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Abstract To investigate the functional role of the
striatum in visuo-motor adaptation, we extend the
DIRECT-model for visuo-motor reaching movements
formulated by Bullock et al.(J Cogn Neurosci 5:408–
435,1993) through two parallel loops, each modeling
a distinct contribution of the cortico–cerebellar–thal-
amo–cortical and the cortico–striato–thalamo–cortical
networks to visuo-motor adaptation. Based on evidence
of Robertson and Miall(Neuroreport 10(5): 1029–1034,
1999), we implement the function of the cortico–cere-
bellar–thalamo–cortical loop as a module that gradually
adapts to small changes in sensorimotor relationships.
The cortico–striato–thalamo–cortical loop on the other
hand is hypothesized to act as an adaptive search ele-
ment, guessing new sensorimotor-transformations and
reinforcing successful guesses while punishing unsuc-
cessful ones. In a first step, we show that the model
reproduces trajectories and error curves of healthy sub-
jects in a two dimensional center-out reaching task with
rotated screen cursor visual feedback. In a second step,
we disable learning processes in the cortico–striato–
thalamo–cortical loop to simulate subjects with
Parkinson’s disease (PD), and show that this leads to
error curves typical of subjects with PD. We conclude
that the results support our hypothesis, i.e., that the role
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of the cortico–striato–thalamo–cortical loop in
visuo-motor adaptation is that of an adaptive search
element.

1 Introduction

Reaching movements to visual targets require the trans-
formation of sensory signals about spatial target loca-
tion and hand position into motor commands that move
the hand in the direction of the target (Andersen and
Buneo 2002; Burnod et al. 1999). Experimentally, vi-
suo-motor transformations for reaching can be distorted
by artificially rotating and/or scaling visual space via
manipulation of the real-time visual feedback of hand
movements displayed as a screen cursor on a computer
monitor (computer-based distortions of hand–cursor
relationships), or through the use of displacing or rotat-
ing prisms (Imamizu et al. 2000; Clower et al. 1996; Inoue
et al. 2000). Under kinematic manipulations, practice is
needed to acquire an internal model of the novel envi-
ronment, i.e., a representation of the altered relation-
ship between the screen cursor movement and the hand
movement (Imamizu et al. 2000).

Functional imaging studies suggest that a widespread
fronto-parieto-cerebellar network is involved in adapt-
ing the visuo-motor transformation to the new environ-
ment (Balslev et al. 2002; Contreras-Vidal and Kerick
2004; Inoue et al. 2000; Shadmehr and Holcomb 1997;
Ghilardi et al. 2000; Imamizu et al. 2000). Surprisingly,
the contribution of the striatum to the learning of novel
environments has not received the same attention as
frontal, parietal, and cerebellar structures (Inoue et al.
2000, 2001; Imamizu et al. 2000), even though clinical
studies show that sensorimotor learning in response to
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perturbed kinematic (Contreras-Vidal and Buch 2003;
Stoffers et al. 2002; Teulings et al. 2002; Laforce Jr and
Doyon 2002) and dynamic (Krebs et al. 2001) environ-
ments is impaired in diseases of the basal ganglia such
as Parkinson’s disease (PD).

In this article, we aim at elucidating the contribu-
tion of the striatum to adaptive visuo-motor behavior
during the learning of novel kinematic environments
through a computational model. Based on experimental
evidence, we hypothesize that the role of the striatum in
visuo-motor adaptation is that of an adaptive search ele-
ment, guessing new sensorimotor transformations and
rewarding successful while punishing unsuccessful ones,
resulting in a coarse adaptation to the novel kinetic envi-
ronment. This hypothesis is implemented in a compu-
tational model, and the performance of the model in a
visuo-motor adaptation task is compared with data from
healthy subjects and subjects with PD. As a first step, we
show that the model reproduces movement trajectories
and learning curves of healthy subjects in a center-out
reaching task with rotated visual feedback. In a second
step, we disable learning mechanisms in that part of the
model representing the striatum to simulate dopamine
depletion in subjects with PD, which results in error
curves of the computational model that are characteris-
tic of subjects with PD. We conclude that the evidence
from the computational model supports our hypothesis,
i.e., that the role of the striatum in visuo-motor adapta-
tion learning is that of an adaptive search element.

The rest of this article is organized as follows. In
Sect. 2.1 we introduce the motor equivalence problem
for two-dimensional reaching tasks. In this study, the
motor equivalence problem is solved using the DIRECT-
model (Bullock et al. 1993), which is described in
Sect. 2.2. For reaching movements under perturbed kine-
matic environments, introduced in Sect. 2.3, the DIRE-
CT-model is extended by two side-loops, modeling the
contribution of the cortico–cerebellar–thalamo–cortical
and the cortico–striato–thalamo–cortical loop to visuo-
motor adaptation. These extensions are presented in
Sects. 2.4 and 2.5. In the results section we show simu-
lation results of the extended model with and without
learning processes enabled, and compare these to the
behavior of healthy subjects and subjects with PD. The
article concludes with a discussion of the results.

