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Abstract

Based on biological data we examine the ability of Sup�
port Vector Machines �SVMs� with gaussian� polyno�
mial and tanh�kernels to learn and predict the nonlin�
ear dynamics of single biological neurons� We show that
SVMs for regression learn the dynamics of the pyloric
dilator neuron of the australian cray�sh� and we deter�
mine the optimal SVM parameters with regard to the
test error� Compared to conventional RBF networks
and MLPs� SVMs with gaussian kernels learned faster
and performed a better iterated one�step�ahead predic�
tion with regard to training and test error� From a bio�
logical point of view SVMs are especially better in pre�
dicting the most important part of the dynamics� where
the membranpotential is driven by superimposed synap�
tic inputs to the threshold for the oscillatory peak�

� Introduction

Modeling on the basis of biological data extracted via in�
tracellular recording is still a challenging task� A biolog�
ical neural network well studied by physiologists is the
stomatogastric ganglion �STG� of cray�sh� This neural
network consists of a manageable number of speci�able
individual neurons� In the literature the dynamics of
single neurons or small parts of the STG is modeled
on di�erent levels of detail ��	� On the most detailed
level ion channels of the membrane of individual neurons
are considered for conductance�based Hodgkin�Huxley�
models �
	� So called �neuronal caricatures� are on a
more abstract level� Here� the dynamics of a neuron are
reduced to a few di�erential equations� Coupled sim�
ple binary neurons build the other end of the modeling
hierarchy�

Within our paper we focus on the measured time se�
ries of speci�ed individual neurons of the STG to model
their dynamics� Former studies show that the Support

Vector Machine �SVM� technique is very well suited for
learning and predicting nonlinear time series� Applied to
di�erent benchmarks SVMs perform better than estab�
lished regression techniques �
	��	� In contrast to those
approaches we apply SVMs to biological data and com�
pare the results generated by SVMs with di�erent ker�
nels and the results of conventional RBF networks and
MLPs�

� The stomatogastric ganglion of cray�sh
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Figure �� Pyloric network of cray�sh� This network con�
sists of �� cells� �� motor neurons of �ve di�erent cell
types 	two PD
 eight PY
 LP
 VD
 IC� and one interneuron
	AB�� The synaptic connections are illustrated schematically�
Within our paper we focus on the activity of the pyloric dila�
tor 	PD� neuron�

The stomatogastric ganglion �STG� of cray�sh is a
model system for biological neural networks� A manage�
able number of speci�able individual neurons generates
several rhythmic motor patterns� The STG consists of
the gastric network� which controls the movement of the
gastric teeth� and the pyloric network �see �g���� which
controls the movement of the pyloric �lter and the car�
diopyloric duct�

The pyloric rhythm is driven by the anterior burster
�AB� interneuron� which is able to oscillate au�



tonomously� Three phases of the pyloric rhythm can
be distinguished� pyloric dilator �PD� neuron� lateral
pyloric �LP� neuron� and pyloric �PY� neuron� These
neurons are connected with electrical and �mostly in�
hibitory� chemical synapses�

One can measure the activity of the pyloric network neu�
rons in two di�erent ways� either potentials of single
neurons via intracellular recording� or the sum potential
of PD� LP and PY via extracellular recording at the dor�
sal ventricular nerve �dvn�� Within our paper we focus
on the intracellular measured activity of the PD neuron
�see �g����

� Learning and predicting time series with

SVMs

Let T be some time series that is generated by an un�

known mapping f � N � R
d
�

T � �f���� f���� ���� f�n�� �� �x�� x�� ���� xn��

Often there is no or little information available about
f � so xn�� can only be determined by the information
included in T � One common approach is�

�� choose m�h � N and a set L � f�� ���� ng�

�� build training data D �n
��xi�mh� ���� xi��h� xi�h� � xi� � R
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�� try to �nd a minimizer bf of I � F � R �
I�f 	 ��

P
�x�y��D V �y� f�x��

with some appropriate loss function V �


� set exn�� �� bf �xn���mh� ���� xn����h� xn���h��

Minimizing I using SVMs with the ��insensitive loss
function�

V �y� f�x�� ��

�
�� if jy � f�x�j � ��

jy � f�x�j � �� otherwise�

leads to the quadratic minimization problem�
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� � � �i �
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i � jLjg� �� regularization parameter�� which is equiva�
lent to�

min

�� R
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With the matrix H� which consists of pairwise scalar
products of the input data in the feature space�

H �

�BBBBBBB
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� Results

��� Biological data

We used data from the pyloric network of the aus�
tralian cray�sh cherax destructor albidus� The intracel�
lular recordings were done using glass�microelectrodes�
�lled with 
MKCl solution and with resistors ranging
from ��M� to �
M�� The data was recorded with an
A�D�converter and a video���recorder��

To reduce the amount of data we replaced every ����
consecutive datapoints by their average� Then we scaled
the results to �t into ������ ���	� Our training set con�
sisted of ��� patterns �patterns �� � ��� of �g��� and
the test set of ��� patterns �patterns ����
�� of �g����
For our iterated one�step�ahead prediction we wanted to
learn the dynamics of the given time series from the last

�Recordings were provided by G� Heinzel� H� Boehm� C�

Gutzen� Department of Neurobiology� University of Bonn�
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Figure �� Time series of the pyloric dilator neuron 	above�

and phase portrait of its dynamics 	down�� One can distin�
guish �ve sections within the phase portrait
 marked I to V�
Section I is most important
 because here the membran�
potential is driven by superimposed synaptic inputs to the
threshold for the oscillatory peak 	sections II to V��

�� data points and we therefore set m � ��� h � �� and
L � f��� ��� �������g�

To test the generalization ability of our approximator A
�SVM� RBF� MLP�� which was trained to learn the data
�x��� x��� � � � � x����� we recursivly set

exi �� xi�

i � �����ex���i �� A�ex����i����� ex����i����� � � �ex����i�����
i � ���
��

and then calculated the test error

E�A	 ��
�

���

	��X
i����

jexi � xij� ���

��� Simulations with Support Vector Machines

To calculate our SVMs with gaussian kernel

K�x� y� � exp �
� � x� y �

	�
�

0,
05

0,
25

0,
45

0,
65

0,
85

1,
05

1,
25

1,
45

1,
65

1,
85

2,
05

2,
25

2,
45

2,
65

2,
85

0,001

0,005

0,009

0,013

0,017

0,021

0,025

0,045

0,065

0,085

0

0,1

0,2

0,3

0,4

0,5

0,6

test error

sigma

epsilon

Figure �� Test error of SVMgauss with gaussian kernel sub�
ject to variance � and exactness �� One can observe a valley
of low error values as well as several peaks of very low error
values for certain combinations of � and ��

we adapted the LOQO algorithm by Vanderbei ��	 which
was implemented by Smola and set the regularization
parameter to � � ���
�

Varying the variance 	 from ���
 to ��� and the exact�
ness � from ����� to ��� we performed a large number of
simulations� After the learning process we calculated the
training and test errors �see equation ��� Fig�
 shows
the test error for the most interesting area� which is
	 � ����
� 
��	 and � � ������� ����	�

Regarding the test error the best SVMgauss we found
was SVMgbest with 	 � ���
 and � � ����� SVMgbest

used ��� support vectors and had a test error of ��������
Fig��a shows the phase portrait of the predicted values
of SVMgbest�

We also performed simulations with the LOQO algo�
rithm using other than the gaussian kernel� As we
expected tanh�kernels and polynomial kernels showed
worse results� This could be explained by the more
global properties of those functions�

Using the LIBSVM package from Chang and Lin we
veri�ed our results for SVMgauss and obtained results
for SVMs with polynomial kernel

K�x� y� � �s � x� y � � r�d�

Varying s from ��
 to ��
� r from ��
 to ���� and di�
mension d from 
 to � we got discontinuous results� one
the one hand stable values for a small area �see �g����
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Figure �� Test error of SVMpoly with polynomial ker�
nel subject to s and r
 with d � �� Within the area
s � 
����� ����� and r � 
����� ����� one can observe two
channels of low error values� Outside of the plotted area we
obtained discontinuous results�

on the other hand values of in�nity for certain combi�
nations of s� r� and d� SVMs with tanh�Kernels again
showed worse results�

Regarding the test error the best SVMpoly we found was
SVMpbest with s � ��
�� r � ���� and d � 
� SVMpbest

used ��� support vectors and had a test error of ����
���
Fig��b shows the phase portrait of the predicted values
of SVMpbest�

��� Simulations with RBF networks and MLPs

To train our RBF networks we �rst of all determined
the centers of the RBF neurons by a k�means�clustering
algorithm for a given k� Then the weights of the output
layer were set randomly in ��������� ������	� Finally�
these weights were learned using delta rule� We stopped
the learning process when the change of error was less
than ��
 for the last �� epochs� compared to the actual
epoch�

Varying the variance 	 from ��� to ��� and the number
of RBF neurons from 
 to ��� we again performed a
large number of simulations� After the learning process
we calculated the training and test errors �see equation
��� Fig�
 shows the test error for the most interesting
area� which is 	 � ����� ���	 and number of RBF neurons
� �
� ��	�

Regarding the test error the best RBF network we found
was RBFbest with �� RBF neurons and 	 � ���� RBFbest
had a test error of ������
� Fig��c shows the phase por�
trait of the predicted values of RBFbest�
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Figure �� Test error of RBF network subject to variance �

and the number of RBF neurons� The landscape of test error
has two plateaus
 one with � � ��� and one with � � ���� In
between one can observe some mountain ranges of high error
values as well as several peaks of very low error values�

Additionally� we calculated conventional MLPs with one
and two hidden layers using standard backpropagation
of error algorithm� We stopped the learning process
when the change of error was less than ��
 for the last ��
epochs� compared to the actual epoch� Varying the num�
ber of hidden neurons from � to 
� �one hidden layer�
see �g��c�� the best MLP we found was MLPbest with �
hidden neurons and a test error of ����
��� Fig��d shows
the phase portrait of the predicted values of MLPbest�
The best MLP with two hidden layers had a ���
�����
topology and a test error of ����
��� Generally� MLPs
with two hidden layers were not better than MLPs with
one hidden layer�

��� Discussion

Fig�� shows the phase portraits of the predicted values of
our best SVMgauss� SVMpoly � RBF network� and MLP�
Regarding the test error and the learning time �see also
table �� SVMs with gaussian kernel clearly outperform
the other neural network types�

Compared to the dynamics of the original PD timeseries
�see �g�� �down��� SVMs with gaussian kernel are espe�
cially better in predicting the biologically most impor�
tant part of the dynamics� where the membranpotential
is driven by superimposed synaptic inputs to the thresh�
old for the oscillatory peak �section I of �g��a�� The pre�
dicted dynamics of SVMs with polynomial kernel shows
a slight drift during prediction ��g��b�� RBF networks
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Figure 	� Comparison of the phase portraits of the predicted dynamics using di�erent types of neural networks� SVMs
with gausssian kernels 	a� were especially better in predicting the most important part of the dynamics 	section I�
 where the
membranpotential is driven by superimposed synaptic inputs to the threshold for the oscillatory peak� The structure of the
oscillatory peak 	sections II to V� is predicted best by MLPs 	d��

Table �� Comparison of lowest errors and fastest �normalized� learning times�

SVMgauss RBF SVMpoly MLP
�� support vectors� �� RBF neurons� �� support vectors� �� hidden neurons�

training error �����
� ����� ������
 ���� ������� ���
� �����

 �
��
test error ������� ����� ������
 ���� ����
�� ����� ����
�� ����
error sum ������� ����� ��

��� ���� ������
 ����� ��
��
� ����

learning times ����������� ������������ ����������� ����
���
���


do a bad section�I�prediction with some outliers� but are
quite good within sections II to V ��g��c�� MLPs pre�
dict the structure of the oscillatory peak �sections II to
V� best ��g��d��

For further comparison we examined the test error sub�
ject to the number of support vectors resp� the number
of RBF�hidden neurons� In �g�� we plotted for every
number of support vectors resp� RBF�hidden neurons
the lowest test error that was achieved by the corre�
sponding network� Best results for SVMs were obtained
using a large number of support vectors �compared to
the number of training patterns� ��g��a�� whereas best
results for RBF networks and MLPs were obtained us�
ing small hidden layers ��g��b��c�� Nevertheless� SVMs

with about ��
 support vectors and even SVMs with
about �
 support vectors had test errors which were as
low as those of RBFbest�

� Conclusions

On the basis of the results of the previous sections we
conclude�

� SVMs with gaussian and polynomial kernels were
able to learn the nonlinear dynamics of biological
data� This was demonstrated with the dynamics
of the pyloric dilator neuron of the cray�sh cherax
destructor albidus� SVMs with tanh�kernels were
not able to learn the PD dynamics�
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Figure 
� Test error subject to the number of support vec�
tors of SVMs with gaussian kernel 	a�
 to the number of RBF
neurons of RBF networks 	b�
 and the number of hidden neu�
rons of MLPs with one hidden layer 	c�� For every number
of support vectors resp� RBF neurons resp� hidden neurons
we plotted the lowest test error that was achieved by the
corresponding network� Note the di�erent scales for the test
error of 	a� and 	b� compared to 	c��

� Compared to conventional RBF networks and
MLPs� SVMs with gaussian kernels performed a
better iterated one�step�ahead prediction with re�
gard to training and test error� SVMs with gauss�
sian kernels were especially better in predicting
the most important part of the dynamics� where

the membranpotential is driven by superimposed
synaptic inputs to the threshold for the oscillatory
peak� The structure of the oscillatory peak was
predicted best by MLPs�

� SVMs learned much faster than RBF networks�
RBF networks learned faster than MLPs�

� Best results for SVMs were obtained using a large
number of support vectors �compared to the num�
ber of training patterns�� whereas best results for
RBF networks and MLPs were obtained using
small hidden layers�
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