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Abstract

Building on recent results for submodular minimization with combinatorial con-
straints, and on online submodular minimization, we address online approxima-
tion algorithms for submodular minimization with combinatorial constraints. We
discuss two types of algorithms and outline approximation algorithms that inte-
grate into those.

1 Introduction

Theoretical computer science has seen a rising interest in submodular minimization problems sub-
ject to combinatorial constraints [5, 10, 14, 15, 16, 27]. Such problems result from replacing the
linear (modular) cost function in a combinatorial optimization problem by a submodular function.
Formally, we are given a set E of elements, e.g., the edges in a graph, and a set of feasible solutions,
defined as a family C ⊆ 2E of subsets of E. These sets may be, for instance, all spanning trees in
the graph, all (s, t)-paths, or all cuts. For a cost function f : 2E → R+, the optimization problem is

min{f(S) | S ∈ C}. (1)

In the standard case, there are nonnegative weights w : E → R+, and f is the sum of weights:
f(S) =

∑
e∈S w(e). This leads to the shortest path problem, minimum (s, t)-cut, and so on.

In this work, f is a non-decreasing submodular set function. This generalization was already
encouraged in [21]. A function is submodular if it satisfies diminishing marginal costs: for any
A ⊂ B ⊆ E \ e, it holds that f(A∪ {e})− f(A) ≥ f(B ∪ {e})− f(B). The sum of weights satis-
fies this with equality, i.e., it is a modular set function. The minimum cut problem with submodular
cost, for instance, has applications in the analysis of attack graphs in computer security, or in image
segmentation [17]. In general, submodularity has been important in combinatorics and game theory.

In parallel to the progress in algorithms and complexity, submodularity has emerged as a useful
property in Machine Learning. Recently, Hazan and Kale [12] developed algorithms for online
and bandit submodular minimization without constraints (C = 2E). Furthermore, there are online
algorithms for submodular maximization [25, 26]. The aim of this work is to explore routes for
online submodular minimization with combinatorial constraints.

We consider the full-information case: in round t, we must choose a solution St ∈ C and then incur
loss ft(St). After playing, we also receive the function ft. Throughout rounds t = 1, . . . , T , we
aim to minimize the regret, the difference to the best fixed solution in hindsight:

R(T ) =
1
T

(
T∑
t=1

ft(St)−min
S∈C

T∑
t=1

ft(S)

)
. (2)

Regret is commonly used for problems where the minimization for a known cost, minS∈C f(S), can
be solved exactly. But problems of the form (1) with submodular costs are mostly not only NP-hard;
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many have high non-constant lower bounds on the approximation factor. The approximation factor
α is a bound on the quality of a solution S′ returned by a given algorithm, compared to the optimal
solution S∗: f(S′)/f(S∗) ≤ α. For several balanced partition problems, α = o(

√
|E|/ log |E|)

[27]. For E being the edges in a graph G = (V,E), minimum spanning tree and perfect matching
have lower bounds of |V |1−ε, and shortest path of |V |2/3−ε [10] for any fixed ε > 0; and for
minimum (s, t)-cut, we proved that α = o(

√
|E|/ log |E|). Edge cover constraints make the order

of α at least
√
|V |/ log2 |V | [15]. That said, the cited works also contain approximation algorithms,

and approximation algorithms can work very well in practice.

Thus, in this work, we are searching for online approximation algorithms. Let α be the approxi-
mation factor attained by an offline approximation algorithm that solves minS∈C f(S) for a known
submodular f . The α-regret compares to the best solution that can be expected in polynomial time
and is commonly used with approximations:

Rα(T ) =
1
T

(
T∑
t=1

ft(St)− αmin
S∈C

T∑
t=1

ft(S)

)
. (3)

Existing approaches and difficulties. In machine learning, most existing online and bandit algo-
rithms for combinatorial problems focus on problems that are not NP-hard. In particular, most of
them expect a modular cost function f(S) =

∑
e∈S w(e) [1, 2, 3, 4, 6, 13, 19]. They exploit the

separability of this function. Submodular functions, however, are not separable in this way. One
example for non-modular costs and multi-task constraints is [22]. They use multiplicative updates
to achieve an O(m

√
mT ) regret for m tasks. The algorithms in [12] for unconstrained submodular

minimization yield a regret of O(m
√
T ) for m elements.