2 Methods

2.1 The motor equivalence problem

In order to successfully reach towards a target, the brain
must compute muscle activations that rotate the joints in
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Fig. 1 Illustration of the workspace

a way such that the end-effector, i.e., the hand, moves in
direction of the desired target. In the present study, we
only consider two-dimensional reaching movements in
the horizontal plane, resulting in the workspace depicted
in Fig. 1. Here, xi ∈ R

2, i = 1, . . . , 3 describe the position
of the arm joints, xeff the position of the end effector,
and xT the target position. With x1 placed at the origin
of the coordinate system, the position of the joints and
the joint angles θi, i = 1, . . . , 3 are related through

x2 =
(

l1 · cos θ1
l1 · sin θ1

)
, (1)

x3 =
(

l1 · cos θ1 − l2 · sin(θ1 + θ2)

l1 · sin θ1 + l2 · cos(θ1 + θ2)

)
, (2)

xeff =

⎛
⎜⎜⎜⎜⎝

l1 · cos(θ1) − l2 · sin(θ1 + θ2) − l3 · cos

(
π
2 −

3∑
i=1

θi

)

l1 · sin(θ1) − l2 · cos(θ1 + θ2) + l3 · sin

(
π
2 −

3∑
i=1

θi

)
⎞
⎟⎟⎟⎟⎠ .

(3)

To model physiological constraints, the joint angles
are restricted to θ1 ∈ {−π

2 , π
}

, θ2 ∈ {0, π}, and θ3 ∈{−π
2 , π

2

}
.

Linearization of (3) for a given joint configuration
θ = {θ1, θ2, θ3}T results in a first order approximation
of the change in position of the end effector due to a
change in the joint angles

ẋeff = J(θ) · θ̇ , (4)

with J(θ) ∈ R
2×3 representing the Jacobian. The compu-

tation of a joint angle rotation that moves the end effec-
tor towards the target, however, requires the inverse of
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the Jacobian. Since the rank of J(θ) can only be two,
an infinite number of joint angle rotations exist that
move the end-effector in the desired direction. Several
approaches to this inverse problem of motor equiva-
lence exist, ranging from introducing additional con-
straints to obtain a unique solution to neural network
approaches (c.f., Bullock et al. 1993; Rosenbaum et al.
1993 and references therein).

2.2 The DIRECT-model

In this study, we adapt the DIRECT-model developed
by Bullock et al. (1993) for solving the motor equiva-
lence problem, which will be briefly presented in this
section. The DIRECT-model was chosen, because it has
been shown to produce reaching movement trajectories
typical of human subjects, and because of its capabil-
ity to account for some aspects of tool use and blind
reaches. Since we are only interested in the kinematics of
reaching movements, in our adaptation of the DIRECT-
model we assume that the position of the end-effector
xeff and the target xT as well as the direction vector d
pointing from the end-effector to the target are already
available to the model in a common reference frame, i.e.,
in cartesian coordinates with the origin at the position
of x1.

Note that this implies that all information necessary
for online error correction, i.e., information necessary
for constant recomputation of motor commands that
move the end-effector towards the target, are readily
available to the model. Pathologies such as Huntington’s
disease, in which online error correction is disturbed
(Smith and Shadmehr 2005), are thus outside the scope
of this model.

Furthermore, we assume that the dynamics of the
movements arising from mechanical properties of the
arm and joints are controlled outside the model. All
parameters used in the simulations are summarized in
Table 1.

Based on the current joint configuration and direc-
tion vector, the DIRECT-model generates joint rota-
tion commands rag

i and ran
i , modeling the activation of

agonist (ag) and antagonist (an) muscle groups rotat-
ing each joint i = 1, . . . , 3, to move the effector towards
the target. The joint angles, and thus the position of the
joints, are then updated in each time step according to
the difference equation

θi[t + 1] = θi[t] + ε · δ[t] · (rag
i − ran

i ). (5)

Here, ε determines the step size, and δ [t] ensures
an approximately bell shaped velocity curve character-
istic of reaching movements (reviewed in Bullock and

Table 1 Parameters used in the model

Parameter Value

l1 16 cm
l2 28 cm
l3 28 cm
ε 0.05
α 0.9
β 0.002
γ 0.1
η 0.4
ξ 0.012
σω 10.13
σζ 0.04
λpun 0.15
λrew 0.15
ρ 0.2
υ 100
φthreshold 45◦
τIDE 2

Grossberg 1988) through the scaling function

δ[t] =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

α·
(

2 ‖d‖
‖d‖initial

)4

β+
(

2 ‖d‖
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)4 + γ ; 1 ≥ ‖d‖
‖d‖initial

≥ 0.5

α·
(

2 ‖d‖
‖d‖initial

−2
)4

β+
(

2 ‖d‖
‖d‖initial

−2
)4 + γ ; 0.5 ≥ ‖d‖

‖d‖initial
≥ 0

, (6)

with ‖dinitial‖ being the length of the direction vector
upon start of a new reaching movement. It should be
noted that the scaling function is not part of the origi-
nal DIRECT-model, but was introduced here to obtain
more realistic movement dynamics.

