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Abstract

We incorporate prior knowledge to construct nonlinear algorithms
for invariant feature extraction and discrimination. Employing a
unified framework in terms of a nonlinear variant of the Rayleigh
coefficient, we propose non-linear generalizations of Fisher’s dis-
criminant and oriented PCA using Support Vector kernel functions.
Extensive simulations show the utility of our approach.

1 Introduction

It is common practice to preprocess data by extracting linear or nonlinear features.
The most well-known feature extraction technique is principal component analysis
PCA (e.g. [3]). It aims to find an orthonormal, ordered basis such that the i-th
direction describes as much variance as possible while maintaining orthogonality to
all other directions. However, since PCA is a linear technique, it is too limited to
capture interesting nonlinear structure in a data set and nonlinear generalizations
have been proposed, among them Kernel PCA [14], which computes the principal
components of the data set mapped nonlinearly into some high dimensional feature
space F.

Often one has prior information, for instance, we might know that the sample is
corrupted by noise or that there are invariances under which a classification should
not change. For feature extraction, the concepts of known noise or transformation
invariance are to a certain degree equivalent, i.e. they can both be interpreted as
causing a change in the feature which ought to be minimized. Clearly, invariance
alone is not a sufficient condition for a good feature, as we could simply take the
constant function. What one would like to obtain is a feature which is as invariant
as possible while still covering as much of the information necessary for describing
the particular data. Considering only one (linear) feature vector w and restricting
to first and second order statistics of the data one arrives at a maximization of the
so called Rayleigh coefficient
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where w is the feature vector and Sy, Sy are matrices describing the desired and
undesired properties of the feature, respectively (e.g. information and noise). If Sy
is the data covariance and Sy the noise covariance, we obtain oriented PCA [3].
If we leave the field of data description to perform supervised classification, it is
common to choose Sy as the separability of class centers (between class variance)
and Sy to be the within class variance. In that case, we recover the well known
Fisher Discriminant [7]. The ratio in (1) is maximized when we cover much of
the information coded by Sy while avoiding the one coded by Sy. The problem is
known to be solved, in analogy to PCA, by a generalized symmetric eigenproblem
Srw = ASyw [3], where A € R is the corresponding (biggest) eigenvalue.

In this paper we generalize this setting to a nonlinear one. In analogy to [8, 14]
we first map the data via some nonlinear mapping ® to some high-dimensional fea-
ture space F and then optimize (1) in F. To avoid working with the mapped data
explicitly (which might be impossible if F is infinite dimensional) we introduce sup-
port vector kernel functions [11], the well-known kernel trick. These kernel functions
k(x,y) compute a dot product in some feature space F, i.e. k(z,y) = (®(x)- ®(y)).
Formulating the algorithms in F using ® only in dot products, we can replace any
occurrence of a dot product by the kernel function k. Possible choices for k which
have proven useful e.g. in Support Vector Machines [2] or Kernel PCA [14] are Gaus-
sian RBF, k(z,y) = exp(—||z — y||?/c), or polynomial kernels, k(z,y) = (x - y)?,
for some positive constants ¢ € R and d € N, respectively.

The remainder of this paper is organized as follows: The next section shows how to
formulate the optimization problem induced by (1) in feature space. Section 3 con-
siders various ways to find Fisher’s Discriminant in F; we conclude with extensive
experiments in section 4 and a discussion of our findings.

2 Kernelizing the Rayleigh Coefficient

To optimize (1) in some kernel feature space F we need to find a formulation which
uses only dot products of ®-images. As numerator and denominator are both scalars
this can be done independently. Furthermore, the matrices S; and Sy are basically
covariances and thus the sum over outer products of ®-images. Therefore, and due
to the linear nature of (1) every solution w € F can be written as an expansion in
terms of mapped training datal, i.e.

’
i=1
To define some common choices in F let X = {x1,...,2¢} be our training sample

and, where appropriate, X; UXo = X, X1 N Xy = 0, two subclasses (with |X;| = ¢;).
We get the full covariance of X by

= % S (@(x) - m)(®(z) — m)" with m = % 3 a(), 3)
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!S5 and Sy are operators on a (finite-dimensional) subspace spanned by the ®(z;) (in
a possibly infinite space). Let w = v1 + v2, where v; € Span(®(xz;) : ¢ = 1,...,£) and
v2 L Span(®(x;): i =1,...,£). Then for S = Sw or S = Sp (which are both symmetric)
(w,Sw) = ((v1+v2),S(v1+v2))
((v1 +v2)S5,v1)
(’171, Svl)

As vy lies in the span of the ®(x;) and S only operates on this subspace there exist an
expansion of w which maximizes J(w).



which could be used as Sy in oriented Kernel PCA. For Sy we could use an estimate
of the noise covariance, analogous to the definition of C' but over mapped patterns
sampled from the assumed noise distribution. The standard formulation of the
Fisher discriminant in F, yielding the Kernel Fisher Discriminant (KFD) [8] is
given by

Sw= Y (®@) -m) (@) —my)| and  Sp = (mz —mi)(my —m),

i=1,2 2€X;

the within-class scatter Sy (as Sy), and the between class scatter Sg (as Sr). Here
m; is the sample mean for patterns from class i.