In general, there is no generic solution for integrating approximations into online algorithms [18,
19]. Kalai and Vempala [19] extend the regret bound for the Follow-the-perturbed leader (FPL)
algorithm to NP-hard combinatorial problems with a modular cost function if there is an algorithm
that provides a point-wise approximation S′ to the optimal S∗, i.e., E[χS′(e)] ≤ αχS∗(e) for all
e ∈ E. Here, χS denotes the characteristic vector of S. Again, non-separability renders this result
inapplicable to submodular functions. Similarly, Kakade et al. [18] show an example where FPL
fails for the greedy Set Cover algorithm, and ask how to use FPL in general with approximations.
It is the structure of the approximation algorithm that counts. In Section 3, we integrate a class of
approximation algorithms for Problem (1) into the FPL framework.

Kakade et al. [18] show how to derive online approximation algorithms from offline algorithms,
generalizing online gradient descent [28] with approximate projections. They too consider only a
certain family of cost functions and pose the case of nonlinear cost functions as an open problem.
Their cost function is of the form c : 2E × Rd → R, c(S,w) = 〈φ(S), w〉 and must be linear in w.
To use this framework, we must express any non-decreasing submodular f via its parameter wf as
c(S,wf ) = f(S). The set of non-decreasing submodular functions on E is equivalent to a convex
cone in R2|E| . This set has a non-empty relative interior (e.g., f(S) = log(1 + |S|)). As a result,
simple linear algebra shows that a full basis is needed to represent all such f meaning that w has an
exponential dimension d. But then the regret bound in [18] is exponential in |E|, since it is linear
in ‖w‖, i.e., proportional to

√
d. Whilst the norm issue can possibly be resolved, the algorithm

also assumes that, given any w ∈ Rd, we can project it onto the set of those w for which c(·, w)
is a nondecreasing submodular function. Given the results in [23], this too seems to be non-trivial.
Thus, we take a different route.

Strategies. We exploit that several approximation algorithms intrinsically relate a difficult problem
to one that can be solved exactly. Problem (1) is hard for two reasons: (i) there are combinatorial
constraints (unconstrained submodular minimization is not NP-hard (ref. in [8])); and (ii) the cost
function is nonseparable (for a modular f , many instances of (1) are in P , such as shortest path
or minimum cut). Algorithms that address (i) usually consider f as a pseudo-boolean function on
indicator vectors, relax C to its convex hull, and finally round the solution of the relaxed problem.
For submodular costs, the relaxation is a convex non-smooth minimization problem with linear
constraints. Such an approach is amenable to the online (sub-)gradient descent in [28]. Algorithms
motivated by (ii) replace f by a tractable approximation f̂ , and minimize f̂ over C. We define two
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Input: η > 0, initial x1 ∈ K.
for t = 1 to T do

compute gt−1 = argmaxg∈Pft−1
g · xt−1

and xt = ΠK(xt−1 − ηgt−1);
find St by rounding xt with guarantee α;
obtain ft;

Algorithm 1: Rounded subgradient descent

Input: η > 0.
pick r ∈ [0,M/η]E uniformly at random;
for t = 1 to T do

approximate ft by f̂t;
set St = argminS∈S

∑t−1
τ=1 f̂τ (S) + αr(S);

obtain ft;

Algorithm 2: Follow the approx. perturbed leader

conditions on f̂ under which it integrates into the FPL framework. Of course, an essential condition
is to have such suitable offline approximation algorithms for the problem at hand.