The activation of the agonist and antagonist muscle
groups of each joint are determined by a neural net-
work, calculating rag

i and ran
i in two stages depending

on the direction vector and the current joint configu-
ration. The first stage encodes the current joint con-
figuration and direction vector through N = 30 × 7 ×
7 × 7 = 10, 290 cells, partitioning the direction vector
space into 30 angular regions of the horizontal plane of
12◦ each, and the workspace of each joint into seven
angular regions of approximately 51.4◦ each. Each cell
corresponds maximally to a specific joint configuration
and angle of the direction vector, determined by

Cn = 4 − 1
π

‖� d − � dmaxn‖ − 1
π

3∑
i=1

‖θi − θi,maxn‖. (7)

Here, � dmaxn and θi,maxn describe the direction vector
angle and joint configuration of maximal activation for
each cell. These values are equally spaced between the
cells, and their range is determined by the joint angle
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restrictions of the arm model. The cell population
C = {C1, . . . , CN} thus encodes the current joint con-
figuration and desired movement direction. To speed up
computations, the activity of all except the seven most
active cells is then set to zero, and the activity of the
remaining cells is normalized to the most active cell.

Each cell Cn is connected to each of the three ago-
nist and antagonist muscle groups with a specific weight
z

n,rag/an
i

, such that the activity of each muscle group rag/an
i

is determined by

rag/an
i =

N∑
n=1

Cn · z
n,rag/an

i
. (8)

In order for the model to generate movements that
move the end effector towards the target, the weights
z

n,rag/an
i

, i = 1, . . . , 3, n = 1, . . . , N have to be trained such

as to realize a solution of the Jacobian in (4). This is being
done in a preliminary motor-babbling-phase, which will
only briefly be outlined here (see Bullock et al. 1993
for details). At the start of the motor-babbling-phase all
weights are set to zero, and a random joint configuration
is generated. Then, random muscle activations rag/an

i are
generated for all joints, and the resulting movement of
the end effector determined by (5) is observed. The vec-
tor pointing from the starting position of the end effector
xeff[t] to the updated position xeff[t + 1] is then consid-
ered as the direction vector d, which conjointly with
the joint configuration before the movement took place
(θ [t]) is used to calculate the cell activation as given in
(7). The weights are then updated according to

z
n,rag/an

i
[t+1] = z

n,rag/an
i

[t]+η ·Cn ·(rag/an
i −z

n,rag/an
i

[t]) (9)

with learning parameter η. By repeating this procedure
with different random muscle activations and for differ-
ent joint configurations, the neural network explores
its workspace, and learns to map a joint configuration
together with a desired movement direction to the mus-
cle activations that move the end effector into the
desired direction. It thereby approximates a solution
of the Jacobian in (4).

2.3 Reaching under perturbed kinematic environments
and visuo-motor adaptation

If the kinematic environment is perturbed, e.g., by rotat-
ing the (simulated) visual feedback about the position
of the end effector xeff, the DIRECT-model will not
be able to adapt it’s input to output mapping to the
new environment, resulting in movement trajectories
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Fig. 2 Cortical and subcortical structures involved in motor
learning (adapted with permission from Doyon et al. (2003))

circling the target. In principle, a new motor-babbling-
phase could be initiated to learn the new Jacobian incor-
porating the feedback distortion, but this would require
extensive training that does not take place in human sub-
jects. Instead, it is well known that in case of kinematic
perturbations human subjects quickly adapt to the new
environment (Kagerer et al. 1997; Cunningham 1989;
Roby-Brami and Burnod 1995). There is ample evidence
(reviewed in Doyon et al. 2003) that this is due to the
contributions of a cortico–cerebellar–thalamo–cortical
and a cortico–striato–thalamo–cortical loop, acting in
parallel to the structures mainly implicated in unper-
turbed reaching movements (see Fig. 2). The modeling
of the contribution of these two loops to visuo-motor
adaptation will be the subject of the next two sections.

In this study, we restrict perturbations of the kine-
matic environment to rotations of the visual feedback of
the position of the end-effector, since this kind of trans-
formation is well studied in both healthy human sub-
jects and those with neurological disorders (Pine et al.
1996; Contreras-Vidal and Buch 2003). Thus, the only
perturbation the model has to adapt to is a rotation of
the vector d, coding the direction of the intended move-
ment. Although more complex transformations are pos-
sible, we expect that the basic principles of visuo-motor
adaptation remain invariant. Due to the parallel orga-
nization, the adaptation mechanisms of the two loops
are assumed to be independent of each other and of
the mechanisms employed for normal reaching. Their
respective contributions are then modelled as two cor-
rection terms applied to the vector coding the intended
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direction movement,

� d̃ = � d + � dCerebellar + � dStriatal. (10)

The direction vector � d̃ then replaces � d in (7).
It should be pointed out that other mechanisms for

combining the output of the two error correction loops
could be considered as well. Nakahara et al. (2001) pro-
pose a time-variant weighted average of two parallel
loops in visuomotor sequence learning, while Koerd-
ing and Wolpert (2004) present evidence for Bayesian
integration in sensorimotor learning. Both approaches,
however, would require another mechanism to deter-
mine the time-variant weighting of each of the two loops
in the error correction process. The need for such an
additional “coordinator”-structure is removed by sim-
ply adding the sum of the two error correction terms
to the current movement direction as in (10). The con-
sequences of this choice of combination for the dynam-
ics of the adaptation process will be discussed in
Sect. 2.6.