To incorporate a known invariance e.g. in oriented Kernel PCA, one could use the
tangent covariance matrix [12],

T = % Z (®(x) — ®(Lx))(®(x) — ®(Liz))' for some small ¢ > 0. (4)

Here L; is alocal 1-parameter transformation. 7' is a finite difference approximation
t of the covariance of the tangent of £; at point ®(z) (details e.g. in [12]). Using
St = C and Sy = T in oriented Kernel PCA, we impose invariance under the local
transformation L. Crucially, this matrix is not only constructed from the training
patterns X. Therefore, the argument used to find the expansion (2) is slightly
incorrect. Neverthless, we can assume that (2) is a reasonable approximation for
describing the variance induced by T'.

Multiplying either of these matrices from the left and right with the expansion (2),
we can find a formulation which uses only dot products. For the sake of brevity, we
only give the explicit formulation of (1) in F for KFD (cf. [8] for details). Defining
(13)j = ¢ Ywen, k(zj, ) we can write (1) for KFD as
(a'p)? a'Ma 5)
a'Na a'Na’

where N = KK — Zi:1,2 il o= py — py, M = pp’, and K;; = k(z;, ;).
The results for other choices of Sy and Sy in F as for the cases of oriented kernel
PCA or transformation invariance can be obtained along the same lines. Note that
we still have to maximize a Rayleigh coefficient. However, now it is a quotient in
terms of expansion coefficients o, and not in terms of w € F which is a potentially
infinite-dimensional space. Furthermore, it is well known that the solution for this
special eigenproblem is in the direction of N=!(uy — py) [7], which can be solved
using e.g. a Cholesky factorization of N. The projection of a new pattern & onto
w in F can then be computed by

J(a) =

4
(w - 3(z)) = Zaik(wi,w)- (6)

3 Algorithms

Estimating a covariance matrix with rank up to £ from ¢ samples is ill-posed. Fur-
thermore, by performing an explicit centering in F each covariance matrix loses one
more dimension, i.e. it has only rank £ — 1 (even worse, for KFD the matrix N has
rank ¢ — 2). Thus the ratio in (1) is not well defined anymore, as the denomina-
tor might become zero. In the following we will propose several ways to deal with
this problem in KFD. Furthermore we will tackle the question how to solve the
optimization problem of KFD more efficiently. So far, we have an eigenproblem of
size £ x £. If ¢ becomes large this is numerically demanding. Reformulations of the
original problem allow to overcome some of these limitations. Finally, we describe
the connection between KFD and RBF networks.



3.1 Regularization and Solution on a Subspace

As noted before, the matrix N has only rank £ — 2. Besides numerical problems
which can cause the matrix IV to be not even positive, we could think of imposing
some regularization to control capacity in F. To this end, we simply add a multiple
of the identity matrix to NNV, i.e. replace N by N, where

N, =N+ pul. (7)

This can be viewed in different ways: (i) for g > 0 it makes the problem feasible
and numerically more stable as IV, becomes positive; (ii) it can be seen as decreas-
ing the bias in sample based estimation of eigenvalues (cf. [6]); (iii) it imposes a
regularization on ||a|?, favoring solutions with small expansion coefficients. Fur-
thermore, one could use other regularization type additives to N, e.g. penalizing
lw]|? in analogy to SVM (by adding the kernel matrix K;; = k(z;, z;)).

To optimize (5) we need to solve an £ x £ eigenproblem, which might be intractable
for large £. As the solutions are not sparse one can not directly use efficient algo-
rithms like chunking for Support Vector Machines (cf. [13]). To this end, we might
restrict the solution to lie in a subspace, i.e. instead of expanding w by (2) we write

w = Zaiq)(zi)a (8)

with m < [. The patterns z; could either be a subset of the training patterns X
or e.g. be estimated by some clustering algorithm. The derivation of (5) does not
change, only K is now m x £ and we end up with m x m matrices N and M. Another
advantage is, that it increases the rank of N (relative to its size) although there
still might be some need for regularization.

