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Abstract� For solving complex robot tasks it is necessary to incorpo�
rate path planning methods that are able to operate within di�erent
high�dimensional con�guration spaces containing an unknown number
of obstacles� Based on Advanced A��algorithm �AA�� using expansion
matrices instead of a simple expansion logic we propose a further im�
provement of AA� enabling the capability to learn directly from sample
planning tasks� This is done by inserting weights into the expansion ma�
trix which are modi�ed according to a special learning rule� For an exam�
plary planning task we show that Adaptive AA� learns movement vectors
which allow larger movements than the initial ones into well�de�ned di�
rections of the con�guration space� Compared to standard approaches
planning times are clearly reduced�

� Introduction

The A��algorithm is an established method for planning tasks� In the literature
one can �nd theoretical studies� mainly dated from the late ��s to the early
��s 	
��
��
��
� as well as lots of variations of A�� dated from the ��s until now
	
��
���
��
��
��
��
� Most of the applications focus on computing a 	slightly sub�
optimal
 path as quickly as possible for limited types of con�guration spaces�

In contrast to these approaches we conserve the optimality of computed
paths� Furthermore by introducing expansion matrices we make A� more �exible
for planning within di�erent types of con�guration spaces� and by adding weights
into an expansion matrix we enable the capability of learning from sample plan�
ning tasks� These capabilities are absolutely needed to implement a �exible and
robust tool for complex planning applications� e�g� for path searching in robot
control� and for avoidance of self collision and collisions with obstacles in ma�
nipulator control�

� Learning Path Planning with Adaptive AA��Algorithm

Based on standard A� we explain our concept of Adaptive Advanced A��algorithm
for learning path planning� First� we modify the collision check by abstracting
from concrete cell extents� Then we introduce expansion matrices replacing the
simple expansion logic of A�� At last we further improve the capabilities of ex�
pansion matrices by making them adaptive using additional weights and a special
learning rule�



��� Standard A��Algorithm
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Fig� �� Proceeding of standard A� from start cell S to goal cell D� First� S is expanded
to its adjacent cells �a� and path pointers from these cells to S are set �b�� Until reaching
D the cell of current minimum costs is expanded �marked with a circle�� Finally� an
optimal path Popt linked from D to S is computed �e��

Applying standard A��algorithm the con�guration space representing the
actual world model is subdivided into entities called cells which usually have
the same size� A� searches for an optimal path Popt through the free space
from a given start cell S 	start
 to a given goal cell D 	destination
� For every
considered cell C the costs f	C� S�D
 � g	S�C
 � h	C�D
 are computed� with
g	S�C
 as costs for the movement from start cell S to the actually considered
cell C and h	C�D
 as heuristic estimation of the costs from cell C to the goal
cell D� Additionally� for every considered cell a check is performed whether the
movement to this cell is permitted or not� In real�world scenarios a collision
check between the object to be moved and some obstacles has to be performed�
Fig�� visualizes the expansion logic and construction of path pointers of A��

��� Collision check

Abstracting from concrete cell extents we consider a reference point rC for each
cell C� forming a grid within the con�guration space� In addition� a reference
point rO for the object O to be moved is determined� For the collision check �rst
rO is mapped to the actually considered rC� then the collision check with respect
to the actually used con�guration space is computed 	�g��
� The underlying
world model is only necessary for computing the collision check� Hence� the
expansion logic of A� is completely detached from the world model�

��� Expansion matrices

We replaced the expansion logic of standard A� by our novel concept of expansion
matrices� forming the Advanced A��algorithm 	AA�
 	
��
� This was designed to
overcome the limitations of equally sized cells resp� equidistant reference points
and the restriction of symmetric path costs�

An expansion matrix�

E ��

�
B�
�x�� � � ��x�k c�
���

���
���

�xm� � � ��xmk cm

�
CA



1 2 3 4 5

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5

Fig� �� Collision check for geometric objects considering reference points� The left �gure
shows an �L��shaped object having orientations of ��� ��� and ���� For example cell
��� �� ���� is not occupied� cells ��� �� ��� and ��� �� ���� are de�ned to be occupied by an
obstacle� because at these positions the object intersects an obstacle� The right �gure
visualizes all cells de�ned to be occupied by an obstacle �stonewalled and grey cells�
given an object orientation of ����

is an m�n�matrix where m denotes the number of expansion steps and n � k��

with k denoting the number of dimensions of the con�guration space C� ci � R
�

indicates the costs of expansion step i� and �xij � R indicates the movement
di�erence within dimension j during the expansion step i�

Four parameters of an expansion matrix E have to be determined�

� the number of rows

� the expansion sequence by permuting rows of E

� the length and direction of each movement vector ��xi�� � � � ��xik� for
every row i of E

� the costs ci for every expansion step to model symmetric as well as
asymmetric costs

Starting a new AA� planning process an expansion matrix Einit is initialized
appropriating knowledge about the world model� During a single planning pro�
cess this expansion matrix remains unchanged� With this concept a variety of
complex environments and di�cult planning tasks can easily be modeled� like
di�erent cell extensions resp� distances of reference points or the e�ect of �ow
	for example movements with the �ow cost nothing� whereas movements against
the �ow are very expensive
�

��� Adaptive expansion matrices

By adding a weight wij for every entry of an expansion matrix E we further
improve the capabilities of our concept�

An adaptive expansion matrix�

A ��

�
B�
w�� ��x�� � � � w�k ��x�k w�n � c�
���

���
���

wm� ��xm� � � � wmk ��xmk wmn � cm

�
CA

is an m � n�matrix using the same notations as E 	see section ���
� wij � R
�

indicates the weight for an entry of A�



Separating a row i of A we get the actual movement vector vact of an expan�
sion matrix�

vact �� A
T
� ei with ei unit vector i

vact contains the weights wi�� ���� win �� wact�
Inserting A instead of E into the expansion logic of AA� the capability of

learning from sample planning tasks is enabled by modifying wij�
At the beginning of a planning process all weights wij of the expansion matrix

A are initialized with ���� Throughout the planning process for every expansion
step AA� gets row by row vact of A describing the movement from the actual
considered reference point rC to a next� possibly new one� After the planning
process the computed optimal path Popt is analyzed� Depending on the con�
tribution of the respective vact forming Popt the corresponding weight vector
wact is increased by a constant vector� This is done with the aim to strengthen
successful movements that is to say movements used forming Popt�

During a single planning process A stays �xed� After terminating the actual
planning process A is modi�ed taking into account all changes for every weight
vector� forming A�� Then A� is used for subsequent planning processes�

Another variant of our concept� inspired by the paradigm of evolutionary
algorithms� is pruning within the adaptive expansion matrix� if a weight vector
falls below a certain threshold �� the corresponding row of the expansion matrix
is substituted by a new� randomly initialized one�

� Results

We embedded our novel Adaptive Advanced A��algorithm into a simulation
environment which allows us to plan within n�dimensional con�guration spaces�
First simulations� available for �D�con�guration spaces 	�D�position and �D�
orientation
 as well as for �D�con�guration spaces 	� joint angles of an industrial
robot
� show encouraging results�
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Fig� �� Visualization of optimal paths computed by Adaptive AA� after one �left��
three �middle�� and �� �right� learning steps� The planning task was to move an �L��
shaped object from S to D through a bottleneck� The length of the computed optimal
path is �		 �left�� 