In the next two sections the specific contributions of
each of the two loops to visuo-motor adaptation will be
discussed, and it will be shown how the correction terms
in (10) are being calculated.

2.4 The cortico–cerebellar–thalamo–cortical loop

Based on the observation that adaptation to gradual
visual distortions is inhibited by inactivation of the den-
tate nucleus, it has been suggested that visuo-motor
adaptation to gradual distortions may depend on adap-
tive cerebellar mechanisms for gradual acquisition of a
new internal model (Robertson and Miall 1999). This
interpretation of the role of the cerebellum in visuo-
motor adaptation is further supported by Doya (2000),
reviewing evidence for a specialization of the cerebel-
lum for error-based learning. In this view, the detection
of small deviations of the movement direction from the
desired direction are transformed into a correction term,
that is used conjointly with the original internal repre-
sentation to ensure movement of the end effector in
direction of the target.

Following these considerations, we model the
cortico–cerebellar–thalamo–cortical loop through a sys-
tem supervising the deviation of the real from the
intended movement direction, and adding a correction
term to the intended movement direction. This cor-
rection term depends on the direction of the intended
movement, i.e., each distinct movement direction has an
associated correction term, and is adapted according to
the evaluation of the current movement direction error.
The coding of the current desired movement direction is

performed analogous to (7), with M = 12 cells partition-
ing the workspace of the direction vector into angular
regions of 30◦ each,

Cm
Cerebellar = 1 − 1

π
· ‖� d − � dmaxm‖, m = 1, . . . , M.

(11)

Here, the activity of all except the most active cell are
set to zero, and the activity of the remaining cell is set
to one, such that (11) acts as an indicator function for
the angular region of the current direction vector. The
correction term applied to the direction vector is then
calculated by

� dCerebellar =
M∑

m=0

Cm
Cerebellar · wm. (12)

The weights of this network wm, m = 1, . . . , M, which
are initially set to zero, are updated according to the
difference equation

wm[t + 1] = wm[t] − ξ · ϕ[t] · Cm
Cerebellar. (13)

Here, ξ is a learning parameter, and

ϕ[t] = � {xeff[t] − xeff[t − 1]} − � d[t − 1]

is the error term, describing the angle between the
desired movement direction and the actual movement
direction.

The cortico–cerebellar–thalamo–cortical loop of the
model thus gradually adapts to a rotation of the visual
feedback of the end effector position.

2.5 The cortico–striato–thalamo–cortical loop

If the visual feedback about the position of the end
effector is suddenly rotated by more than approximately
40◦, human subjects do not employ gradual adaptation
mechanisms anymore but rather start exploring the new
environment in a different way (Kagerer et al. 1997;
Buch et al. 2003). Based on observations of the tra-
jectories of adaptation to sudden rotations of healthy
subjects (see for example, Fig. 4), we hypothesize that
this adaptation mechanism is that of an adaptive search
mechanism, guessing new transformations and reward-
ing successful while punishing unsuccessful transforma-
tions. Moreover, as it appears that this type of adaptation
is employed only in early phases of the adaptation to
a sudden cursor rotation (i.e., when the angular error
between the desired and actual direction of movement is
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larger than some threshold) the mechanism is assumed
to be only active until a stable guess of the transfor-
mation has been found that keeps the error below the
threshold necessary to engage the search mechanism.

This type of adaptation mechanism is in agreement
with the hypothesized role of the cortico–striato–thal-
amo–cortical loop in visuo-motor adaptation. There is
evidence presented in Krebs et al. (2001) and Contreras-
Vidal and Buch (2003) that adaptation to a novel task
environment involves the basal ganglia. Furthermore,
Krebs et al. (1998) as well as Seidler et al. (2006) have
shown that the basal ganglia are only activated during
early stages of the adaptation process. In this view, rota-
tions of the visual feedback of less than 40◦ are not
considered as a novel task environment, and thus do
not recruit the cortico–striato–thalamo-cortical loop. If,
however, the visual feedback is rotated by more than
40◦ a novel task environment is detected, and the
cortico–striato-thalamo-cortical loop is activated to find
a coarse adaptation to this new environment. As soon as
an adaptation has been obtained that keeps the angular
movement error below 40◦, i.e., in later stages of the
adaptation process, the cortico–striato–thalamo–corti-
cal loop is disengaged again. We thus hypothesize that
the proposed adaptive search mechanism is executed
within the cortico–striato–thalamo–cortical loop. We
furthermore would like to point out that this assump-
tion is also in agreement with evidence reviewed by
Doya (2000) that the basal ganglia are specialized for
reward-based learning.

