufficient to evaluate the posterior of an arbitrary
node at depth ` in the tree (something classic Monte
Carlo algorithms cannot do) with cost O(`). The al-
gorithm can be interpreted as an instance of Bayesian
off-policy reinforcement learning (Watkins and Dayan,
1992; Dearden et al., 1998), inferring the optimal pol-
icy from samples generated by a non-optimal policy.
Our method might be applicable, to varying degree,
to other tree-structured optimization problems, if they
exhibit a functional relationship between steps; c.f.
the metric (though not tree-structured) sets of ban-
dits considered by Kleinberg et al. (2008).

Our main contributions are the generative model for
the score of game positions, the formulation of a prob-
abilistic best-first tree search algorithm, and a demon-
stration of Expectation Propagation on min-max trees
(the necessary mathematical derivations are part of a
technical report by one of the authors (Hennig, 2009)).

Probabilistic approaches to game tree search have been
suggested before (see e.g. Baum and Smith, 1997; Rus-
sell and Wefald, 1991; Palay, 1985; Stern et al., 2007).
These works concentrated on guiding the search policy.
Here we focus on efficient and consistent off-policy in-
ference for the entire tree. This is valuable because
a coherent posterior over off-policy values provides
meaningful probabilistic training data for Bayesian al-
gorithms attempting to learn a generalizing evaluation
function based on features of the game state.

2 Methods

This section defines the problem (2.1), then develops
the algorithm in several steps. We define the gener-
ative model of on-policy and off-policy values (2.2),
show how to perform inference in this model by way
of example (2.3), and finally combine the results into
an explicit algorithm (2.4).

2.1 Problem Definition

We consider a tree-structured graph defining a round-
based, loop-free, zero-sum game between two opposing
players, max and min with binary1 outcomes 1 and −1
(“win” and “loss” from max’s point of view). max is
defined to be the first player to move.

The task is to predict the outcome of the game, assum-
ing optimal play by both players, from any position in

1Games with real-valued outcomes are in fact an easier
variant of this problem, because the scores gt of terminal
nodes can be observed directly, rather than just their signs.

the tree. The only type of data available (at request)
is the length ` ∈ N and result ri ∈ {−1; 1} of random
roll-outs of the game starting at node i. A roll-out is a
path through the tree to a terminal node, generated by
a policy choosing stochastically (not necessarily uni-
formly) among available moves in each encountered
position. (The policies of contemporary UCT algo-
rithms do not choose moves uniformly at random. See
Section 3.4 for experimental evidence that our model
can still be approximately valid in this case.)

2.2 Generative Model

The following two definitions jointly form a generative
model M for the latent scores G = {gi} and optimal
values V = {vi} of tree nodes i.

Definition: The score gi of node i models the value
of i under random play. It is a real number such that

• for any terminal position t, sign(gt) = rt, where
rt is the binary result of the game at t. The like-
lihood for gt is thus a step function (denoted θ):

p(rt|gt) = θ(rtgt) (1)

• the score of child node c of node i is generated
from gi by a univariate Gaussian step:

p(gc|gi,M) = N (gc; gi, 1) (2)

• the prior for the score of the root note is Gaussian
p(g0) = N (µ0, σ

2
0) (one is free to choose µ0 and

σ0, although µ0 = 0 is the obvious choice).

Thus, scores of sibling nodes are independent given
their parent’s score, and roll-outs are Brownian ran-
dom walks. For binary results, the scale factor of the
steps is arbitrary and set to 1 for simplicity only.

Definition: The off-policy value vi of node i is the
value of node i under optimal play by both players.
That is

• for terminal positions t, we have vt = gt.

• for non-terminal positions i with children {c}i

vi =

{
maxc{vc} if max plays at i

minc{vc} if min plays at i.
(3)

We note in passing that or-trees (i.e. tree-structured
optimization problems, and non-adversarial games like
Solitaire) are a trivial variant of this formulation.

Figure 1 shows the full generative model for a small
tree of b = 2 and d = 4, as a directed graphical model.
Note that only the sign of outcomes is observed (black
nodes), all other variables are latent.

