Towards Learning Path Planning
for Solving Complex Robot Tasks

Thomas Frontzek, Thomas Navin Lal, Rolf Eckmiller

Department of Computer Science VI, University of Bonn
Romerstrale 164, D — 53117 Bonn, F. R. Germany
E-mail: {frontzek,lal,eckmiller}@nero.uni-bonn.de

Abstract. For solving complex robot tasks it is necessary to incorpo-
rate path planning methods that are able to operate within different
high-dimensional configuration spaces containing an unknown number
of obstacles. Based on Advanced A*-algorithm (AA*) using expansion
matrices instead of a simple expansion logic we propose a further im-
provement of AA* enabling the capability to learn directly from sample
planning tasks. This is done by inserting weights into the expansion ma-
trix which are modified according to a special learning rule. For an exam-
plary planning task we show that Adaptive AA* learns movement vectors
which allow larger movements than the initial ones into well-defined di-
rections of the configuration space. Compared to standard approaches
planning times are clearly reduced.

1 Introduction

The A*-algorithm is an established method for planning tasks. In the literature
one can find theoretical studies, mainly dated from the late 60s to the early
80s ([6][5][8]), as well as lots of variations of A*, dated from the 80s until now
([7I[10][3][1][41[9])- Most of the applications focus on computing a (slightly sub-
optimal) path as quickly as possible for limited types of configuration spaces.

In contrast to these approaches we conserve the optimality of computed
paths. Furthermore by introducing expansion matrices we make A* more flexible
for planning within different types of configuration spaces, and by adding weights
into an expansion matrix we enable the capability of learning from sample plan-
ning tasks. These capabilities are absolutely needed to implement a flexible and
robust tool for complex planning applications, e.g. for path searching in robot
control, and for avoidance of self collision and collisions with obstacles in ma-
nipulator control.

2 Learning Path Planning with Adaptive AA*-Algorithm

Based on standard A* we explain our concept of Adaptive Advanced A*-algorithm
for learning path planning. First, we modify the collision check by abstracting
from concrete cell extents. Then we introduce expansion matrices replacing the
simple expansion logic of A*. At last we further improve the capabilities of ex-
pansion matrices by making them adaptive using additional weights and a special
learning rule.

2.1 Standard A*-Algorithm

D D D XD+K XD+K
|y |® |y | x| X[y | K|«
x|y (® w|v| x|« w v | ¥le| x| [u|¥v|¥le|x
() > s |« >/ s || x >/ s || > s|e|x
PAR RS PAR YRS L AESRS AR

(2) (b) (© (d) (e)
D not computed cell D computed cell D cell of optimal path - path pointer

Fig. 1. Proceeding of standard A* from start cell S to goal cell D. First, .S is expanded
to its adjacent cells (a) and path pointers from these cells to S are set (b). Until reaching
D the cell of current minimum costs is expanded (marked with a circle). Finally, an
optimal path Py linked from D to S is computed (e).

Applying standard A*-algorithm the configuration space representing the
actual world model is subdivided into entities called cells which usually have
the same size. A* searches for an optimal path P, through the free space
from a given start cell S (start) to a given goal cell D (destination). For every
considered cell C' the costs f(C,S, D) = ¢g(5,C) + h(C, D) are computed, with
g(S,C) as costs for the movement from start cell S to the actually considered
cell €' and h(C, D) as heuristic estimation of the costs from cell C' to the goal
cell D. Additionally, for every considered cell a check is performed whether the
movement to this cell is permitted or not. In real-world scenarios a collision
check between the object to be moved and some obstacles has to be performed.
Fig.1 visualizes the expansion logic and construction of path pointers of A*.

2.2 Collision check

Abstracting from concrete cell extents we consider a reference point r¢ for each
cell C', forming a grid within the configuration space. In addition, a reference
point 7o for the object O to be moved is determined. For the collision check first
ro 18 mapped to the actually considered r¢; then the collision check with respect
to the actually used configuration space is computed (fig.2). The underlying
world model is only necessary for computing the collision check. Hence, the
expansion logic of A* is completely detached from the world model.