The adaptive search mechanism, assumed to model
the functional role of the cortico–striato–thalamo–cor-
tical loop, is thus implemented with two cell layers in the
following way. Analogous to Eqs. (7) and (11), the cur-
rent intended movement direction is coded in the first
layer by L = 12 cells, again partitioning the workspace
into 12 angular regions of 30◦ each,

Cl
Striatum = 1 − 1

π
· ‖� d − � dmaxl‖, l = 1, . . . , L. (14)

As previously, � dmaxl , l = 1, . . . , L code the direction for
which each cell l is most active, the most active cell is nor-
malized, and the activity of all other cells is set to zero.
The second layer, however, deviates significantly from
the second layer of the cortico–cerebellar–thalamo–cor-
tical loop. It consists of L = 12 groups of K = 30 cells for
each of the L cells in the first layer. In this second layer,
each cell represents a rotational transformation in steps
of 12◦, such that the first cell of each group represents
a rotational bias of 0◦, the second cell a bias of 12◦, etc.
The weights between the first and the second layer of

the module are initialized as

wl,k =

⎧⎪⎨
⎪⎩

e
−k2

σ2
w ; k = 1, . . . , K

2

e
−(k−K)2

σ2
w ; k = K

2 , . . . , K

; l = 1, . . . , L, (15)

such that the weights wl,K between the cells coding the
movement direction (l) to those coding for a rotational
bias of 0◦ (k = K) are initially the strongest. The activ-
ities of the cells in the second layer are then calculated
as

Cl,k
Striatum = Cl

Striatum · wl,k + ζ , (16)

with ζ drawn from a Gaussian distribution with zero
mean and variance σ 2

ζ . The actual rotational correc-
tion term in (10) is then determined in a winner-take-all
(WTA) fashion as

� dStriatum = 2π

K
· k̃ (17)

with

k̃ = max
k=1...K

{
L∑

l=1

Cl,k
Striatum

}
. (18)

In this way, for each angular region of the intended
movement direction, a different rotational correction
term is added to the direction vector. Since this correc-
tion term is partially determined by the random variable
ζ in (16), the weights wl,k encode the probability that a
certain rotational correction is employed. The stronger
wl,k, the more likely it is that the rotational bias coded
by cell Cl,k

Striatum is being chosen as the actual bias in each
time step.

To be able to adjust to new transformations, the model
has to observe its performance, and adapt its weights that
determined the rotational correction term of the previ-
ous time step if the intended and actual movement direc-
tion differed by more than a threshold angle φthreshold.
The adaptation is done by punishing rotational correc-
tions that did not lead to a movement direction error
φ ≤ φthreshold, and rewarding transformations that kept
φ below the threshold. Thus,

wl,k[t + 1]

= wl,k[t]+
{

−λpun · Cl
Striatum·

(
1 − e−ρ·wl,k[t]) , φ>φthreshold

λrew · Cl
Striatum· e−ρ·wl,k[t] , φ≤φthreshold

(19)

Note that due to partitioning of the workspace into
angular regions of 30◦ each a slightly higher thresh-
old angle of 45◦ was chosen. To model a transfer of
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transformations applied to one angular region of the
direction vector to other regions as observed in human
subjects (Krakauer et al. 2000), all weights are further-
more updated according to the rule

wl,k = 1
υ

(
(υ − 1) · wl,k + 1

L
·

L∑
l=1

wl,k

)
, k = 1, . . . , K.

(20)

In summary, the proposed model of the cortico–stri-
ato–thalamo–cortical loop behaves in the following way.
In each time step, a certain rotational correction term
as determined by (16)–(18) is applied to the movement
direction. For the movement direction indicated by l,
the value of this correction term is probabilistic, with the
probability of a rotational correction of k · 12◦ defined
by the weight wl,k. Initially, the values of the weights
are chosen such that a rotational correction term of
zero degrees has the highest probability, and all other
transformations are unlikely to occur. If the model is
performing reaching movements under unperturbed
kinematics, the difference between the intended and
the actual movement direction will be small, resulting
in the correct rotational guess of zero degrees being fur-
ther rewarded in (19). Equation (20) however ensures
that no weight grows without bounds. If at a certain
point in time the visual feedback of the position of the
end effector is rotated by more than φthreshold, a rota-
tional guess of zero degrees will lead to a difference
between the intended and the actual movement direc-
tion of more than φthreshold. Accordingly, in (19) the
weights coding the probability of a rotational correction
of zero degrees will be reduced. This procedure will be
repeated several times, until the weights have become
small enough that ζ in (16) mainly determines the next
rotational correction term. At this point, the model com-
mences its adaptive search mechanism. If a certain, now
mainly randomly determined, rotational guess leads to a
movement direction error below the threshold angle, the
respective weight wl,k between the cell Cl

Striatum coding
the current angular region of the direction vector and
the cell Cl,k

Striatum representing the successful rotational
transformation will be strengthened in (19). This raises
the probability of this specific successful rotational cor-
rection term being chosen again in a subsequent step,
thereby leading to a convergence of the rotational cor-
rection term to a value that keeps the movement direc-
tion error below the threshold angle. As a result of this
self-enforcing strategy, the value of the weight coding a
correct rotational correction will become large in com-
parison to ζ , such that the applied rotational correction
term in (16) will again be mainly determined by the

weights regardless of the value of ζ . The adaptive search
mechanism thereby disengages itself as soon as a crude
adaptation to the new perturbed kinematic environment
has been achieved.