1.1 Preliminaries

Let χA ∈ {0, 1}E be the characteristic vector of S ⊆ E, that means χA(e) = 1 if e ∈ A and
χA(e) = 0 otherwise. An important concept for submodular functions has been the submodular
polyhedron Pf = {x ∈ RE | x · χA ≤ f(A) for all A ⊆ E}. For any submodular f , it holds
that f(A) = maxy∈Pf

y · χA. The Lovász extension f̃ of f is the convex extension f̃ : RE+ → R
with f̃(x) = maxy∈Pf

y · x, so f̃(χA) = f(A) for all A ⊆ E [21]. This definition shows that
g = argmaxy∈Pf

y · x is a subgradient of f̃ in x [9]: it implies g · x′ ≤ f̃(x′) for all x′ ∈ RE+, and
hence f̃(x′)− f̃(x) ≥ g · (x′ − x). The greedy algorithm [7, 21] finds the vector g in O(m logm)
time. Here and in the sequel, m = |E|. For more details on submodular functions, see e.g. [9, 21].

2 Convex relaxations and subgradient descent

To relax the constraints in Problem (1), we view f as a pseudo-boolean function from {0, 1}E to
R+. The convex Lovász extension f̃ extends this function to the domain [0, 1]E . By describing C
by linear inequalities we reach a convex integer program equivalent to (1):

min {f̃(x) | Ax ≤ b and x ∈ {0, 1}E}. (4)

Now we relax the integer constraints to x ∈ [0, 1]E . The the feasible region becomes the convex
hull K of C. The relaxed problem can be solved by the ellipsoid method, or, more efficiently, any
method for non-smooth convex optimization. As an example, an approach such as [5] is feasible
and increases the approximation factor by a factor of (1 + ε).

Decisive for approximation guarantees is the rounding from a fractional optimal solution x∗ of the
relaxed problem to an integral χS ∈ C. For covering constraints, Iwata and Nagano [15] prove
approximation factors achieved by thresholded rounding. A related rounding procedure is possible
for cuts and yields a factor α = Pmax, where Pmax ≤ |V | is the longest (s, t)-path in the graph [16].

Algorithm 1 outlines the subgradient descent based on [28]. In each round t, it takes a step into the
direction of the negative subgradient −g and projects back onto the feasible set K. The projection
ΠK(y) = argminx∈K ‖x − y‖2 is in general easier to solve than the full non-smooth relaxation.
Since the norm of differences is not monotone increasing, it is necessary to prune the projection for
cuts. However, this can be done easily by one modular-cost minimum cut [16]. By comparison, [18]
use the full approximation algorithm to project.
Theorem 1. For a rounding scheme with approximation guarantee α, non-decreasing submodular
costs ft with maxt ft(E) ≤M , and η =

√
m(M

√
T )−1, Algorithm 1 has an α-regret of Rα(T ) ≤

α
√
mM/

√
T = O

(
α
√
m/T

)
.

Proof. (outline) The proof consists of two steps. First, we bound the 1-regret for the sequence {xt}
analogous to [28], and then use this result to bound the α-regret for the sequence St.

Let S∗ ∈ argminS∈C
∑T
t=1 ft(S). The definition f̃t(x) = maxg∈Pft

g · x implies that∑T

t=1
f̃(xt)−

∑T

t=1
f(S∗) ≤

∑T

t=1
gt · xt −

∑T

t=1
gt · χS∗ . (5)
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Following the proof in [28] leads to a bound on the right hand side that we bound further:

2
∑T

t=1
gt · (xt − χS∗) ≤ max

x,y∈K
‖x− y‖2/η + ηT max

t
‖gt‖2 ≤ m/η +M2Tη.

For the second inequality, we use that ‖x − y‖2 ≤ m for all x, y ∈ K because K ⊆ [0, 1]m.
Furthermore, we bound the `2 norm of gt by its `1 norm. Since gt ≥ 0 for a non-decreasing ft by
construction, it holds that ‖gt‖1 = gt · 1m = gt · χE . Now we exploit that gt ∈ Pft

for all t, and
thus, by definition of Pf , it holds that gt · χE ≤ ft(E). As a result, ‖gt‖ ≤ ‖gt‖1 = gt · χE ≤
maxt ft(E) ≤M .

