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Semiparametric Support Vector andLinear Programming MachinesAlex J. Smola, Thilo T. Frie�, and Bernhard Sch�olkopfGMD FIRST, Rudower Chaussee 5, 12489 Berlinfsmola, friess, bsg@�rst.gmd.deAbstractSemiparametric models are useful tools in the case where domainknowledge exists about the function to be estimated or emphasis isput onto understandability of the model. We extend two learningalgorithms - Support Vector machines and Linear Programmingmachines to this case and give experimental results for SV ma-chines.1 IntroductionOne of the strengths of Support Vector (SV) machines is that they are nonparamet-ric techniques, where one does not have to e.g. specify the number of basis functionsbeforehand. In fact, for many of the kernels used (not the polynomial kernels) likeGaussian rbf{kernels it can be shown [6] that SV machines are universal approxi-mators.While this is advantageous in general, parametric models are useful techniques intheir own right. Especially if one happens to have additional knowledge about theproblem, it would be unwise not to take advantage of it. For instance it might bethe case that the major properties of the data are described by a combination of asmall set of linear independent basis functions f�1(�); : : : ; �n(�)g. Or one may wantto correct the data for some (e.g. linear) trends. Secondly it also may be the casethat the user wants to have an understandable model, without sacri�cing accuracy.For instance many people in life sciences tend to have a preference for linear models.This may be some motivation to construct semiparametric models, which are botheasy to understand (for the parametric part) and perform well (often due to thenonparametric term). For more advocacy on semiparametric models see [1].A common approach is to �t the data with the parametric model and train the non-parametric add{on on the errors of the parametric part, i.e. �t the nonparametricpart to the errors. We show in Sec. 4 that this is useful only in a very restrictedsituation. In general it is impossible to �nd the best model amongst a given class



for di�erent cost functions by doing so. The better way is to solve a convex op-timization problem like in standard SV machines, however with a di�erent set ofadmissible functions f(x) = hw; (x)i + nXi=1 �i�i(x): (1)Note that this is not so much di�erent from the classical SV [10] setting where oneuses functions of the type f(x) = hw; (x)i + b: (2)2 Semiparametric Support Vector MachinesLet us now treat this setting more formally. For the sake of simplicity in theexposition we will restrict ourselves to the case of SV regression and only deal withthe "{insensitive loss function j�j" = maxf0; j�j � "g. Extensions of this setting arestraightforward and follow the lines of [7].Given a training set of size `, X := f(x1; y1); : : : ; (x`; y`)g one tries to �nd a functionf that minimizes the functional of the expected risk1R[f ] = Z c(f(x) � y)p(x; y)dxdy: (3)Here c(�) denotes a cost function, i.e. how much deviations between predictionand actual training data should be penalized. Unless stated otherwise we will usec(�) = j�j".As we do not know p(x; y) we can only compute the empirical risk Remp[f ] (i.e. thetraining error). Yet, minimizing the latter is not a good idea if the model class issu�ciently rich and will lead to over�tting. Hence one adds a regularization termT [f ] and minimzes the regularized risk functionalRreg[f ] = X̀i=1 c(f(xi)� yi) + �T [f ] with � > 0: (4)The standard choice in SV regression is to set T [f ] = 12kwk2.This is the point of departure from the standard SV approach. While in the latterf is described by (2), we will expand f in terms of (1). E�ectively this means thatthere exist functions �1(�); : : : ; �n(�) whose contribution is not regularized at all.If n is su�ciently smaller than ` this need not be a major concern, as the VC{dimension of this additional class of linear models is n, hence the overall capacitycontrol will still work, provided the nonparametric part is restricted su�ciently.Figure 1 explains the e�ect of choosing a di�erent structure in detail.Solving the optimization equations for this particular choice of a regularizationterm, with expansion (1), the "{insensitive loss function and introducing kernels1More general de�nitions, mainly in terms of the cost function, do exist but for thesake of clarity in the exposition we ignored these cases. See [10] or [7] for further detailsalternative de�nitions of risk functionals.