2.6 Dynamics of the adaptation process

The dynamics of the adaptation of the model to a rota-
tion of the visual feedback are determined by the dynam-
ics of each of the two adaptation loops, as well as by the
combination of the error correction term provided by
each loop in (10). If the visual feedback is rotated by less
than φthreshold, the adaptive search element of the cor-
tico–striato–thalamo–cortical loop is not engaged. The
gradual adaptation of the cortico–cerebellar–thalamo–
cortical loop however will slowly adapt to the rotation,
with the error correction term � dCerebellar in (12) asymp-
totically approaching the actual rotation. The speed of
the convergence of this error-based learning is deter-
mined by the value of ξ in (13), which was experi-
mentally chosen to reproduce the time course of the
adaptation of human subjects to small rotations of the
visual feedback. If the visual feedback is rotated by
more than φthreshold, the cortico–striato–thalamo–
cortical loop is engaged as well. Due to the reward-
based type of learning (19), the error correction of this
loop acts on a much faster time scale than that of the
cortico–cerebellar–thalamo–cortical loop. The cortico–
striato–thalamo–cortical loop will enforce guesses of the
rotational error that keep the movement error below
φthreshold, thereby quickly settling on a value of � dStriatum
that approximates the actual rotation of the visual feed-
back with an error of less than φthreshold. At this point
the cortico–striato–thalamo–cortical loop automatically
disengages itself, and the remaining error of the visual
rotation is asymptotically driven to zero by the cortico–
cerebellar–thalamo–cortical loop in the same way as for
rotations of the visual field by less than φthreshold. It
should be noted that the error correction terms sup-
plied by each of the two loops in (10) are complimen-
tary: a correction term supplied by one of the two loops
decreases the overall movement error, such that the
other loop only approximates the remaining error. In
this way, no overcompensation can take place. The
different time scales of the two error correction loops
furthermore ensure that no oscillations occur.

3 Results

To simulate several subjects, five different instantiations
of the DIRECT-model were trained through motor-
babbling, i.e., a certain amount of simultaneous exposure
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to patterned proprioceptive and visual stimulation under
conditions of self-produced movement (see Sect. 2 and
Bullock et al. 1993; Guigon and Baraduc 2002).

The performance of the model was then tested in a
center-out reaching task to targets located in the corners
of a quadrangle as shown in Fig. 3. This reaching experi-
ment consisted of 11 blocks of 40 movements each, with
ten movements per target within each block. The target
order within each block was pseudo-randomized. Dur-
ing the first block, no rotation of the visual feedback
of the position of the end effector was applied (pre-
exposure condition). With the start of the second block
however, the visual feedback was rotated counter-clock-
wise by 90◦ (exposure condition). This rotation was held
constant for all until the last block, in which the rota-
tion of the visual feedback was removed (post-exposure
condition).

The resulting trajectories are shown in Fig. 4, along
with data of human subjects performing the same task,
adapted from Buch et al. (2003). The thick lines repre-
sent the mean trajectories of five human healthy young
subjects (age 21 ± 2.7 years) for the measured data, and
the mean trajectories of five instantiations of the model
for the simulated data within each condition. The shaded
areas show the standard deviation of the trajectories.
Furthermore, the trajectories of ten single trials were
plotted for each condition.

In order to compare the performance of the model
with the measured data quantitatively, we furthermore
calculated the RMSE of each movement, defined as

RMSE =
√√√√ 1

T

T∑
t=1

(x[t] − x̂[t])2 + (y[t] − ŷ[t])2, (21)

with x[t], y[t], t = 1, . . . , T, representing the points of
each simulated trajectory in cm, and x̂[t], ŷ[t] represent-
ing the points of a straight line leading from the center
to the target recorded at the same sampling rate. Addi-
tionally, we calculated the initial direction error (IDE)
of each movement, defined as

IDE = � {xeff[t0 + τIDE] − xeff[t0]} − � {dT} , (22)

with t0 the initial time of each new reaching movement,
and dT the vector pointing from the center to the desired
target.

As can be seen in Fig. 4a, in the pre-exposure condi-
tion the human subjects as well as the model produce
smooth trajectories from the starting point to each target
with little variance in the movements. In this condition,
due to the small deviations of the intended and real
movement direction, the two side-loops of the model,

Fig. 3 Illustration of the center-out reaching task

although active, hardly have any influence on the result-
ing movements. We thus conclude that our adaptation
of the DIRECT-model reproduces the trajectories typ-
ical of human subjects in reaching movements without
perturbations of the kinematic environment.

For the early exposure (first block after onset of the
visual rotation), spiral like trajectories can be observed
for the human subjects as well as for the simulated data.
Furthermore, it can be observed that the adaptive search
mechanism is engaged in the model, resulting in some-
what erratic single trajectories with frequent changes of
movement direction, which can also be seen in the mea-
sured trajectories. This also manifests itself in a high
RMSE and IDE score for both simulated and measured
data (Fig. 5).

In the late exposure stage, i.e., in the last block in
which the visual rotation was still applied, the trajecto-
ries have become rather smooth again, with only a slight
spiral like shape remaining. Thus, the human subjects as
well as the model have adapted successfully to the rota-
tion of the visual feedback, also resulting in small RMSE
and IDE scores. As can be seen in the evolution of the
RMSE and IDE scores, this adaptation takes place in
two stages - an initial fast and coarse adaptation, fol-
lowed by a slower gradual adaptation. In the simulated
data the fast initial adaptation is due to the model of
the cortico–striatal–thalamo–cortical loop, which disen-
gages itself after a coarse adaptation has been achieved.
At this point, the slope of the error curves is determined
by the model of the cortico–cerebellar–thalamo–cortical
loop, resulting in a slow but very precise adaptation to
the rotation of the visual feedback.