3.2 Quadratic optimization and Sparsification

Even if N has full rank, maximizing (5) is underdetermined: if c is optimal, then so
is any multiple thereof. Since a'Ma = (a'p)?, M has rank one. Thus we can seek
for a vector , such that a' N is minimal for fixed o'y (e.g. to 1). The solution
is unique and we can find the optimal a by solving the quadratic optimization
problem:

min a'Na subject to o'p = 1. (9)

Although the quadratic optimization problem is not easier to solve than the eigen-
problem, it has an appealing interpretation. The constraint a'p = 1 ensures, that
the average class distance, projected onto the direction of discrimination, is con-
stant, while the intra class variance is minimized, i.e. we maximize the average
margin. Contrarily, the SVM approach [2] optimizes for a large minimal margin.
Considering (9) we are able to overcome another shortcoming of KFD. The solu-
tions « are not sparse and thus evaluating (6) is expensive. To solve this we can
add an [y-regularizer A||||; to the objective function, where X is a regularization
parameter allowing us to adjust the degree of sparseness.

3.3 Connection to RBF Networks

Interestingly, there exists a close connection between RBF networks (e.g. [9, 1]) and
KFD. If we add no regularization and expand in all training patterns, we find that
an optimal « is given by a@ = K 'y, where K is the symmetric, positive matrix of
all kernel elements k(z;, z;) and y the £1 label vector?. A RBF-network with the

2To see this, note that N can be written as N = KDK where D = I —y,y! —y,y,, has
rank £ — 2, while vy, is the vector of 1/1/¢;’s for patterns from class i and zero otherwise.



RBF AB ABr SVM KFD
Banana [[10.8+0.06]12.3+0.07[10.9+0.04] 11.5+0.07(10.8+0.05 Table 1: Com-
B.Cancer || 27.6+0.47|30.4+0.47|26.5+0.45| 26.0+0.47)25.8+0.46 parison between

Diabetes 24.3+0.19| 26.54+0.23| 23.84+0.18| 28.5+0.17|23.2+0.16 KFD, single
German 24.740.24|27.540.25| 24.3+0.21|23.6+0.21| 28.7+0.22 RBF classifier
Heart 17.6£0.33|20.3+0.34| 16.5+£0.35{16.0+0.33| 16.1+0.34 AdaBoost (AB)7
Image 3.310.06| 2.7+£0.07| 2.7£0.06| &5.0+0.06] 4.8+0.06 ’

Ringnorm|| 1.7+0.02| 1.9+0.03| 1.6+0.01| 1.7+0.01| 1.5+0.01 re8ul: Ada-
F.Sonar 34.440.20 35.740.18| 34.2+0.22(32.4+0.18| 93.2+0.17 BOOst (ABg)
Splice 10.0+0.10|10.1+0.05| 9.540.07| 10.9+0.07| 10.5+0.06 and SVMs (see
Thyroid 4.540.21| 4.4+0.22| 4.6+0.22| 4.84+0.22| 4.24+0.21 text). Best re-
Titanic 23.3+0.13|22.6+0.12|22.6+0.12|22.4+0.10| 23.240.20 sult in bold face,
Twonorm 2.940.03| 3.0+0.03| 2.7+0.02| 3.0+0.02| 2.6+0.02 second best in
Waveform|| 10.740.11|10.8+0.06| 9.84+0.08| 9.9+0.04| 9.9+£0.04 italics.

same kernel at each sample and fixed kernel width gives the same solution, if the
mean squared error between labels and output is minimized. Also for the case of
restricted expansions (8) there exists a connection to RBF networks with a smaller
number of centers (cf. [4]).

4 Experiments

Kernel Fisher Discriminant Figure 1 shows an illustrative comparison of the
features found by KFD, and Kernel PCA. The KFD feature discriminates the two
classes, the first Kernel PCA feature picks up the important nonlinear structure.

To evaluate the performance of the KFD on real data sets we performed an extensive
comparison to other state-of-the-art classifiers, whose details are reported in [8].3
We compared the Kernel Fisher Discriminant and Support Vector Machines, both
with Gaussian kernel, to AdaBoost [5], and regularized AdaBoost [10] (cf. table 1).
For KFD we used the regularized within-class scatter (7) and computed projections
onto the optimal direction w € F by means of (6). To use w for classification we
have to estimate a threshold. This can be done by e.g. trying all thresholds between
two outputs on the training set and selecting the median of those with the smallest
empirical error, or (as we did here) by computing the threshold which maximizes the
margin on the outputs in analogy to a Support Vector Machine, where we deal with
errors on the trainig set by using the SVM soft margin approach. A disadvantage
of this is, however, that we have to control the regularization constant for the slack
variables. The results in table 1 show the average test error and the standard

If K has full rank, the null space of D, which is spanned by y; and y,, is the null space
of N. For & = K~ 'y we get @ N& = 0 and &' # 0. As we are free to fix the constraint
a'p to any positive constant (not just 1), & is also feasible.