Figure 1: Two di�erent nested subsets (solid and dotted lines) of hypotheses and theoptimal model (+) in the realizable case. Observe that the optimal model is alreadycontained in much a smaller (in this diagram size corresponds to the capacity ofa subset) subset of the structure with solid lines than in the structure denoted bythe dotted lines. Hence prior knowledge in choosing the structure can have a largee�ect on generalization bounds and performance.following [2] we arrive at the following primal optimization problem:maximize �2 kwk2 + P̀i=1 �i + ��isubject to 8>>>><>>>>: hw; (xi)i+ nPj=1 �j�j(xi)� yi � �+ ��iyi � hw; (xi)i � nPj=1 �j�j(xi) � �+ �i�i; ��i � 0 (5)Here k(x; x0) has been written as h (x);  (x0)i. Solving (5) for its Wolfe dual yieldsmaximize 8>><>>: � 12 P̀i;j=1(�i � ��i )(�j � ��j )k(xi; xj)�" P̀i=1(�i + ��i ) + P̀i=1 yi(�i � ��i )subject to 8<: P̀i=1(�i � ��i )�j(xi) = 0 for all 1 � j � n�i; ��i 2 [0; 1=�] (6)Note the similarity to the standard SV regression model. The objective functionand the box constraints on the Lagrange multipliers �i; ��i remain unchanged. Theonly modi�cation comes from the additional unregularized basis functions. Whereasin the standard SV case we only had a single (constant) function b � 1 we now havean expansion in the basis �i�i(�). This gives rise to n constraints instead of one.Finally f can be found asf(x) = X̀i=1(�i � ��i )k(xi; x) + nXi=1 �i�i(x) since w = X̀i=1(�i � ��i ) (xi): (7)The only di�culty remaining is how to determine �i. This can be done by exploitingthe Karush{Kuhn{Tucker optimality conditions, or much more easily, by using aninterior point optimization code [9]. In the latter case the variables �i can beobtained as the dual variables of the dual (dual dual = primal) optimization problem(6) as a by product of the optimization process. This is also how these variableshave been obtained in the experiments in the current paper.



3 Semiparametric Linear Programming MachinesEquation (4) gives rise to the question whether not completely di�erent choices ofregularization functionals would also lead to good algorithms. Again we will allowfunctions as described in (7). Possible choices areT [f ] = 12kwk2 + nXi=1 j�ij (8)or T [f ] = X̀i=1 j�i � ��i j (9)or T [f ] = X̀i=1 j�i � ��i j+ 12 nXi;j=1 �i�jMij (10)for some positive semide�nite matrix M . This is a simple extension of existingmethods like Basis Pursuit [3] or Linear Programming for classi�cation (see e.g.[4]). The basic idea in all these approaches is to have two di�erent sets of basisfunctions that are regularized di�erently, or where a subset may not be regularizedat all. This is an e�cient way of encoding prior knowledge or the preference of theuser as the emphasis obviously will be put mainly on the functions with little orno regularization at all. Eq. (8) is essentially the SV estimation model where anadditional linear regularization term has been added for the parametric part. Inthis case the constraints of the optimization problem (6) change into�1 � P̀i=1(�i � ��i )�j(xi) � 1 for all 1 � j � n�i; ��i 2 [0; 1=�] (11)It makes little sense to compute Wolfe's dual objective function in (10) as theproblem does not get signi�cantly easier by doing so. The best approach is tosolve the corresponding optimization problem directly by some linear or quadraticprogramming code, e.g. [9]. Finally (10) can be reduced to the case of (8) byrenaming variables accordingly and a proper choice of M .4 Why Back�tting is not su�cientOne might think that the approach presented above is quite unnecessary and overlycomplicated for semiparametric modelling. In fact, one could try to �t the data tothe parametric model �rst, and then �t the nonparametric part to the residuals.In most cases, however, this does not lead to �nding the minimum of (4). We willshow this at a simple example.Take a SV machine with linear kernel (i.e. k(x; x0) = hx; x0i) in one dimension anda constant term as parametric part (i.e. f(x) = wx+�). This is one of the simplestsemiparametric SV machines possible. Now suppose the data was generated byyi = xi where xi � 1 (12)without noise. Clearly then also yi � 1 for all i. By construction the best overall �tof the pair (�;w) will be arbitrarily close to (0; 1) if the regularization parameter �is chosen su�ciently small.For back�tting one �rst carries out the parametric �t to �nd a constant � minimizingthe term Pì=1 c(yi � �). Depending on the chosen cost function c(�), � will be themean (L2{error), the median (L1{error), etc., of the set fy1; : : : ; y`g. As all yi � 1