If the visual rotation is removed again (post-expo-
sure condition), the after-effects manifest themselves
as spiral-like trajectories in opposite direction of those
characteristic of the early exposure stage, and a high
RMSE and IDE, with the IDE having opposite sign in
comparison to the early-exposure stage.
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Fig. 4 Trajectories produced
in the center-out reaching
task under unperturbed and
perturbed visual feedback. In
these figures, the first two
traces per target direction for
each condition and each
subject have been overlaid to
show typical movement paths
at different stages of learning
(e.g., sharp reversals, spirals,
loops, etc). Insets: The dark
vectors represent mean
normalized shifts of the initial
movement direction,
collapsed across targets, from
pre-exposure to early- (b),
late- (c), and post-exposure
trials (d), respectively. The
mean initial direction of
movement at pre-exposure
(represented as a broken dark
line) is set to 0◦. Adapted with
permission from Fig. 2 of
Buch et al. (2003).
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In summary, the model reproduces the trajectories
of human subjects in the center-out reaching task with
rotated visual feedback in all stages of the adaptation
process. Also, the evolution of the RMSE and IDE
scores during the different stages of the adaptation agree
rather well. However, the RMSE and IDE scores of the
simulated data are initially higher than in the measured
data. This is also apparent in the observed trajectories
of the early-exposure and post-exposure stages, with the
model performing more erratic movements than can be
observed in the human subjects. This is most likely due
to the following reason. Human subjects often reduce
the speed of their movements if they notice a large
error in their movement direction, then try out small
movements in several directions, and only increase their
speed again if they are moving closer to the target. Mod-
eling this strategy would require a more sophisticated
velocity curve δ[t] in (6), and would result in less erratic
movement in early stages of the adaptation, thereby
smoothing the trajectories and leading to a lower RMSE
and IDE scores. This behavior however is not central

to the functional role of the cortico–striato–thalamo–
cortical loop, and was thus not further considered here.

In spite of these quantitative differences, the model
reproduces the shape of the trajectories accurately in all
stages of the adaptation process, and furthermore dis-
plays similar shapes of the RMSE and IDE curves to
those of human subjects. While we do not claim that our
model captures all mechanisms of visuo-motor adapta-
tion, we conclude that the model is sufficiently accurate
to be used in an investigation of the functional role of
the cortico–striato–thalamo–cortical loop.

To further investigate the functional role of the cor-
tico–striato–thalamo–cortical loop, we compared the
performance of the model with that of subjects with PD.
For this purpose, we deactivated learning processes in
the model of the cortico–striato–thalamo–cortical loop
by setting λpun = λrew = 0 in (19). This models the
neurodegeneration of dopaminergic nigrostriatal neu-
rons in PD (Fahn and Sulzer 2004; Kish et al. 1988),
since phasic midbrain dopamine neuron activity is crit-
ically involved in reinforcement learning mechanisms
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Fig. 5 Standardized RMSE and IDE scores of measured and sim-
ulated trajectories. For better visualization the data has been fitted
with double exponential functions. Note that both the experimen-
tal and simulated error scores are standardized with respect to the
pre-exposure (standard mapping) condition. Experimental data
adapted with permission from Fig. 3 of Buch et al. (2003)

(Fahn and Schultz et al. 1997). Importantly, as long as
the movement direction error is small, i.e., without or
with only small simulated visual rotations, this change
has no effect on the behavior of the model, i.e., the
performance of the selected movement is not compro-
mised. Once the movement direction error exceeds the
threshold angle, and the adaptive search mechanism is
engaged, the model displays a different behavior than
with an intact model of the cortico–striatal–thalamo–
cortical loop. While in both cases the adaptive search
mechanism starts to explore the space of possible rota-
tions, the adaptive search mechanism with learning dis-
abled can not reinforce good or punish bad guesses of the
visual rotation angle. Consequently, the model does not
stop guessing transformations, resulting in continuous
erratic movements that usually are only observed dur-
ing early stages of the adaptation. The model thus does
not find a coarse adaptation to the new environment.
This is reflected in the resulting RMSE score (Fig. 6a),
that, although showing an initial decrease, converges to
a rather large value. This also holds for the IDE score,
that converges to a value only slightly below the 90◦
rotation of the visual feedback.

Comparing these results with experimental data gath-
ered from subjects with PD reveals similar observations
(Fig. 6b, adapted from Contreras-Vidal and Buch 2003).
In agreement with the simulated data, the adaptation to
the visual rotation is only very crude. After an initially
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Fig. 6 RMSE and IDE scores of simulations without learning
processes and patients with PD. Adapted with permission from
Fig. 3 of Contreras-Vidal and Buch (2003)

fast decrease in RMSE and IDE, the scores settle on
rather large values, with only a slight linear decrease
still remaining in later stages of the adaptation process.
With learning processes disabled in the adaptive search
mechanism, the model thus qualitatively reproduces the
behavior of subjects with PD.