 328

Philipp Hennig, David Stern, Thore Graepel

g0

g1

g11

v11

g12

v12

v1

g2

g21

v21

g22

v22

v2

v0

G

R

V

ro
llo

ut

max

max

max

max

min

min

min

min

T
erm

in
a
l

P
o
sitio

n

g1 ∼ N
(g0, 1

) g2 ∼ N (g0, 1)

v0 = max(v1, v2)

v1 = min(v11, v12)

nodes stored
in memory

untracked nodes
(inductive part)

optimal value
(ground truth)

Figure 1: Generative model (Bayesian network) for the scores G, the roll-out results R and the optimal values V
of an example game represented by a binary tree of depth 4. Shown is the situation after four search-descents into
the tree. The most recent roll-out (of length 2) is shown as two black curved arrows. Ground truth generation
of v as thick arrows (i.e. optimal play consists of max moving from node 0 to node 1, then min moving to 12,
etc.). Note that, while the v nodes are shown below the g nodes here for readability, in the text ‘up’ and ‘down’
refer to the game tree structure, with parent nodes vi being ‘above’ children vij .

2.3 Inference

We will derive an approximate Belief Propagation
algorithm (Lauritzen and Spiegelhalter, 1988; Pearl,
1988) to perform inference both on the scores and val-
ues, using Gaussian Expectation Propagation (Minka,
2001) to project the messages to the normal exponen-
tial family. Belief Propagation is a message passing
scheme between the nodes of a Bayesian network: The
marginal probability p(xi) of a latent variable xi in the
model is the product of messages mxj (xi) from neigh-
boring variables xj , as defined by the structure of the
graph. Gaussian Expectation Propagation keeps in-
ference tractable by replacing these messages with ap-
proximate Gaussian messages, such that the resulting
marginal matches the first two moments of the true
marginal.

Inspecting Figure 1, it might seem like inference in the
tree would call for messages among all bd nodes. In this
Section, we will show that this can be avoided, because
the messages from unobserved parts of the tree can be
derived a priori, in jointly O(bd) time.

We assume the learner acquires data in a best-first
manner: At any given point in time, it tracks an asym-
metric but contiguous tree in memory which includes
the root. Additional nodes are added to the boundary
of the stored tree by requesting a roll-out from that

node. The message passing is performed in parallel
with the search process. The resulting message pass-
ing schedule is quite complex. For clarity, we will use
an example descent through Figure 1.

2.3.1 On-Policy Inference on g

Each search descent begins at the root node 0. As the
descent passes through the tracked part of the tree, a
policy π chooses among available children, potentially
based on the current beliefs over their v. For our ex-
ample, say the policy chose the descent 0 → 1 → 12.
At each step, we update the message from the current
node to the chosen child. The message out of g1 in the
direction of g12 is

mpa(1)(g1)
∏

j∈ch(1)\12

mgj (g1) ≡ N (µ1\12, σ
2
1\12) (4)

where ch(1)\12 is the set of child nodes of 1 excluding
node 12, and pa(1) is the parent node (i.e. 0) of 1. And
the message into g12 is

mg1(g12) =

∫
p(g12|g1)p(g1|gpa(1), {gch(1)\12}) dg1

= N (µ1\12, σ
2
1\12 + 1)

(5)
Assume node 12 just reached is not part of the stored
tree yet. To add it to the tree, we request a roll-out

 329

Coherent Inference on Optimal Play in Game Trees

starting from 12, which turns out to be of length ` =
2 and have result r = +1 (see Figure 1). The data
thus gained is a likelihood p(r|gt) of the score of the
terminal position t at the end of the roll-out, which is
a step-function and thus not normalizable. However,
we can generate a prior over gt as a message from
the current marginal over g12 by integrating out the `
intermediate steps (see Equation (5)):

p(gt|g12) = N (µ12, σ
2
12 + `) (6)

giving a posterior over gt which is a truncated Gaus-
sian. To get the EP message back to g12, we need
a function fEP

trG, which calculates the moments of this
truncated Gaussian distribution. The calculation is
straightforward, because for Gaussians in general∫ ∞

0

xN (x;µ, σ2) = µΦ
(µ
σ

)
+ σφ

(µ
σ

)
and∫ ∞

0

x2N (x;µ, σ2) = (µ2 + σ2)Φ
(µ
σ

)
+ µσφ

(µ
σ

)
This result was used previously for EP by Herbrich
et al. (2007). To finally arrive at the message mr12(g12)
from the roll-out to g12, we need to apply fN (0,`) again
to the resulting EP message. Note that the message
contains no g other than gi. It is thus possible to
perform inference on gi using exactly two messages:
One from its parent node, and one from the outcome
of the roll-out.

