Predicting the Nonlinear Dynamics of Biological Neurons

using Support Vector Machines with Different Kernels

Thomas Frontzek, Thomas Navin Lal, Rolf Eckmiller

University of Bonn
Department of Computer Science VI

Roemerstr. 164, D 53117 Bonn, F. R. Germany

{frontzek, lal, eckmiller } @nero.uni-bonn.de

Abstract

Based on biological data we examine the ability of Sup-
port Vector Machines (SVMs) with gaussian, polyno-
mial and tanh-kernels to learn and predict the nonlin-
ear dynamics of single biological neurons. We show that
SVMs for regression learn the dynamics of the pyloric
dilator neuron of the australian crayfish, and we deter-
mine the optimal SVM parameters with regard to the
test error. Compared to conventional RBF networks
and MLPs, SVMs with gaussian kernels learned faster
and performed a better iterated one-step-ahead predic-
tion with regard to trainming and test error. From a bio-
logical point of view SVMs are especially better in pre-
dicting the most important part of the dynamics, where
the membranpotential is driven by superimposed synap-
tic inputs to the threshold for the oscillatory peak.

1 Imtroduction

Modeling on the basis of biological data extracted via in-
tracellular recording is still a challenging task. A biolog-
ical neural network well studied by physiologists is the
stomatogastric ganglion (STG) of crayfish. This neural
network consists of a manageable number of specifiable
individual neurons. In the literature the dynamics of
single neurons or small parts of the STG is modeled
on different levels of detail [4]. On the most detailed
level ion channels of the membrane of individual neurons
are considered for conductance-based Hodgkin-Huxley-
models [3].

more abstract level. Here, the dynamics of a neuron are

So called "neuronal caricatures” are on a

reduced to a few differential equations. Coupled sim-
ple binary neurons build the other end of the modeling
hierarchy.

Within our paper we focus on the measured time se-
ries of specified individual neurons of the STG to model
their dynamics. Former studies show that the Support

Vector Machine (SVM) technique is very well suited for
learning and predicting nonlinear time series. Applied to
different benchmarks SVMs perform better than estab-
lished regression techniques [5][6]. In contrast to those
approaches we apply SVMs to biological data and com-
pare the results generated by SVMs with different ker-
nels and the results of conventional RBF networks and
MLPs.

2 The stomatogastric ganglion of crayfish

Pyloric Network
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Figure 1: Pyloric network of crayfish. This network con-
sists of 14 cells: 13 motor neurons of five different cell
types (two PD, eight PY, LP, VD, IC) and one interneuron
(AB). The synaptic connections are illustrated schematically.
Within our paper we focus on the activity of the pyloric dila-
tor (PD) neuron.

The stomatogastric ganglion (STG) of crayfish is a
model system for biological neural networks. A manage-
able number of specifiable individual neurons generates
several rhythmic motor patterns. The STG consists of
the gastric network, which controls the movement of the
gastric teeth, and the pyloric network (see fig.1), which
controls the movement of the pyloric filter and the car-
diopyloric duct.

The pyloric thythm is driven by the anterior burster
(AB) interneuron, which is able to oscillate au-



tonomously. Three phases of the pyloric rthythm can
be distinguished: pyloric dilator (PD) neuron, lateral
pyloric (LP) neuron, and pyloric (PY) neuron. These
neurons are connected with electrical and (mostly in-
hibitory) chemical synapses.

One can measure the activity of the pyloric network neu-
rons in two different ways: either potentials of single
neurons via intracellular recording, or the sum potential
of PD, LP and PY via extracellular recording at the dor-
sal ventricular nerve (dvn). Within our paper we focus
on the intracellular measured activity of the PD neuron

(see fig.2).

3 Learning and predicting time series with
SVMs

Let T be some time series that is generated by an un-
d
known mapping f :IN — R :
T= (f(l)’ f(2), ceey f(n)) = (l‘1, Ty .ony xn)

Often there is no or little information available about
f, s0 xp41 can only be determined by the information
included in 7. One common approach is:
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with some appropriate loss function V,
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Minimizing I using SVMs with the e-insensitive loss
function:
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leads to the quadratic minimization problem:

otherwise.
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with K : R — IR satisfying the Mercer-condition,
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i < |L|}, (A regularization parameter), which is equiva-
lent to:
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With the matrix H, which consists of pairwise scalar
products of the input data in the feature space:
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And with ¢, 8, A, b, 1, u, (z;, y;) as follows:

_yl — ¢ Q1 1
e= | TYR el g ] 4|t
ty—e |’ aj |’ -1

Ty — € | -1
X 1

b=0, 1=0, u=y|:], (i, y) €T
1
4 Results

4.1 Biological data

We used data from the pyloric network of the aus-
tralian crayfish cherar destructor albidus. The intracel-
lular recordings were done using glass-microelectrodes,
filled with 3M K C1 solution and with resistors ranging
from 16 M to 25 M. The data was recorded with an
A-D-converter and a video-8-recorder.

