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Abstract� Based on biological data we examine the ability of Support
Vector Machines �SVMs� with gaussian kernels to learn and predict the
nonlinear dynamics of single biological neurons
 We show that SVMs
for regression learn the dynamics of the pyloric dilator neuron of the
australian cray�sh� and we determine the optimal SVM parameters with
regard to the test error
 Compared to conventional RBF networks� SVMs
learned faster and performed a better iterated one�step�ahead prediction
with regard to training and test error
 From a biological point of view
SVMs are especially better in predicting the most important part of
the dynamics� where the membranpotential is driven by superimposed
synaptic inputs to the threshold for the oscillatory peak


� Introduction

Modeling on the basis of biological data extracted via intracellular recording is
still a challenging task� A biological neural network well studied by physiologists
is the stomatogastric ganglion �STG� of cray�sh� This neural network consists
of a manageable number of speci�able individual neurons� In the literature the
dynamics of single neurons or small parts of the STG is modeled on di�erent
levels of detail ��	� On the most detailed level ion channels of the membrane
of individual neurons are considered for conductance
based Hodgkin
Huxley

models ��	� So called �neuronal caricatures� are on a more abstract level� Here�
the dynamics of a neuron are reduced to a few di�erential equations� Coupled
simple binary neurons build the other end of the modeling hierarchy�

Within our paper we focus on the measured time series of speci�ed individual
neurons of the STG to model its dynamics� Former studies show that the Support
Vector Machine �SVM� technique is very well suited for learning and predicting
nonlinear time series� Applied to di�erent benchmarks SVMs perform better
than established regression techniques �
	 ��	� In contrast to those approaches we
apply SVMs to biological data and compare the results generated by our SVMs
with the results of conventional RBF networks�

� The stomatogastric ganglion of cray�sh

The stomatogastric ganglion �STG� of cray�sh is a model system for biological
neural networks� A manageable number of speci�able individual neurons gener

ates several rhythmic motor patterns� The STG consists of the gastric network�
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Fig� �� Pyloric network of cray�sh
 This network consists of �� cells� �� motor neurons
of �ve di�erent cell types �two PD� eight PY� LP� VD� IC� and one interneuron �AB�

The synaptic connections are illustrated schematically
 Within our paper we focus on
the activity of the pyloric dilator �PD� neuron


which controls the movement of the gastric teeth� and the pyloric network �see
�g���� which controls the movement of the pyloric �lter and the cardiopyloric
duct�

The pyloric rhythm is driven by the anterior burster �AB� interneuron� which
is able to oscillate autonomously� Three phases of the pyloric rhythm can be
distinguished� pyloric dilator �PD� neuron� lateral pyloric �LP� neuron� and py

loric �PY� neuron� These neurons are connected with electrical and �mostly
inhibitory� chemical synapses�

One can measure the activity of the pyloric network neurons in two di�erent
ways� either potentials of single neurons via intracellular recording� or the sum
potential of PD� LP and PY via extracellular recording at the dorsal ventricular
nerve �dvn�� Within our paper we focus on the intracellular measured activity
of the PD neuron �see �g����

� Learning and predicting time series with SVMs

Let T be some time series that is generated by an unknown mapping f � N� R
d�

T � �f���� f���� ���� f�n�� �� �x�� x�� ���� xn��

Often there is no or little information available about f � so xn�� can only be
determined by the information included in T � One common approach is�

�� choose m�h � N and a set L � f�� ���� ng�
�� build training data�

D �
�
��xi�mh� ���� xi��h� xi�h� � xi� � Rmd�Rd j i � L

�
�


� choose a class of functions F ��
�
f � Rmd � R

d
�
� and then

�� try to �nd a minimizer bf of I � F � R� I�f 	 ��
P

�x�y��D V �y� f�x�� with
some appropriate loss function V �

�� set exn�� �� bf �xn���mh� ���� xn����h� xn���h��

Minimizing I using SVMs with the ��insensitive loss function�

V �y� f�x�� ��

�
�� if jy � f�x�j � ��

jy � f�x�j � �� otherwise�



leads to the quadratic minimization problem�

min
�����A�

����

�

jLjX
i�j��

���i � �i�
�
��j � �j

�
K�xi� xj��

jLjX
i��

��i �yi � �� � �i�yi � ��

	
�
with K � R�d� R satisfying the Mercer
condition�

PjLj
i����

�
i � �i� � ��

A� �� f� � RjLj � � � �i �
�
�
� � � i � jLjg� �� regularization parameter��

which is equivalent to

min
��R�jLj

�
�ct� �

�

�
�tH�



� with A� � b� l � � � u�

The matrixH consists of pairwise scalar products of the input data in the feature
space�

H �

�BBBBBBBBBB�

���
���

� � � �K�xi� xj� � � � � � � �K�xi� xj� � � �
���

���
���

���
� � � �K�xi� xj� � � � � � � �K�xi� xj� � � �

���
���

�CCCCCCCCCCA
� c �

�BBBBBBB�

�y� � �
���

�yjLj � �

�y� � �
���

�yjLj � �

�CCCCCCCA
�

The vector � is de�ned as�

� �

�BBBBBBBB�

��
���

�jLj
���
���

��jLj

�CCCCCCCCA
� A �

�BBBBBBB�

�
���
�
��
���
��

�CCCCCCCA
� b � �� l � �� u �

�

�

�B�����
�

�CA � �xi� yi� � T�

� Results

��� Biological data

We used data from the pyloric network of the australian cray�sh cherax destruc�

tor albidus� The intracellular recordings were done using glass
microelectrodes�
�lled with 
MKCl solution and with resistors ranging from ��M� to ��M��
The data was recorded with an A
D
converter and a video
�
recorder��

To reduce the amount of data we replaced every ���� consecutive datapoints
by their average� Then we scaled the results to �t into ������ ���	� Our training
� Recordings were provided by G
 Heinzel� H
 B�ohm� C
 Gutzen� Department of Neu�
robiology� University of Bonn
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Fig� �� Time series of the pyloric dilator neuron �left�� and phase portrait of its dynam�
ics �right�
 One can distinguish �ve sections within the phase portrait� marked I to V

Section I is most important� because here the membranpotential is driven by superim�
posed synaptic inputs to the threshold for the oscillatory peak �sections II to V�


set consisted of ��� patterns �patterns ��� ��� of �g��� and the test set of ���
patterns �patterns ����
�� of �g���� For our iterated one
step
ahead prediction
we wanted to learn the dynamics of the given time series from the last �� data
points and we therefore set m � ��� h � �� and L � f��� ��� �������g�

To test the generalization ability of our approximator A �SVM or RBF��
which was trained to learn the data �x��� x��� � � � � x����� we recursivly set

exi �� xi� i � �����ex���i �� A�ex����i����� ex����i����� � � �ex����i����� i � ���
��

and then calculated the test error

E�A	 ��
�

���

	��X
i����

jexi � xij� ���

��� Simulations with Support Vector Machines

We adapted the LOQO algorithm by Vanderbei ��	 which was implemented by
Smola and set the regularization parameter to � � �����

Varying the variance � from ���� to ��� and the exactness � from ����� to
��� we performed a large number of simulations� After the learning process we
calculated the training and test errors �see equation ��� Fig�
 shows the test
error for the most interesting area� which is � � ������ 
��	 and � � ������� ����	�

One can observe a valley of low error values as well as several peaks of very
low error values for certain combinations of � and ��

Regarding the test error the best SVM we found was SVMbest with � � ����
and � � ����� SVMbest used ��� support vectors and had a test error of ��������
Fig�� shows the predicted values of SVMbest compared to the original values�

We also performed simulations using other than the gaussian kernel� As we
expected tanh
kernels and polynomial kernels showed worse results� This could
be explained by the more global properties of those functions�
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Fig� �� Test error of SVM with gaussian kernel subject to variance � and exactness �

One can observe a valley of low error values as well as several peaks of very low error
values for certain combinations of � and �


-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

220 240 260 280 300 320

U

t x

x∆

I
II

III

IV

V

Fig� �� Iterated one�step�ahead prediction of the PD time series �solid line� with
SVMbest �dashed line��left�� and phase portrait of the corresponding dynamics �right�

Parameters of SVMbest are� � � ����� � � ����� number of support vectors � ���

Primarily the increasing sections �t � ����� ���� and t � ��	�� ����� resp
 section I of
the phase portrait are predicted better than those predicted by RBFbest �see �g
��




��� Simulations with RBF networks

0,
1

0,
4

0,
7

1

1,
3

1,
6

1,
9

2,
2

2,
5

2,
8

3,
1

3,
4

3,
7

4

5

9

13

17

21

25

290

0,15

0,3

0,45

0,6

0,75

test error

0,6-0,75

0,45-0,6

0,3-0,45

0,15-0,3

0-0,15

sigma
# RBF neurons

Fig� �� Test error of RBF network subject to variance � and the number of RBF
neurons
 The landscape of test error has two plateaus� one with � � ��� and one with
� � ���
 In between one can observe some mountain ranges of high error values as well
as several peaks of very low error values


In a �rst step the centers of the RBF neurons were determined by a k�

means�clustering algorithm for a given k� The weights of the output layer were
set randomly in ��������� ������	� Then� in a second step these weights were
learned using the delta rule� We stopped the learning process when the change
of error was less than ��
 for the last �� epochs� compared to the actual epoch�

Varying the variance � from ��� to ��� and the number of RBF neurons from
� to ��� we again performed a large number of simulations� After the learning
process we calculated the training and test errors �see equation ��� Fig�� shows
the test error for the most interesting area� which is � � ����� ���	 and number
of RBF neurons � ��� ��	�

The landscape of test error has two plateaus� one with � 	 ��� and one with
� 
 
��� In between one can observe some mountain ranges of high error values
as well as several peaks of very low error values�

Regarding the test error the best RBF network we found was RBFbest with
�� RBF neurons and � � ���� RBFbest had a test error of �������� Fig�� shows
the predicted values of RBFbest compared to the original values� Primarily the
increasing sections �t � ��
�� ���	 and t � ����� ���	� are predicted worse than
those predicted by SVMbest �see �g���� whereas the oscillatory peak �sections II
to V of the phase portrait� is predicted better by RBFbest �see �g����
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Fig� �� Iterated one�step�ahead prediction of the PD time series �solid line� with
RBFbest �dashed line��left�� and phase portrait of the corresponding dynamics �right�

Parameters of RBFbest are� � � ��	� number of RBF neurons � ��
 Primarily the in�
creasing sections �t � ����� ���� and t � ��	�� ����� resp
 section I of the phase portrait
are predicted worse than those predicted by SVMbest �see �g
��� whereas the oscillatory
peak �sections II to V of the phase portrait� is predicted better by RBFbest


��� Comparison of the SVM and RBF results
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Fig� �� Test error subject to the number of support vectors �left� and the number
of RBF neurons �right�
 For every number of support vectors resp
 RBF neurons we
plotted the lowest test error that was achieved by the corresponding network


The results of the previous sections showed that SVMs obtained lower test
errors than RBF networks� leading to better predictions� For further comparison
we examined the test error subject to the number of support vectors resp� the
number of RBF neurons� In �g�� we plotted for every number of support vectors
resp� RBF neurons the lowest test error that was achieved by the corresponding
network� Best results for SVMs were obtained using a large number of support
vectors �compared to the number of training patterns�� whereas best results for
RBF networks were obtained using few RBF neurons� Nevertheless� SVMs with
about ��� support vectors and even SVMs with about �� support vectors had
test errors which were as low as those of RBFbest�

The following table summarizes our results for the lowest training error� test
error and the sum of training and test error� It also shows the learning times
�using a Pentium
III computer with ���MHz speed and ���MBytes memory� of
the listed networks� All SVMs learned much faster than the corresponding RBF
networks�



SVM �� support vectors� RBF �� RBF neurons�

best training error ������� ����� ������� ����
best test error ������� ����� ������� ����
best error sum ������� ����� ��

��� ����

learning times �s	 �������� 
����
���

From a biological point of view SVMs were especially better in predicting the
most important part of the dynamics� where the membranpotential is driven by
superimposed synaptic inputs to the threshold for the oscillatory peak� whereas
RBF networks were better in predicting the di�erent sections of the oscillatory
peak�

� Conclusions

On the basis of the results of our large number of simulations we conclude�

� SVMs for regression were able to learn the nonlinear dynamics of biological
data� This was demonstrated with the dynamics of the pyloric dilator neuron
of the cray�sh cherax destructor albidus�

� Compared to conventional RBF networks SVMs with gaussian kernels per

formed a better iterated one
step
ahead prediction with regard to training
and test error� SVMs were especially better in predicting the most important
part of the dynamics� where the membranpotential is driven by superimposed
synaptic inputs to the threshold for the oscillatory peak�

� SVMs learned faster than RBF networks�
� Best results for SVMs were obtained using a large number of support vectors
�compared to the number of training patterns�� whereas best results for RBF
networks were obtained using few RBF neurons�
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