To incorporate the new knowledge from this roll-out
into all parent nodes of g12, we pass messages of anal-
ogous form to Equation (5) back up the tree. This
obviously does not propagate the information through
the whole tree, but it leads to a situation where the
score gi of any node i in the tree can be evaluated
in linear time, simply by performing one descent from
the root towards i, updating messages analogously to
Equation (5) downwards during the descent.

There is one more pitfall to avoid: The next time a
search descent passes through node 12 which currently
lies at the boundary of the tracked tree, leading to the
addition of a child node of 12 and a roll-out from there,
it becomes necessary to remove the information gained
from the roll-out at node 12 from the marginal. Be-
cause the roll-out necessarily passed through one of i’s
children, information from that child would otherwise
be counted twice. This removal corresponds to ‘divid-
ing’ the corresponding message out of the marginal,
which for Gaussians has closed form:

N (x;µa, σ
2
a)/N (x;µb, σ

2
b) ∝

N
(
x;

(
µa

σ2
a

− µb

σ2
b

)(
σ−2
a − σ−2

b

)−1
,
(
σ−2
a − σ−2

b

)−1
)

This ‘division’ operation for distributions is used ex-
tensively in EP message passing schemes because it
increases computational efficiency (Minka, 2001).

2.3.2 Off-Policy Inference on v

The previous paragraph sketched the message passing
inference leading to a consistent posterior over scores
G. How can these beliefs be used to obtain a poste-
rior over the values V ? We will use the definitions of
Section 2.2 to again derive a message-passing scheme
running parallel to the search process.

First, consider again node i = 12 in Figure 1, at the
boundary of the stored tree. The value under optimal
play is the sum of the two independent variables

vi = gi + ∆i (7)

where ∆i is the optimal reachable increment to the
score of i. So the inference breaks up into a deductive
part (on gi, as solved in the previous section) and an
inductive part (on ∆i). If the next move after i is con-
trolled by max (replace max with min in the opposite
case), then

∆i = max
j∈children(i)

{ξj + ∆j} (8)

where ξj ∼ N (0, 1) is the unknown Brownian step to
the score of node j. Deriving a belief over ∆i for any
node i, which is `i steps from a terminal position, is
a recursive problem which depends only on `i and the
branching factor b: Assuming min gets the last move
(with straightforward variations in other cases), ∆i is

∆i(`i, b) =

δ(∆i − 0)

maxj=1...b {∆j(`i − 1, b) + ξj}
minj=1...b {∆j(`i − 1, b) + ξj}

(9)

for ` = 0, for ` mod 2 = 0 and for ` mod 2 = 1, re-
spectively.

Similarly to the situation in the previous Section, the
beliefs generated by this recursive operation are not
Gaussian themselves. To perform the EP approxima-
tion, we need the function fEP

max /min calculating the
moments of the maximum or minimum over Gaus-
sian variables. The necessary derivations are lengthy
and thus left out here for brevity. A technical report
by one of the authors (Hennig, 2009) develops these
moments for the case of the maximum of two Gaus-
sian variables (Equation 25 in the cited work) and
shows how to combine such binary comparisons iter-
atively into an approximate posterior belief over the
maximum of a finite set of such variables (Section 3.2
in the cited work). The corresponding messages for
the minimum of variables is a trivial variant, because
mini{xi} = −maxi{−xi}. Using this approximation,
we arrive at a recursive operation in closed form, which
can be used to derive the message from ∆(`) for all `
up to a pre-defined depth. This can be done prior

 330

Philipp Hennig, David Stern, Thore Graepel

to data acquisition, once for the entire game tree, in
O(bd) time, which is easily tractable even for massive
game trees like that of 19 × 19 Go. In our simple,
non-optimized implementation, this step takes about
2 minutes on a contemporary desktop machine, for a
tree of Go-like dimensions (10400 nodes). This step is
a parametrized version of the Monte Carlo technique
known as density evolution (e.g. MacKay, 2003, Sec.
47.5). See Section 3.3 for an experimental analysis of
the quality of the approximation.