To reduce the amount of data we replaced every 1000
consecutive datapoints by their average. Then we scaled
the results to fit into [—0.9,0.9]. Our training set con-
sisted of 200 patterns (patterns 21 — 220 of fig.2) and
the test set of 100 patterns (patterns 221 — 320 of fig.2).
For our iterated one-step-ahead prediction we wanted to
learn the dynamics of the given time series from the last

1Recordings were provided by G. Heinzel, H. Boehm, C.
Gutzen, Department of Neurobiology, University of Bonn.
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Figure 2: Time series of the pyloric dilator neuron (above),
and phase portrait of its dynamics (down). One can distin-
guish five sections within the phase portrait, marked I to V.
Section [ is most important, because here the membran-
potential is driven by superimposed synaptic inputs to the
threshold for the oscillatory peak (sections II to V).

20 data points and we therefore set m = 20, h =1, and
L=1{21,22,...,220}.

To test the generalization ability of our approximator A
(SVM, RBF, MLP), which was trained to learn the data

(za1, a2, ..., ®220), We recursivly set
= x,
1=1..20
Toopi = A(T(2044)-205 T(204i)=19) - - - T(204i) 1),
1=1..300
and then calculated the test error
320
> E - il (1)
100 i=221

4.2 Simulations with Support Vector Machines
To calculate our SVMs with gaussian kernel

e —<z,y>
K(z,y) = exp (T)
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Figure 3: Test error of SVMyquss with gaussian kernel sub-
ject to variance o and exactness €. One can observe a valley
of low error values as well as several peaks of very low error
values for certain combinations of o and e.

we adapted the LOQO algorithm by Vanderbei [7] which
was implemented by Smola and set the regularization
parameter to A = 0.05.

Varying the variance ¢ from 0.05 to 100 and the exact-
ness € from 0.001 to 0.8 we performed a large number of
simulations. After the learning process we calculated the
training and test errors (see equation 1). Fig.3 shows
the test error for the most interesting area, which is

o = [0.05,3.0] and € = [0.001, 0.01].

Regarding the test error the best SVMyqyss we found
was SVMypes: with o = 2.85 and € = 0.04. SVMgpest
used 196 support vectors and had a test error of 0.04622.
Fig.6a shows the phase portrait of the predicted values
of SVMgbest .

We also performed simulations with the LOQO algo-
rithm using other than the gaussian kernel.
expected tanh-kernels and polynomial kernels showed
worse results. This could be explained by the more
global properties of those functions.

As we

Using the LIBSVM package from Chang and Lin we
verified our results for SVMy4uss and obtained results
for SVMs with polynomial kernel

K(z,y) = (s <x,y>+r)*

Varying s from 0.3 to 0.5, r from 0.5 to 0.7, and di-
mension d from 3 to 6 we got discontinuous results: one
the one hand stable values for a small area (see fig.4),



Figure 4: Test error of SVM,y, with polynomial ker-
nel subject to s and r, with d = 3. Within the area
s = [0.34,0.39] and r = [0.54,0.70] one can observe two
channels of low error values. Outside of the plotted area we
obtained discontinuous results.

on the other hand values of infinity for certain combi-
nations of s, r, and d. SVMs with tanh-Kernels again
showed worse results.

Regarding the test error the best SVM,, 4, we found was
SVMppese with s = 0.36, » = 0.62 and d = 3. SVMpest
used 200 support vectors and had a test error of 0.07311.
Fig.6b shows the phase portrait of the predicted values
of SVMpbest~

4.3 Simulations with RBF networks and MLPs
To train our RBF networks we first of all determined
the centers of the RBF neurons by a k-means-clustering
algorithm for a given k. Then the weights of the output
layer were set randomly in [—0.0001,0.0001]. Finally,
these weights were learned using delta rule. We stopped
the learning process when the change of error was less
than 10* for the last 20 epochs, compared to the actual
epoch.

Varying the variance ¢ from 0.1 to 100 and the number
of RBF neurons from 5 to 200 we again performed a
large number of simulations. After the learning process
we calculated the training and test errors (see equation
1). Fig.5 shows the test error for the most interesting
area, which is o = [0.1,4.0] and number of RBF neurons

=[5, 29].

Regarding the test error the best RBF network we found
was RBF..; with 26 RBF neurons and o = 0.7. RBF.4¢
had a test error of 0.07295. Fig.6¢ shows the phase por-
trait of the predicted values of RBFpes¢.

test error

0,75

Figure 5: Test error of RBF network subject to variance o
and the number of RBF neurons. The landscape of test error
has two plateaus, one with ¢ < 0.5 and one with ¢ > 3.5. In
between one can observe some mountain ranges of high error
values as well as several peaks of very low error values.