2.3 Expansion matrices

We replaced the expansion logic of standard A* by our novel concept of expansion
matrices, forming the Advanced A*-algorithm (AA*) ([4]). This was designed to
overcome the limitations of equally sized cells resp. equidistant reference points
and the restriction of symmetric path costs.

An expansion matrir:
FAY STRRRRIAY S|
&= .

Azl - ATk Cm

I I I I I I

s OO OO . s OO T . .
T TIT TIT 1 CTIT TIT 1
T T T

4 I I] hd 4 I I I b °
LTI T TIT 17 CTIT TIT 1

3 |:| |:| |:| |:| . . .
T CTIT T

Fig. 2. Collision check for geometric objects considering reference points. The left figure
shows an “L”-shaped object having orientations of 0°, 45° and 90°. For example cell
(4,2,45°) is not occupied, cells (2,1,0°) and (5, 4, 90°) are defined to be occupied by an
obstacle, because at these positions the object intersects an obstacle. The right figure
visualizes all cells defined to be occupied by an obstacle (stonewalled and grey cells)
given an object orientation of 90°.

1s an m X n-matrix where m denotes the number of expansion steps and n = k+1

with & denoting the number of dimensions of the configuration space C. ¢; € |R+
indicates the costs of expansion step ¢, and Az;; € R indicates the movement
difference within dimension j during the expansion step i.

Four parameters of an expansion matrix £ have to be determined:

e the number of rows

e the expansion sequence by permuting rows of £

e the length and direction of each movement vector (Aux;y, -+, Awyy,) for
every row ¢ of £

e the costs ¢; for every expansion step to model symmetric as well as
asymmetric costs

Starting a new AA* planning process an expansion matrix £, Is initialized
appropriating knowledge about the world model. During a single planning pro-
cess this expansion matrix remains unchanged. With this concept a variety of
complex environments and difficult planning tasks can easily be modeled, like
different cell extensions resp. distances of reference points or the effect of flow
(for example movements with the flow cost nothing, whereas movements against
the flow are very expensive).

2.4 Adaptive expansion matrices

By adding a weight w;; for every entry of an expansion matrix £ we further
improve the capabilities of our concept.
An adaptive expansion matrir:

wip - Az o0 Wik - ATy Wig - G
A :: . . .
Wm1 - Axml c Wmk - Axmk Wmn * Cm

. +
is an m X n-matrix using the same notations as £ (see section 2.3). w;; € R
indicates the weight for an entry of A.

Separating a row i of A we get the actual movement vector v 4. of an expan-
sion matrix:

vaer = AT - e; with e; unit vector i

V4o contains the weights wyy, ..., wi = weer.

Inserting .4 instead of £ into the expansion logic of AA* the capability of
learning from sample planning tasks is enabled by modifying w;;.

At the beginning of a planning process all weights w;; of the expansion matrix
A are initialized with 1.0. Throughout the planning process for every expansion
step AA* gets row by row vy of A describing the movement from the actual
considered reference point r¢ to a next, possibly new one. After the planning
process the computed optimal path P,y is analyzed: Depending on the con-
tribution of the respective vy forming F,,; the corresponding weight vector
Wyt 18 Increased by a constant vector. This is done with the aim to strengthen
successful movements that is to say movements used forming F,p;.

During a single planning process .4 stays fixed. After terminating the actual
planning process A is modified taking into account all changes for every weight
vector, forming .A’. Then A’ is used for subsequent planning processes.

Another variant of our concept, inspired by the paradigm of evolutionary
algorithms, is pruning within the adaptive expansion matrix: if a weight vector
falls below a certain threshold @, the corresponding row of the expansion matrix
1s substituted by a new, randomly initialized one.