We sum the independent variables gi and ∆i, using
the exact function

f∑N [N (µa, σ
2
a),N (µb, σ

2
b)
]

= N (µa + µb, σ
2
a + σ2

b)

For a node j which does not lie on the boundary of
the stored tree, vj is given by Equation (3). Marginals
p(vcj) are available for all children cj of j in this case.
Hence, an approximate Gaussian message to vj from
its children can be found using the same method as
above. However, it is important to note that the chil-
dren of vj are correlated variables, because they are all
of the form shown in Equation (7), sharing the contri-
bution gj . The EP equations derived in (Hennig, 2009)
include the correlated case. Using approximate Gaus-
sian messages

q(vk) = N (µk, σ
2
k) = N (µgj + µ∆k

, σ2
gj + σ2

∆k
) (10)

for each child k of j, the correlation coefficient2 ρk1k2

between two children k1 and k2 is

ρ12 = V −1(σ2
gi − µgiµ∆k1

− µgiµ∆k2
− µ∆k1

µ∆ik2
)

V ≡ (σ2
gi + σ2

∆k1
− 2µgiµ∆k1

)1/2

· (σ2
gi + σ2

∆k2
− 2µgiµ∆k2

)1/2

2.3.3 Loopiness

From Figure 1, it is clear that the graphical model con-
tains loops. However, because we assume no outside
information on the optimal value v0 of the root, the
EP messages from the v’s to the g’s are uniform (Hen-
nig, 2009). So inference on the g’s is not influenced by
the v-part of the graph. Thus, while the inclusion of
the v-nodes does create loops in the overall graph, the
message-passing within the v-part of the tree is based
on a consistent set of marginals on the g’s.

2.4 Algorithm

Algorithm 1 sums up the message-passing and search
scheme presented in the previous Sections. It defines
a recursive function that descends through the tracked

2The correlation coefficient ρij between two Gaussian

variables i and j is defined by cov (ij) = ρij
√

var (i) var (j).

tree to a leaf, passing messages downward (the opera-
tor fN (0,1)(p) refers to Equation (5)). At the boundary
of the stored tree, it performs a roll-out, then passes
g and v messages upwards to the root. The actual
top-level search algorithm repeatedly calls this func-
tion, accumulating more and more data, at roughly
constant computational cost per call (apart from the
small increase in cost caused by the growth of the
stored tree). The descent through the stored tree is
guided by some policy π, which may (and should) de-
pend on the current beliefs over values v. The nota-
tion pa(i) and si(i) refers to the parent of i and the
set of siblings of (and including) i, respectively. The
function stored accesses a one-dimensional array of
stored inductive messages from the un-explored parts
of the tree, as discussed in Section 2.3.2.

Algorithm 1 Bayesian Best-First Tree Search

1: procedure descent(i)
2: if i previously visited then
3: . choose child c to explore

4: c← π(i)
5: . update message to c.

6: p(gc)← p(gc)/mgi(gc)
7: mgi(gc)← fN (0,1)[p(gi)/mgc(gi)]
8: p(gc)← p(gc) ·mgi(gc)
9: . continue descent (returns g message from child)

10: m′c(gi)← descent(c)
11: . update marginals

12: p(gi)← p(gi)/mc(gi) ·m′c(gi)
13: mc(gi)← m′c(gi)
14: else
15: . divide out roll-out from parent’s marginal

16: p(gpa(i))← p(gpa(i))/mrpa(i)(gpa(i))
17: mrpa(gpa(i))← N (0,∞)
18: . update message from parent to gi (lines 3 to 5)

19: . do roll-out

20: (ri, `i)← rollout(i)
21: . generate message from roll-out result to i

22: mri(gi)← fN (0,`i)

[
fEP

trG(ri, fN (0,`i)[p(gi)])
]

23: p(gi)← p(gi) ·mri(gi)
24: . generate marginal for vi
25: p(vi)← f∑N [p(gi),stored(`i)]
26: end if
27: . Calculate messages to parent’s g and v

28: mi(gpa(i))← fN (0,1)(p(gi)/mpa(i)(gi))
29: p(vpa(i))← fEP

max /min({p(vk)}k∈si(i), p(gi))