Additionally, we calculated conventional MLPs with one
and two hidden layers using standard backpropagation
of error algorithm. We stopped the learning process
when the change of error was less than 10* for the last 20
epochs, compared to the actual epoch. Varying the num-
ber of hidden neurons from 2 to 50 (one hidden layer,
see fig.7c), the best MLP we found was MLPpcs; with 4
hidden neurons and a test error of 0.11340. Fig.6d shows
the phase portrait of the predicted values of MLPpest.
The best MLP with two hidden layers had a 20-5-7-1-
topology and a test error of 0.22592. Generally, MLPs
with two hidden layers were not better than MLPs with
one hidden layer.

4.4 Discussion

Fig.6 shows the phase portraits of the predicted values of
our best SVMgquss, SVMpoy, RBF network, and MLP.
Regarding the test error and the learning time (see also
table 1) SVMs with gaussian kernel clearly outperform
the other neural network types.

Compared to the dynamics of the original PD timeseries
(see fig.2 (down)), SVMs with gaussian kernel are espe-
cially better in predicting the biologically most impor-
tant part of the dynamics, where the membranpotential
is driven by superimposed synaptic inputs to the thresh-
old for the oscillatory peak (section I of fig.6a). The pre-
dicted dynamics of SVMs with polynomial kernel shows
a slight drift during prediction (fig.6b). RBF networks
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Figure 6: Comparison of the phase portraits of the predicted dynamics using different types of neural networks. SVMs
with gausssian kernels (a) were especially better in predicting the most important part of the dynamics (section I), where the
membranpotential is driven by superimposed synaptic inputs to the threshold for the oscillatory peak. The structure of the
oscillatory peak (sections II to V) is predicted best by MLPs (d).

Table 1: Comparison of lowest errors and fastest (normalized) learning times.

SVMyauss RBF SVM,y.1y MLP

(# support vectors)

(# RBF neurons)

(# support vectors)

(# hidden neurons)

training error

0.02752 (200)

0.17105 (18)

0.16400 (175)

0.19953 (34)

test error

0.04622 (196)

0.07295 (26)

0.07311 (200)

0.11340 (04)

€Iror sum

0.19868 (198)

0.33106 (09)

0.29613 (199)

0.34236 (04)

| learning times |

1.0/1.0/1.0

16.6/4.7/1.8

[ 0.1/0.1/0.1

>225/8.3/6.3

do a bad section-I-prediction with some outliers, but are
quite good within sections IT to V (fig.6¢). MLPs pre-
dict the structure of the oscillatory peak (sections IT to

V) best (fig.6d).

For further comparison we examined the test error sub-
ject to the number of support vectors resp. the number
of RBF/hidden neurons. In fig.7 we plotted for every
number of support vectors resp. RBF/hidden neurons
the lowest test error that was achieved by the corre-
sponding network. Best results for SVMs were obtained
using a large number of support vectors (compared to
the number of training patterns) (fig.7a), whereas best
results for RBF networks and MLPs were obtained us-
ing small hidden layers (fig.7b,7c). Nevertheless, SVMs

with about 115 support vectors and even SVMs with
about 25 support vectors had test errors which were as
low as those of RBFpq4;.

5 Conclusions

On the basis of the results of the previous sections we
conclude:

e SVMs with gaussian and polynomial kernels were
able to learn the nonlinear dynamics of biological
data. This was demonstrated with the dynamics
of the pyloric dilator neuron of the crayfish cherax
destructor albidus. SVMs with tanh-kernels were
not able to learn the PD dynamics.
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Figure T7: Test error subject to the number of support vec-
tors of SVMs with gaussian kernel (a), to the number of RBF
neurons of RBF networks (b), and the number of hidden neu-
rons of MLPs with one hidden layer (c). For every number
of support vectors resp. RBF neurons resp. hidden neurons
we plotted the lowest test error that was achieved by the
corresponding network. Note the different scales for the test
error of (a) and (b) compared to (c).

e Compared to conventional RBF networks and
MLPs, SVMs with gaussian kernels performed a
better iterated one-step-ahead prediction with re-
gard to training and test error. SVMs with gauss-
sian kernels were especially better in predicting
the most important part of the dynamics, where

the membranpotential is driven by superimposed
synaptic inputs to the threshold for the oscillatory
peak. The structure of the oscillatory peak was
predicted best by MLPs.

e SVMs learned much faster than RBF networks.
RBF networks learned faster than MLPs.

o Best results for SVMs were obtained using a large
number of support vectors (compared to the num-
ber of training patterns), whereas best results for
RBF networks and MLPs were obtained using
small hidden layers.
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