 �middle�� and 		 �right� reference points�



For an exemplary �D�planning task� moving an �L��shaped object through
a bottleneck� several iterations of our learning procedure were computed 	�g� �
�
Initialized with a standard expansion matrix
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and all weights wij set to ��� Adaptive AA� gets the same training planning task
for every iteration together with the last updated expansion matrix� Output
of the algorithm is an optimal path if one exists� and a modi�ed expansion
matrix� Column � of A� describes the movement along dimension � 	positions
left and right
� column � along dimension � 	positions down and up
� column
� along dimension � 	in ���steps� orientations counterclockwise and clockwise
�
every movement has the same costs ��� 	column � of A�
�
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Fig� �� Learning progress for our sample planning task �see �g� 	�� Measure for the
proceeding of learning is the length of Popt resp� the number of reference points forming
Popt� which decreases from �		 to 		 reference points after �� learning steps� Steps ��
to �� generate unsteady results� so in this example the best result is achieved using the
expansion matrix learned after step ���

Figure � shows the learning progress for our example� The length of the
encountered optimal path decreases from ��� reference points using A� to ��
reference points after �� learning steps� the following steps � �� generate un�
steady results� After �� learning steps the expansion matrix
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was learned by Adaptive AA�� A�� shows that a better partition of the con�
�guration space than the initial one exists� one can solve the planning task



moving clearly larger steps right and up� and moving slightly larger steps coun�

terclockwise and clockwise� Figure � shows the computed optimal paths within
the �D�con�guration space in detail�
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Fig� �� Visualization of Popt within the 	D�con�guration space �dimensions
 position
x� position y� orientation� after one �left�� three �middle�� and �� �right� learning steps�

Comparison with breadth��rst�search and standard A� shows the improve�
ments of learning path planning performed by Adaptive Advanced A��algorithm
	see table �
� The increase of �rC after �� learning steps is due to the di�culty
of moving through the bottleneck using larger steps right and up 	see �gure �
�
nevertheless �Popt decreases�

Algorithm �Popt �rC time �s�

breadth��rst search �	
 ������ ����
standard A� �	
 ��	��� ����
AA� �� learning step� �		 	��� �
AA� �	 learning steps� 

 	��� �
AA� ��� learning steps� 		 �
�	 


Table �� Comparison of breadth��rst search� standard A�� and Adaptive Advanced
A� after �� 	� �� learning steps� �Popt denotes the length of the encountered optimal
path� �rC denotes the number of computed reference points during the whole planning
process� The 	D�con�guration space consists of ������� reference points�

Performing Adaptive AA� we also computed optimal paths within �D�joint
angle�space for our industrial �DOF�manipulator manutec r�� Here the collision
check had to be expanded by coding limitations of the joints as obstacles and by
a self�collision check� The results for Adaptive AA� after learning were similar
to those speci�ed for our exemplary planning task� In addition to software tests
we executed optimal paths generated by our algorithm with the manipulator
manutec r��

Altogether our simulation results show that Adaptive AA� can learn from
sample planning tasks using adaptive expansion matrices� For our exemplary
planning task� moving an �L��shaped object through a bottleneck� a better
partition of the con�guration space than the initial one was learned� Current
investigations focus on a learning rule that substitutes rarely used movement
vectors by new� randomly initialized ones�



� Conclusions

Based on Advanced A��algorithm we proposed a novel concept of adaptive ex�
pansionmatrices for learning path planning� Substituting the standard expansion
logic of A� we enabled the capability to overcome the limitations of equidistant
reference points as well as to learn from sample planning tasks� Adaptive AA�
keeps the feature of A� to compute an optimal path� with respect to the de�ned
costs and the actual expansion matrix�

Results obtained by solving exemplary planning tasks underlined the power
of AA� using adaptive expansion matrices� movement vectors� which allow larger
movements than the initial ones into well�de�ned directions of the con�guration
space� were learned� Learning e�cient movements within high�dimensional con�
�guration spaces leads to the ability of Adaptive AA� to plan complex robot
tasks� This can be done either by using Adaptive AA� as global planner 	with
some restrictions regarding the �curse of dimensions�
 or as very �exible local
planner within a probabilistic roadmap frame�
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