30: return mi(gpa(i))
31: end procedure

2.5 Exploration Policies

While the inference process itself is independent of the
chosen policy π in Algorithm 1, the policy is crucial
to make the roll-outs informative about the optimal
path (this is a general feature of off-policy reinforce-
ment learning). Many possible policies are available,

 331

Coherent Inference on Optimal Play in Game Trees

100 101 102 103 104

ndescent

2.2

2.0

1.8

1.6

1.4

1.2
〈 lo

g
p
(g

;v
)〉

depth =1

depth =2

depth =3

Figure 2: Log likelihood of the ground truth value
of gi (crosses) and vi (triangles) under the beliefs of
the model, at varying depth from the root in artificial
trees. Averages over all nodes at those depths.

among them the point-estimate based UCT (Kocsis
and Szepesvári, 2006), greedy choice among samples
(Thompson, 1933), information gain (Dearden et al.,
1998) and ‘optimistic’ exploration based on weighted
sums of mean and variance of the value estimates.
The latter approach has received some interest recently
(Kolter and Ng, 2009), but the ‘right’ choice of policy
is still a matter of open debate. In our experiments,
we used optimistic exploration where applicable.

3 Results

We performed experiments to answer several questions
arising with regard to the described inference model:
Is the model of Brownian motion applicable for real
games, like Go (3.1)? Is the EP approximation on
the roll-out results effective (3.2)? Does the recursive
min/max approximation in the inductive part of the
inference produce a reasonable approximation of the
true min/max values (3.3)? How robust is the model
to mis-match between generative model and ground
truth (3.4)? And could the algorithm be used as a
standalone searcher (3.5)?

3.1 Structure of Go Game Trees

We generated one random path through the tree of
9× 9 Go. At each level in this path, roll-outs from all
legal moves i at this position were generated (1000 roll-
outs from each i). Depending on the depth from the
root, there were between 81 and 0 such legal positions.
We stopped the game after 71 steps, when there were
less than 5 legal moves available. The average length
¯̀
i of the roll-outs and the empirical frequency p̂(win|i)

of a win for the max player from i under a random
roll-out policy was stored. This implicitly defines the

value of gi under the model through

p(win|gi) =

∫ ∞
0

N (gt, gi, `i) dgt = Φ

(
gi√
`i

)
(11)

where we replace p(win|gi) and `i with empirical av-
erages. With sufficiently many samples, p(win|gi) and
thus gi can be evaluated up to negligible error. Our
modelM then amounts to the statement that the {gi}
of sibling nodes in the tree are distributed like the stan-
dard normal distribution around their parent’s value.

Figure 3 shows Q-Q plots of these empirical distribu-
tions against Φ for depths d = 0 to 71 from the root.
A standard normal would lie on the diagonal in this
plot; weaker tailed distributions are steeper, heavier
tailed ones flatter. The left plot shows results from
a uniform roll-out policy (only excluding illegal and
trivially bad ‘suicide’ moves). Given the limited sam-
ple sizes, especially towards the end of the game, the
empirical distributions are strikingly similar to Φ(x).

Contemporary Monte Carlo search algorithms use
‘heavy roll-outs’, i.e. policies that produce less ran-
dom, more informative results. Clearly, the hypothe-
sis of ergodicity in our model will be more and more
invalid the smarter the policy (the limit of a perfect
policy would repeatedly generate only a single perfect
roll-out). To examine how drastic this effect is, we
repeated the above experiment with a smart policy,
similar to the published parts of MoGo (Gelly et al.,
2006) (Figure 3, right). While the results do develop
heavier tails, the overlap with Φ(x) is still quite good.

3.2 Inference on the Generators

A good way to evaluate the quality of Bayesian models
is the (log) likelihood they assign to ground truth in
known test environments. To do so, we generated 500
artificial trees of b = 2, d = 18 fromM. The inference
model was implemented as presented in Algorithm 1.
A time step corresponds to one descent into the tree,
ending with a roll-out at a previously unexplored node.
For the descent through previously visited nodes, an
optimistic policy was used (see Section 2.5), choosing
greedily among children i based on µvi + 3σvi . In ad-
dition, the value of the root node’s score was assumed
to be 0 with high precision. Figure 2 shows the log
likelihood assigned to the ground truth of both g and
v at distances 1, 2 and 3 from the root.