3 Results

We embedded our novel Adaptive Advanced A*-algorithm into a simulation
environment which allows us to plan within n-dimensional configuration spaces.
First simulations, available for 3D-configuration spaces (2D-position and 1D-
orientation) as well as for 6 D-configuration spaces (6 joint angles of an industrial
robot), show encouraging results.

1 learning step 3 learning steps 14 learning steps

Fig. 3. Visualization of optimal paths computed by Adaptive AA* after one (left),
three (middle), and 14 (right) learning steps. The planning task was to move an “L”-
shaped object from S to D through a bottleneck. The length of the computed optimal
path is 133 (left), 77 (middle), and 33 (right) reference points.

For an exemplary 3 D-planning task, moving an “L”-shaped object through
a bottleneck, several iterations of our learning procedure were computed (fig. 3).
Initialized with a standard expansion matrix

-1.0 0.0 0.0 1.0
+1.0 0.0 0.0 1.0
0.0 -1.0 0.0 1.0
0.0 +1.0 0.0 1.0
0.0 0.0 —-1.0 1.0
0.0 0.0 4+1.0 1.0

Ag =

and all weights w;; set to 1.0 Adaptive AA* gets the same training planning task
for every iteration together with the last updated expansion matrix. Qutput
of the algorithm is an optimal path if one exists, and a modified expansion
matrix. Column 1 of A describes the movement along dimension 1 (positions
left and right), column 2 along dimension 2 (positions down and up), column
3 along dimension 3 (in 5°-steps; orientations counterclockwise and clockwise);
every movement has the same costs 1.0 (column 4 of Ap).
length of optimal path

140

learning curve

120 |

100 -

80 -

60 -

40

20
number of learning steps

Fig.4. Learning progress for our sample planning task (see fig. 3). Measure for the
proceeding of learning is the length of P, resp. the number of reference points forming
Popt, which decreases from 133 to 33 reference points after 14 learning steps. Steps 15
to 20 generate unsteady results, so in this example the best result is achieved using the
expansion matrix learned after step 14.

Figure 4 shows the learning progress for our example. The length of the
encountered optimal path decreases from 133 reference points using Ay to 33
reference points after 14 learning steps; the following steps > 14 generate un-
steady results. After 14 learning steps the expansion matrix

-1.0 0.0 0.0 1.0
+7.0 0.0 0.0 7.0
0.0 -1.0 0.0 1.0
0.0 +6.0 0.0 6.0
0.0 0.0 =20 2.0
0.0 0.0 420 2.0

-/414 =

was learned by Adaptive AA*. Ay, shows that a better partition of the con-
figuration space than the initial one exists: one can solve the planning task

moving clearly larger steps right and up, and moving slightly larger steps coun-
terclockwise and clockwise. Figure 5 shows the computed optimal paths within
the 3D-configuration space in detail.

orientation orientation
a

/ orientation
60

Popt

Popt
(1 learning step)

Popt
(3 learning steps) (14 learning steps)

%

0 % 2055 %
W e I

% s W gl . . 5 “0 . ,

% position y e 7 position y ae— 2 % position y

. & (. Tz
gl position x w0 position X 0520

e %
0 Mg
O T

position x

Fig.5. Visualization of P, within the 3D-configuration space (dimensions: position
x, position y, orientation) after one (left), three (middle), and 14 (right) learning steps.

Comparison with breadth-first-search and standard A* shows the improve-
ments of learning path planning performed by Adaptive Advanced A*-algorithm
(see table 1). The increase of #r¢ after 14 learning steps is due to the difficulty
of moving through the bottleneck using larger steps right and up (see figure 3);
nevertheless #F,,; decreases.

|Alg0rithm | #Pope | #re | time [s] |
breadth-first search 137 | 455989 4422
standard A* 137 | 153811 2190
AA* (1 learning step) 133 3651 2
AA* (3 learning steps) 77 3480 1
AA* (14 learning steps) 33 8723 7

Table 1. Comparison of breadth-first search, standard A*, and Adaptive Advanced
A* after 1, 3, 14 learning steps; # Pop: denotes the length of the encountered optimal
path, #rc denotes the number of computed reference points during the whole planning
process. The 3D-configuration space consists of 1000000 reference points.