Finally, the approximation guarantee for the rounding procedure implies that f(St) ≤ αf̃(xt), and
hence,∑T

t=1
f(St)− α

∑T

t=1
f(S∗) ≤ α

∑T

t=1
f̃(xt)− α

∑T

t=1
f(S∗) ≤ 0.5α(m/η +M2Tη ).

The regret bound follows with η =
√
m(M

√
T )−1.

3 Follow the approximate perturbed leader

Algorithms based on Follow-the-leader have been popular for the online setting. The principle
is, in round t, to play the regularized expected leader given the functions observed so far: St =
argminS∈S

∑t−1
τ=1 fτ (S) + r(S) [19]. The last term is a regularizer (e.g., [1, 24]) or, in the simplest

case, a random modular perturbation r(S) = r · χS for a random vector r (Follow-the-perturbed-
leader, FPL).

As mentioned above, the FPL framework does not in general combine with any approximation
algorithm. We concentrate on a specific family of approximation algorithms: those that solve (1) for
a tractable approximation f̂ of f . We define two general conditions:

C1 The approximation f̂ of f satisfies f(A) ≤ f̂(A) ≤ αf(A) for all A ⊆ E.
C2 The following combinatorial problem can be solved exactly in polynomial time:

argmin
S∈S

∑
t
f̂t(S) + αr(S). (6)

Algorithm 2 integrates this f̂ into the FPL framework: in each round, we play an expected minimizer
of the approximate cost, St ∈ argminS∈S

∑t−1
τ=1 f̂t(S) + αr(S). Condition (C2) ensures that we

can find such an St. Contrary to the failure example in [18], the deviation between f̂t(S) and ft(S)
is bounded for each ft, and not only for the sum. We get the following bound on the α-regret.

Theorem 2. For an approximation f̂ that satisfies (C1) and (C2), M = maxt ft(E), and η =
T−1/2, Algorithm 2 achieves an expected α-regret E[Rα(T )] ≤ 3αmM/

√
T = O(αm/

√
T ).

The conditions show that a suitable approximation f̂ is decisive. For minimum spanning tree and
perfect matching, the simple approximation f̂m(S) =

∑
e∈S f(e) already leads to the best achiev-

able approximation bound O(|V |) [10]. In this case, the optimization problem (6) reduces to the
standard version with a modular, sum-of-weights cost. For the multi-agent version in [10], we sum
each agent’s cost functions individually over time, and use this to greedily assign agents to edges.

The simple f̂m, however, leads in general to approximation factors of order O(m). With more in-
teresting approximations, we can possibly do better on other problems. Goemans et al. [11] propose
a generic

√
m logm approximation for any non-decreasing submodular function. However, this

approximation does not in general easily satisfy (C2), since it is usually used as f̂2.

For minimum (s, t)-cut, the structure of E and C comes to the rescue and leads to a different ap-
proximation [16]. The idea is to make f separable over certain structures to make it tractable, but
to retain submodularity over restricted sets to improve on the approximation f̂m. Here, E is the set
of directed edges in a graph G = (V,E). We partition E by assigning an edge e = (v, z) either to
its tail v or head z. All possible such partitions form a family P and are of the form Π = {EΠ

v }v ,
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where the set EΠ
v ⊆ E contains the edges assigned to node v. We retain submodularity within the

sets EΠ
v , and make f̂ separable across the EΠ

v :

f̂(S) = min
Π∈P

∑
v∈V

f(S ∩ EΠ
v ). (7)

This approximation corresponds to a convolution of submodular functions and can be minimized by
solving the dual problem, a polymatroidal max-flow [20]. The approximation factor for (C1) is then
bounded by the maximum number of nodes ∆s on the s or ∆t on the t side of the optimal cut that
have an adjacent cut edge: α ≤ min{|∆s|, |∆t|} ≤ |V |/2 [16]; f ≤ f̂ holds by subadditivity of f .