As expected, the likelihoods rise on average during
learning. They saturate when the majority of the
nodes is expanded, because the (binary) roll-out re-
sults do not contain sufficient information to determine
g, and thus v, to arbitrary precision. Nodes deeper in
the tree saturate at smaller likelihoods because they
receive information from fewer offspring nodes. They

 332

Philipp Hennig, David Stern, Thore Graepel

0.0 0.2 0.4 0.6 0.8 1.0
Φ(g)

0.0

0.2

0.4

0.6

0.8

1.0
∫ g −

∞
p̂
(g
′)

d
g′

0.0 0.2 0.4 0.6 0.8 1.0
Φ(g)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: Quantile-quantile plot of 71 empirical distributions of g, centered on their mean, at varying depth from
the root, for one random path through Go, against the standard normal distribution Φ(x) (black dotted line).
Left: Random roll-out policy. Right: Smart roll-out policy. Color intensity of the plots decays linearly with
depth from the root. Note that the distributions far from the root are based on increasingly small sample sizes.

4 2 0 2 4
∆

0.0

0.1

0.2

0.3

0.4

0.5

0.6

p
(∆

)

b=5,`=6

b=5,`=5

Figure 4: Empirical histogram and model predictions
(lines) for the optimal future value increment ∆ (see
Equation (7)), for p(∆|` = 6, b = 5) (first move for
max, last move for min) and p(∆|` = 5, b = 5) (first
and last move for min). Model predictions as lines.

also start out with a smaller likelihood because their
priors contain more uncertainty. Note that the mes-
sage passing causes the beliefs to develop simultane-
ously at all three depths, even though the nodes at
greater depths are not explored until several descents
after initialization.

3.3 Recursive Inductive Inference on v

To evaluate the quality of the inductive part of the ap-
proximation, 1000 artificial game trees were generated
and solved by explicit min/max search as in the pre-
ceding section. Figure 4 compares empirical ground
truth of ∆ and values predicted by pre-data infer-
ence, for all nodes at two different distances ` from
the leaves, in 1000 artificial game trees. Despite the

repeated application of the Gaussian approximation to
non-Gaussian beliefs, there is good agreement between
predictions and ground truth.

3.4 Errors Introduced by Model Mismatch

For the last two experiments, the artificial game trees
were generated by the generative model M, and we
showed in Section 3.1 that the real-world game Go is in
fact pretty close to this model. However, other games
might be less well approximated byM. As a tentative
test of the severity of the errors thus introduced, the
Bayesian searcher was tested on 500 generated p-game
trees (Kocsis and Szepesvári, 2006) with b = 2, d = 18.
These trees are also generated by a latent stochastic
variable, but with a different generative model, choos-
ing ξi uniformly from [−1, 0] if the player is min and
uniformly from [0, 1] if the player is max.

We performed a best-first search in these trees (results
not shown due to lack of space), and compared to the
performance on trees for whichM is the correct model.
The performance on these two types of trees during the
search was very similar, except for a globally slightly
higher chance of the model misclassifying nodes into
winning and losing nodes. At least in this particular
case, the model mismatch causes only minor decay in
performance.

3.5 Use as a Standalone Tree Search

It is tempting to interpret the presented inference algo-
rithm as a standalone search method. Experiments on
artificial game trees (results not shown) suggest that
the resulting algorithm is rarely much better at explor-
ing the tree than e.g. a vanilla UCT searcher, and that
performance depends strongly on the policy used. The

 333

Coherent Inference on Optimal Play in Game Trees

intent of the presented algorithm is not to develop a
good tree searcher, but to provide a consistent poste-
rior from which generalizing evaluation functions can
be learned.

4 Conclusion

We have presented a generative model for game trees,
and derived an approximate message-passing scheme
for inference on the optimal value of game positions,
given samples from random roll-outs. Inference sepa-
rates into two tractable deductive and inductive parts,
and allows evaluation of the marginal value of any node
in the tree in linear time. Similar to the way humans
think about games, the computational cost of our al-
gorithm depends more directly on the number of data
collected than on the size of the game tree.