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parametric    Figure 2: Left: Basis functions used in the toy example. Note the di�erent lengthscales of sinx and sinc 2�x. For convenience the functions were shifted by an o�setof 2 and 4 respectively. Right: Training data denoted by '+', nonparametric (dash{dotted line), semiparametric (solid line), and parametric regression (dots). Theregularization constant was set to � = 2. Observe that the semiparametric modelpicks up the characteristic wiggles of the original function.also � � 1 which is surely not the optimal solution of the overall problem as there� would be close to 0 as seen above. Hence not even in the simplest of all settingsback�tting minimizes the regularized risk functional, thus one cannot expect thelatter to happen in the more complex case either. There exists only one case inwhich back�tting would su�ce, namely if the function spaces spanned by the kernelexpansion fk(xi; �)g and f�i(�)g were orthogonal. Consequently in general one hasto jointly solve for both the parametric and the semiparametric part.5 ExperimentsThe main goal of the experiments shown is a proof of concept and to display theproperties of the new algorithm. We study a modi�cation of the Mexican hatfunction, namely f(x) = sinx+ sinc(2�(x� 5)): (13)Data is generated by an additive noise process, i.e. yi = f(xi) + �i, where �i isadditive noise. For the experiments we choose Gaussian rbf{kernels with width� = 1=4, normalized to maximum output 1. The noise is uniform with 0:2 standarddeviation, the cost function j � j" with " = 0:05. Unless stated otherwise averaging isdone over 100 datasets with 50 samples each. The xi are drawn uniformly from theinterval [0; 10]. L1 and L2 errors are computed on the interval [0; 10] with uniformmeasure. Figure 2 shows the function and typical predictions in the nonparametric,semiparametric, and parametric setting. One can observe that the semiparametricmodel including sinx, cosx and the constant function as basis functions generalizesbetter than the standard SV machine. Fig. 3 shows that the generalization perfor-mance is better in the semiparametric case. The length of the weight vector of thekernel expansion kwk is displayed in Fig. 4. It is smaller in the semiparametric casefor practical values of the regularization strength. To make a more realistic com-parison, model selection (how to determine 1=�) was carried out by 10{fold crossvalidation for both algorithms independently for all 100 datasets. Table 1 showsgeneralization performance for both a nonparametric model, a correctly chosen andan incorrectly chosen semiparametric model. The experiments indicate that casesin which prior knowledge exists on the type of functions to be used will bene�t fromsemiparametric modelling. Future experiments will show how much can be gainedin real world examples.
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Figure 3: L1 error (left) and L2 error (right) of the nonparametric / semiparametricregression computed on the interval [0; 10] vs. the regularization strength 1=�. Thedotted lines (although hardly visible) denote the variance of the estimate. Notethat in both error measures the semiparametric model consistently outperforms thenonparametric one.
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Figure 4: Length of the weight vector w in fea-ture space (Pi;j(�i � ��i )(�j � ��j )k(xi; xj))1=2vs. regularization strength. Note that kwk, con-trolling the capacity of that part of the function,belonging to the kernel expansion, is smaller (forpractical choices of the regularization term) inthe semiparametric than in the nonparametricmodel. If this di�erence is su�ciently large theoverall capacity of the resulting model is smallerin the semiparametric approach. As before dot-ted lines indicates the variance.