Performing Adaptive AA* we also computed optimal paths within 6 D-joint
angle-space for our industrial 6DOF-manipulator manutec r2. Here the collision
check had to be expanded by coding limitations of the joints as obstacles and by
a self-collision check. The results for Adaptive AA* after learning were similar
to those specified for our exemplary planning task. In addition to software tests
we executed optimal paths generated by our algorithm with the manipulator
manutec r2.

Altogether our simulation results show that Adaptive AA* can learn from
sample planning tasks using adaptive expansion matrices. For our exemplary
planning task, moving an “L”-shaped object through a bottleneck, a better
partition of the configuration space than the initial one was learned. Current
investigations focus on a learning rule that substitutes rarely used movement
vectors by new, randomly initialized ones.

4 Conclusions

Based on Advanced A*-algorithm we proposed a novel concept of adaptive ex-
pansion matrices for learning path planning. Substituting the standard expansion
logic of A* we enabled the capability to overcome the limitations of equidistant
reference points as well as to learn from sample planning tasks. Adaptive AA*
keeps the feature of A* to compute an optimal path, with respect to the defined
costs and the actual expansion matrix.

Results obtained by solving exemplary planning tasks underlined the power
of AA* using adaptive expansion matrices: movement vectors, which allow larger
movements than the initial ones into well-defined directions of the configuration
space, were learned. Learning efficient movements within high-dimensional con-
figuration spaces leads to the ability of Adaptive AA* to plan complex robot
tasks. This can be done either by using Adaptive AA* as global planner (with
some restrictions regarding the “curse of dimensions”) or as very flexible local
planner within a probabilistic roadmap frame.

Acknowledgments

Parts of this work have been supported by the Federal Ministry for Education,
Science, Research, and Technology (BMBF), project LENI. Thanks to Jirgen
A. Donath, Nils Goerke, and Stefan Hoffrichter for useful comments.

References

1. N. M. Amato, O. B. Bayazit, L.. K. Dale, C. Jones, and D. Vallejo. Choosing good
distance metrics and local planners for probabilistic roadmap methods. In Proc. of
the IEEE Int. Conf. on Robotics and Automation (ICRA’98) Leuven, Vol.1, pages
630-637, 1998.

2. S. E. Dreyfus. An appraisal of some shortest-path algorithms. Operations Research,
17:395-412, 1969.

3. T. Frontzek, N. Goerke, and R. Eckmiller. A hybrid path planning system com-
bining the A*-method and RBF-networks. In Proc. of the Int. Conf. on Artificial
Neural Networks (ICANN’97) Lausanne, pages 793-798, 1997.

4. T. Frontzek, N. Goerke, and R. Eckmiller. Flexible path planning for real-time
applications using A*-method and neural RBF-networks. In Proc. of the IEEFE
Int. Conf. on Robotics and Automation (ICRA’98) Leuven, Vol.2, pages 1417-
1422, 1998.

5. D. Gelperin. On the optimality of A*. Artificial Intelligence, 8:69-76, 1977.

6. P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic deter-
mination of minimum cost paths. In IFEE Transactions on Systems, Man, and
Cybernetics, volume 2, pages 100-107, 1968.

7. R. E. Korf. Real-time heuristic search. Art. Int., 42:189-211, 1990.

8. J. Pearl. Knowledge versus search: A quantitative analysis using A*. Artificial
Intelligence, 20:1-13, 1983.

9. L. Shmoulian and E. Rimon. A} — DF'S: an algorithm for minimizing search
effort in sensor based mobile robot navigation. In Proc. of the IFEF Int. Conf. on
Robotics and Automation (ICRA’98) Leuven, Vol.1, pages 356-362, 1998.

10. C. W. Warren. Fast path planning using modified A* method. In Proc. of the
IEFEE Int. Conf. on Robotics and Automation, pages 662—667, 1993.