Like any model, the assumption of Brownian motion is
imperfect. Neither does it catch all the details of any
one game, nor does it necessarily apply to all games.
But it provides a quantitative concept of a smoothly
developing game between competing players. Our ex-
perimental results suggest that errors introduced by
model mismatch are not severe, and that this is a
strikingly good model of Go. We argue that it lies at
a ‘sweet spot’ between unstructured priors and non-
probabilistic, rule-based methods, which can over-fit.

Retaining a posterior does not necessarily improve on
point-based methods in the search for the optimal
next move. Nevertheless, the results presented here
are valuable in two ways: humans use sophisticated
feature-based concepts to play games, not full tree
search. Emulating this behavior with a Bayesian al-
gorithm, learning an evaluation function of features of
the game position, requires probabilistic beliefs over
the optimal values, which our algorithm provides, de-
coupling the task of designing an evaluation function
from that of data acquisition. Secondly, game trees
are discrete planning tasks (hierarchical bandit prob-
lems). Our results indicate that such problems can ex-
hibit structure (in this case, correlation) even if they
might ostensibly look unstructured, offering potential
for considerable performance increase.

Acknowledgements

The authors would like to thank Carl Scheffler, David
MacKay and the anonymous reviewers for helpful dis-
cussions and comments. This work was supported by
a grant from Microsoft Research Ltd.

References

E.B. Baum and W.D. Smith. A Bayesian approach to rel-
evance in game playing. Artificial Intelligence, 97(1-2):

195 – 242, 1997.

R. Dearden, N. Friedman, and S. Russell. Bayesian Q-
learning. In Proc. AAAI Conference on Artificial Intel-
ligence, pages 761–768, 1998.

S. Gelly and D. Silver. Achieving master level play in 9x9
computer Go. In Proc. AAAI Conference on Artificial
Intelligence, pages 1537–1540, 2008.

S. Gelly, Y. Wang, R. Munos, and O. Teytaud. Modifica-
tion of UCT with patterns in Monte-Carlo Go. Research
Report RR-6062, INRIA, 2006.

P. Hennig. Expectation propagation on the maxi-
mum of correlated normal variables. arXiv:0910.0115
[stat:ML], October 2009.

R. Herbrich, T. Minka, and T. Graepel. TrueSkill: A
Bayesian skill rating system. NIPS, 20:569–576, 2007.

R. Kleinberg, A. Slivkins, and E. Upfal. Multi-armed ban-
dits in metric spaces. In Proc. ACM Symposium on The-
ory of Computing, pages 681–690, 2008.

L. Kocsis and C. Szepesvári. Bandit based Monte-Carlo
planning. In Proc. European Conference on Machine
Learning, pages 282–293. Springer, 2006.

J.Z. Kolter and A.Y. Ng. Near-Bayesian exploration in
polynomial time. In Proc. International Conference on
Machine Learning, volume 26, 2009.

S. L. Lauritzen and D. J. Spiegelhalter. Local computations
with probabilities on graphical structures and their ap-
plication to expert systems. J. Royal Statistical Society,
50:157–224, 1988.

D.J.C. MacKay. Information theory, inference, and learn-
ing algorithms. Cambridge Univ. Press, 2003.

T.P. Minka. Expectation Propagation for approximate
Bayesian inference. In Proc. Uncertainty in Artificial
Intelligence, volume 17, pages 362–369, 2001.

N.J. Nilsson. Problem-solving methods in artificial intelli-
gence. McGraw-Hill Pub. Co., 1971.

A.J. Palay. Searching with probabilities. Pitman Pub., Inc.,
1985.

J. Pearl. Heuristics: intelligent search strategies for com-
puter problem solving. Addison-Wesley, 1985.

J. Pearl. Probabilistic reasoning in intelligent systems.
Morgan Kaufmann, 1988.

S. J. Russell and E. Wefald. Do the Right Thing. MIT
Press, 1991.

D. Stern, R. Herbrich, and T. Graepel. Learning to solve
game trees. In Proc. International Conf. on Machine
Learning, volume 24, pages 839–846. ACM, 2007.

W.R. Thompson. On the likelihood that one unknown
probability exceeds another in view of two samples.
Biometrika, 25:275–294, 1933.

C.J.C.H. Watkins and P. Dayan. Technical note: Q-
learning. Machine Learning, 8:279 – 292, 1992.