A slight modification of the proposed f̂ retains α in expectation and satisfies (C2). Instead of using
the best partition in P, we fix Π. Let Πh be the partition that assigns each edge to its head, and Πt the
one that assigns each edge to its tail. The minimum cut for Πh, f̂h(S) =

∑
v∈V f(S∩EΠh

v ), can still
be solved as a polymatroidal flow, and equivalently for Πt. A small modification of the proof in [16]
shows that the approximation factor for f̂h and f̂t is |∆t| and |∆s|, respectively. Before starting the
algorithm, we randomly pick either f̂h or f̂t and use it throughout. Then E[α] = E[f(S′)/f(S)] ≤
(|∆t| + |∆s|)/2 ≤ |V |/2 for (C1). With a fixed partition, it holds that

∑
t f̂t + r = (

∑̂
t ft) + r,

and the latter can be minimized exactly by a polymatroidal flow. Thus, (C2) is satisfied.

Proof. (Thm. 2, outline) The proof builds on [12, 19] and uses (C1) and (C2). Let

St = argmin
S∈S

t−1∑
τ=1

f̂τ (S) + αr(S); Ŝt = argmin
S∈S

t−1∑
τ=1

f̂τ (S); S∗t = argmin
S∈S

t∑
τ=1

fτ (S).

We adapt the proof of Lemma 3.1 in [19] and obtain∑T

t=1
f̂t(St+1) ≤

∑T

t=1
f̂t(ŜT+1) + α(r(ŜT+1)− r(S1)).

To transfer this result to the series of St, we use that f̂t(St) ≤ f̂t(St+1) + (f̂t(St)− f̂t(St+1)):∑T

t=1
f̂t(St) ≤

T∑
t=1

f̂t(ŜT+1) +
∑T

t=1
(f̂t(St)− f̂t(St+1)) + α(r(ŜT+1)− r(S1)).

Condition (C1) implies that∑T

t=1
f̂t(ŜT+1) ≤

∑T

t=1
f̂t(S∗T ) ≤ α

∑T

t=1
ft(S∗T ), (8)

and, for the left hand side, that
∑T
t=1 ft(St) ≤

∑T
t=1 f̂t(St). This yields the regret bound∑T

t=1
ft(St)− α

T∑
t=1

ft(S∗T ) ≤
∑T

t=1
(f̂t(St)− f̂t(St+1)) + α(r(ŜT+1)− r(S1)).

It remains to bound the two terms on the right hand side, and these bounds depend on r ∈ [0,M/η]E .
The expected difference of r terms can be bounded by mM/η. For the other term, we adapt a
technique in [12] to the approximate setting (pruned for space reasons) to bound the probabil-
ity that St 6= St+1, and reach at the inequality

∑T
t=1 E[f̂t(St) − f̂t(St+1)] ≤

∑T
t=1 P (St 6=

St+1) maxA∈S f̂(A) ≤ 2αmMTη. Finally, combining these bounds yields

E
[∑T

t=1
ft(St)

]
− α

∑T

t=1
ft(S∗T ) ≤ αMm/η + 2αmMTη. (9)

Theorem 2 follows for η = T−1/2.

4 Conclusion

We outlined two routes for deriving online approximation algorithms for submodular minimization
with combinatorial constraints. First, convex relaxations with rounding are amenable to a subgradi-
ent descent with rounding. Second, for approximations of the cost function, we show two conditions
to use a Follow-the-leader algorithm. Depending on the problem at hand, one or the other approach
may be more suitable. Further work will address better and even more general algorithms. More-
over, beyond the full information case, bandit algorithms for the setting discussed here face the
challenges of nonlinearity and nonseparability together with combinatorial constraints.
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