3The breast cancer domain was obtained from the University Medical Center,
Inst. of Oncology, Ljubljana, Yugoslavia. = Thanks to M. Zwitter and M. Sok-
lic for the data. All data sets used in the experiments can be obtained via
http://wuw.first.gmd.de/ raetsch/.

Figure 1: Comparison of feature
found by KFD (left) and first
Kernel PCA feature (right). De-
picted are two classes (informa-
tion only used by KFD) as dots
and crosses and levels of same
feature value. Both with polyno-
mial kernel of degree two, KFD
with the regularized within class
scatter (7) (u = 1073).




deviation of the averages’ estimation, over 100 runs with different realizations of
the datasets. To estimate the necessary parameters, we ran 5-fold cross validation
on the first five realizations of the training sets and took the model parameters to
be the median over the five estimates (see [10] for details of the experimental setup).

Using prior knowledge. A toy example (figure 2) shows a comparison of Ker-
nel PCA and oriented Kernel PCA, which used S; as the full covariance (3) and
as noise matrix Sy the tangent covariance (4) of (i) rotated patterns and (ii) along
the x-axis translated patterns. The toy example shows how imposing the desired
invariance yields meaningful invariant features.

In another experiment we incorporated prior knowledge in KFD. We used the USPS
database of handwritten digits, which consists of 7291 training and 2007 test pat-
terns, each 256 dimensional gray scale images of the digits 0...9. We used the
regularized within-class scatter (7) (u = 10~%) as Sy and added to it an multiple X
of the tangent covariance (4), i.e. Sy = N, + AT. As invariance transformations we
have chosen horizontal and vertical translation, rotation, and thickening (cf. [12]),
where we simply averaged the matrices corresponding to each transformation. The
feature was extracted by using the restricted expansion (8), where the patterns z;
were the first 3000 training samples. As kernel we have chosen a Gaussian of width
0.3- 256, which is optimal for SVMs [12]. For each class we trained one KFD which
classified this class against the rest and computed the 10-class error by the winner-
takes-all scheme. The threshold was estimated by minimizing the empirical risk on
the normalized outputs of KFD.

Without invariances, i.e. A = 0, we achieved a test error of 3.7%, slightly better than
a plain SVM with the same kernel (4.2%) [12]. For A = 103, using the tangent
covariance matrix led to a very slight improvement to 3.6%. That the result was not
significantly better than the corresponding one for KFD (3.7%) can be attributed
to the fact that we used the same expansion coeflicients in both cases. The tangent
covariance matrix, however, lives in a slightly different subspace. And indeed, a
subsequent experiment where we used vectors which were obtained by clustering a
larger dataset, including virtual examples generated by the appropriate invariance
transformation, led to 3.1%, comparable to an SVM using prior knowledge (e.g. [12];
best SVM result 2.9% with local kernel and virtual support vectors).

5 Conclusion

In the task of learning from data it is equivalent to have prior knowledge about
e.g. invariances or about specific sources of noise. In the case of feature extraction,
we seek features which are sufficiently (noise-) invariant while still describing in-
teresting structure. Oriented PCA and, closely related, Fisher’s Discriminant, use
particularly simple features, since they only consider first and second order statis-
tics for maximizing the Rayleigh coefficient (1). Since linear methods can be too
restricted in many real-world applications, we used Support Vector Kernel functions
to obtain nonlinear versions of these algorithms, namely oriented Kernel PCA and
Kernel Fisher Discriminant analysis.

Our experiments show that the Kernel Fisher Discriminant is competitive or in

Figure 2: Comparison of first
features found by Kernel PCA
and oriented Kernel PCA (see
text); from left to right: KPCA,
OKPCA with rotation and
translation invariance; all with
Gaussian kernel.




some cases even superior to the other state-of-the-art algorithms tested. Interest-
ingly, both SVM and KFD construct a hyperplane in F which is in some sense
optimal. In many cases, the one given by the solution w of KFD is superior to
the one of SVMs. Encouraged by the preliminary results for digit recognition, we
believe that the reported results can be improved, by incorporating different invari-
ances and using e.g. local kernels [12].

Future research will focus on further improvements on the algorithmic complexity
of our new algorithms, which is so far larger than the one of the SVM algorithm,
and on the connection between KFD and Support Vector Machines (cf. [16, 15]).
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