4 Discussion

4.1 Biological relevance

Behavioral, inactivation, and neuroimaging experiments
support the view of separate parallel networks for adap-
tation to gradual and sudden kinematic distortions.

Behaviorally speaking, the initial rapid change and
the later gradual reduction in the mean error scores (e.g.,
RMSE or IDE) during exposure to a kinematic distor-
tion in several studies (Krakauer et al. 2004; Buch et al.
2003; Kagerer et al. 1997; Contreras-Vidal and Buch
2003) suggest that there are two processes operating
during the course of adaptation to kinematic distortions
(Krakauer et al. 2000). The rapid exponential portion
of the learning curve may be attributed to the initial
acquisition and/or selection of a behaviorally appro-
priate internal model, whereas the latter almost lin-
ear component may involve processes that progressively
fine-tune the selected internal model to the specific task
conditions.

Adaptation to visual distortions introduced gradu-
ally (Kagerer et al. 1997; Robertson and Miall 1999;
Ingram et al. 2000) may depend on cerebellar error-
correction mechanisms for gradual acquisition of a new
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internal model. Robertson and Miall (1999) have shown
that adaptation to gradual visual distortions is blocked
by inactivation of the dentate nucleus, whereas sudden
adaptation is spared in non-human primates. This sug-
gested that the lateral cerebellum may be implicated
selectively in adaptation to gradual as opposed to sud-
den kinematic distortions. In the case of gradual dis-
tortions, the original internal model engaged prior to a
gradual distortion can still be employed to help develop
the new internal model of the task. Thus, subjects can
utilize information regarding the original internal model
together with memorization of trial-to-trial error correc-
tion signals to be used at the onset of the next movement
(Roby-Brami and Burnod 1995). However, in the case
of sudden rotations, the awareness or detection of large,
explicit errors may engage different adaptation mech-
anisms that involve the use of various types of correc-
tive actions. Nevertheless, as adaptation progresses and
errors are reduced through practice, cerebellar struc-
tures may be recruited to fine-tuning the internal model
of the sensorimotor transformation.

4.2 Neuroimaging studies of adaptation learning

The involvement of cerebellar structures in kinematic
adaptation in humans has been clearly demonstrated by
the elegant study of Imamizu et al. (2000), who showed
bilateral focal activation in the lateral cerebellar hemi-
spheres after a period of adaptation to a screen cur-
sor rotation in a tracking task. Importantly, this error
was not related to performance level as the mean error
scores were equalized across the last baseline and adap-
tation blocks. However, neuroimaging studies of adapta-
tion learning have produced conflicting results regarding
the role of the basal ganglia on adaptation to kinematic
perturbations, despite reports of deficits in patients with
Parkinsons disease (Contreras-Vidal and Buch 2003).
While in some cases, the authors were not looking at
the whole brain (e.g., Imamizu et al. 2000), other neu-
roimaging studies using whole head scanning have not
shown basal ganglia involvement in adaptation to screen
cursor rotations (e.g., Ghilardi et al. 2000; Krakauer
et al. 2004), or have shown early involvement during
adaptation to gain changes only (Krakauer et al. 2004).
However, the studies have used PET imaging, which
averages signal over a relatively long time period and
which have limited spatial resolution. Thus, these stud-
ies may have missed early, focal basal ganglia activation
during adaptation to rotational perturbations. Interest-
ingly, a recent fMRI study involving a large number of
subjects (N = 26) showed bilateral basal ganglia activa-
tion very early in the rotational adaptation process only
(Seidler et al. 2006). Thus, some issues of statistical

power may also help to explain the lack of statistically
significant activation of the basal ganglia in sensorimo-
tor adaptation in previous imaging studies.

4.3 Conclusions

In this article, we adapted the DIRECT-model of
Bullock et al. (1993) to perform two dimensional reach-
ing movements in a center-out reaching task. To model
the functional roles of the cortico–cerebellar–thalamo–
cortical and the cortico–striato–thalamo–cortical loops
in visuo-motor adaptation, we augmented the model
by two side loops, generating correction terms for the
planned movement direction of the DIRECT-model.

Based on the results of other behavioral as well as
imaging studies, we modeled the function of the cortico–
cerebellar–thalamo–cortical loop as that of a gradual
adaptation mechanism. The function of the cortico–
striato–thalamo–cortical loop on the other hand was
hypothesized to be that of an adaptive search mecha-
nism. These two models were implemented as side paral-
lel loops, generating correction terms for the movement
direction of the DIRECT-model.

The complete model was tested in a center-out reach-
ing task with rotated visual feedback, and the perfor-
mance was compared to that of human subjects. While
quantitative differences were observed, the qualitative
behavior of the model agreed well with the experimen-
tal data in all stages of the adaptation process. To test
our hypothesis, we simulated subjects with PD by dis-
abling learning mechanisms in the cortico–striato–thal-
amo–cortical loop of the model. This resulted in RMSE
and IDE scores in the different stages of the adapta-
tion process that qualitatively agreed with experimental
data from human subjects with PD. We thus conclude
that our results support the hypothesis that the func-
tional role of the cortico–striato–thalamo–cortical loop
in visuo-motor adaptation is that of an adaptive search
mechanism, searching and exploring different sensori-
motor transformations until a crude adaptation to the
new environment has been achieved.
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