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Figure 5: Estimate of the parameters forsinx (top picture) and cosx (bottom picture)in the semiparametric model vs. regularizationstrength 1=�. The dotted lines above and belowshow the variation of the estimate given by itsvariance. Training set size was ` = 50. Note thesmall variation of the estimate. Also note thateven in the parametric case 1=� � 0 neither thecoe�cient for sinx converges to 1, nor does thecorresponding term for cosx converge to 0. Thisis due to the additional frequency contributionsof sinc 2�x.Nonparam. Semiparam. Semiparam.sinx; cosx; 1 sin 2x; cos 2x; 1L1 error 0:1263� 0:0064 (12) 0:0887� 0:0018 (82) 0:1267� 0:0064 (6)L2 error 0:1760� 0:0097 (12) 0:1197� 0:0046 (82) 0:1864� 0:0124 (6)Table 1: L1 and L2 error for model selection by 10{fold crossvalidation. The cor-rect semiparametric model (sinx; cosx; 1) outperforms the nonparametric modelby at least 30%, and has signi�cantly smaller variance, whereas the wrongly cho-sen nonparametric model (sin 2x; cos 2x; 1) gives performance comparable to thenonparametric one, in fact, no signi�cant performance degradation was noticeable.The number in parentheses denotes the number of trials in which the correspondingmodel was the best among the three models.



6 Discussion and OutlookSimilar models have been proposed and explored in the context of smoothing splines.In fact, expansion (7) is a direct result of the representer theorem, however only inthe case of regularization in feature space (aka Reproducing Kernel Hilbert Space,RKHS). One can show [5] that the expansion (7) is optimal in the space spannedby the RKHS and the additional set of basis functions.Moreover the semiparametric setting arises naturally in the context of conditionallypositive de�nite kernels of order m (see [8]). There, in order to use a set of kernelswhich do not satisfy Mercer's condition, one has to exclude polynomials up to orderm� 1. Hence, to with that one has to add polynomials back in 'manually' and ourapproach presents a way of doing that.Another application of semiparametric models besides the conventional approachof treating the nonparametric part as nuisance parameters [1] is the domain ofhypothesis testing, e.g. to test whether a parametric model �ts the data su�cientlywell. This can be achieved in the framework of structural risk minimization [10] |given the di�erent models (nonparametric vs. semiparametric vs. parametric) onecan evaluate the bounds on the expected risk and then choose the model with thelowest error bound. Future work will tackle the problem of computing good errorbounds of compound hypothesis classes. Moreover it should be easily possible toapply the methods proposed in this paper to Gaussian processes.Acknowledgements This work was supported in part by grants of the DFG Ja379/51 and ESPRIT Project Nr. 25387{STORM. The authors thank Peter Bartlett,Klaus{Robert M�uller, Noboru Murata, Takashi Onoda, and Bob Williamson forhelpful discussions and comments.References[1] P.J. Bickel, C.A.J. Klaassen, Y. Ritov, and J.A. Wellner. E�cient and adaptiveestimation for semiparametric models. J. Hopkins Press, Baltimore, ML, 1994.[2] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for opti-mal margin classi�ers. In D. Haussler, editor, 5th Annual ACM Workshop onCOLT, pages 144{152, Pittsburgh, PA, 1992. ACM Press.[3] S. Chen, D. Donoho, and M. Saunders. Atomic decomposition by basis pursuit.Technical Report 479, Department of Statistics, Stanford University, 1995.[4] T.T. Frie� and R.F. Harrison. Linear programming support vector machiens forpattern classi�cation and regression estimation and the set reduction algorithm.TR RR-706, University of She�eld, She�eld, UK, 1998. submitted.[5] G.S. Kimeldorf and G. Wahba. A correspondence between Bayesan estimationon stochastic processes and smoothing by splines. Ann. Math. Statist., 2:495{502, 1971.[6] C.A. Micchelli. Interpolation of scattered data: distance matrices and condi-tionally positive de�nite functions. Constructive Approximation, 2:11{22, 1986.[7] A. J. Smola and B. Sch�olkopf. On a kernel{based method for pattern recogni-tion, regression, approximation and operator inversion. Algorithmica, 1998.[8] A.J. Smola, B. Sch�olkopf, and K.-R. M�uller. The connection between regular-ization operators and support vector kernels. Neural Networks, 1998. in press.[9] R.J. Vanderbei. LOQO: An interior point code for quadratic programming. TRSOR-94-15, Statistics and Operations Research, Princeton Univ., NJ, 1994.[10] V. Vapnik. The Nature of Statistical Learning Theory. Springer, N.Y., 1995.


