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ABSTRACT

Recently introduced in Machine Learning, the notion of ker-
nels has drawn a lot of interest as it allows to obtain non-
linear algorithms from linear ones in a simple and elegant
manner. This, in conjunction with the introduction of new
linear classification methods such as the Support Vector Ma-
chines has produced significant progress. The successes of
such algorithms is now spreading as they are applied to
more and more domains. Many Signal Processing prob-
lems, by their non-linear and high-dimensional nature may
benefit from such techniques. We give an overview of ker-
nel methods and their recent applications.

1. INTRODUCTION

Kernel-based algorithms have been recently developed in
the Machine Learning community, where they were first in-
troduced in the Support Vector Machine (SVM) algorithm
[1]. There is now an extensive literature on SVM [2, 3]
and the family of kernel-based algorithms [4]. The attrac-
tiveness of such algorithms stems from their elegant treat-
ment of non-linear problems and their efficiency in high-
dimensional problems.

They have allowed considerable progress in Machine
Learning and they are now being successfully applied to
many problems.

It is clear that many problems arising in Signal Process-
ing are of statistical nature and require automatic data anal-
ysis methods. Moreover there are lots of non-linearities so
that linear methods are not always applicable. Finally, the
data is not always in vectorial form but is often sequential.
All these reasons make kernel methods particularly suited
for signal processing applications.

Another aspect is the amount of available data and the
dimensionality. One needs methods that can use little data
and avoid the curse of dimensionality. This is what Vapnik’s
approach aims at [2] and explains why using kernel methods
and Vapnik’s ideas may allow to efficiently handle data from
signal processing problems.
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2. KERNEL METHODS

Many algorithms for data analysis are based on the assump-
tion that the data can be represented as vectors in a finite
dimensional vector space. These algorithms, such as lin-
ear discrimination, principal component analysis, or least
squares regression, make extensive use of the linear struc-
ture. Roughly speaking, kernels allow to naturally derive
non-linear versions of them.

2.1. TheKerne Trick

The general idea is the following. Given a linear algorithm
(i.e. an algorithm which works in a vector space), one first
maps the data living in a space X to a vector space H (the
feature space) via a non-linear map & : X — H, and then
runs the algorithm on the vector representation ®(x) of the
data. In other words, one performs non-linear analysis of
the data using a linear method.

One of the purposes of the map @ is to translate non-
linear structures of the data into linear ones in H. As an ex-
ample, consider the following discrimination problem (see
Figure 1) where the goal is to separate two sets of points. In
the input space, the problem is non-linear, but after applying
the transformation ® which maps each vector to the three
monomials of degree 2 formed by its coordinates, the sepa-
ration boundary becomes linear. The gain of introducing the
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Fig. 1. Effect of the map ®(z1,z2) = (22, V2z1 72, 23)

map @ is not obvious yet. Indeed, we have just transformed



the data and we hope that in the new representation, linear
structures will emerge. However, we may need to add a lot
of dimensions to really make this happen and it may be hard
to "guess’ the right &.

Here is where the so-called kernel comes into the game.
We shall first restrict ourselves to algorithms that work in
vector spaces endowed with an inner product. In this case,
& has to map the input space to a Hilbert space.

If in the execution of the algorithms, only inner prod-
ucts between data vectors are considered, i.e. the data ap-
pears only in expressions like (®(x), ®(x')), we can make
use of the fact that for certain specific maps @ this inner
product can be computed directly from x and x’ without
explicitly computing ®(x) and ®(x’). This computational
trick is termed the "kernel trick’. More precisely, a kernel
is a symmetric function of two variables that satisfies the
following condition: for all n € N, and all x,...,%x, €
X, the kernel matrix, i.e. the matrix whose elements are
k(x;,x;) is positive semi-definite. The main property of
functions satisfying this condition is that they implicitly de-
fine a mapping ® from X’ to a Hilbert space # such that
k(x,x') = (®(x),®(x')) and can thus be used in algo-
rithms using inner products, introducing non-linearities via
a straightforward modification.

2.2. Kernel Design

Because they correspond to inner products in some space,
kernels can be considered as measures of similarity between
two data points. Many different types of kernels are known
[4] and among them, the most widely used are those operat-
ing on finite-dimensional vectors. For example the function
k(x,x") = (x,x’') trivially defines a kernel called the linear
kernel. Another example is the polynomial kernel of degree
d, defined as k(x,x’) = (a + {x,x'))?. Also the so-called
Gaussian kernel with width o, defined

k(x,x") = exp(—|jx — x'[|*/20?),

is very useful in practice. However, kernels are not limited
to vector spaces and can be defined on graphs, on sequences,
on groups, etc. (see [4]). This is a key feature of kernels:
they allow to work in a simple (linear) way on data of vari-
ous types (discrete or not, fixed or variable length).

3. KERNEL BASED ALGORITHMS

We will present two kinds of learning algorithms. The first
ones, supervised learning algorithms, take as an input a set
of labeled examples, (x1,y1),- - -, (Xn, yn) Where x; are in
some input space X’ and y; are typically in R, and they pro-
duce as an output, a function f : X — R which (hopefully)
is able to predict the label y of new examples x. The sec-
ond ones, work on unlabeled examples (x; only) and try to
describe the structure of the data (e.g. its distribution).

3.1. Support Vector Machines

The SVM algorithm is used to perform binary classification
(y; € {—1,1}). The idea is to construct, in the feature space
‘H, a linear decision function from the hyperplane with max-
imum margin, i.e. which is at maximum distance from all
the data points and classifies them correctly (see Figure 2).
This corresponds to looking for a normal vector w and a pa-

Fig. 2. Maximal margin hyperplane

rameter b corresponding to the hyperplane whose equation
isw - ®(x) + b = 0. The maximum margin hyperplane is
obtained by minimizing ||w||? under constraints of correct
classification of the data, i.e. y;(w - ®(x;) +b) > 1. It
can be shown that the solution is obtained by solving the
following dual problem (see e.g. [3] for details)

n n
1
mgx;ai -5 > cioyuiyik(xi,x;),

i,j=1

under constraints «; > 0. Using the extra constraint «;; <
C yields the soft-margin SVM which allows some of the
training data to be misclassified (for a more robust solution).
Interestingly enough, this algorithm has an interpretation as
a regularized optimization problem

?22 ;max(l — f(xa)yi, 0) + AllfII7, @

where H is the space of functions generated by the kernel.

Other linear discrimination algorithms can be performed
implicitly in feature space, such as Fisher discriminant anal-
ysis [5]. Also, other cost functions can be used in (1), such
as the squared error (f(x;) — y;)?, yielding the kernel ridge
regression algorithm which can be used to estimate a real-
valued function.

3.2. Unsupervised Learning Algorithms

Principal Component Analysis (PCA) looks for directions
of largest variance in the data. It turns out that PCA can be
implicitly performed in feature space yielding kernel-PCA
[6]. Figure 3 shows a toy example where PCA is performed
both in the linear input space and in the feature space pro-
duced by the polynomial kernel. The result of kernel PCA



linear PCA ) k(x,y) = (x-y)
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Fig. 3. Linear vs. kernel PCA

is to extract non-linear components which describe the non-
ellipsoidal shape of the data cloud.

Another type of unsupervised learning algorithm is the
so-called one-class SVM whose goal is to estimate the sup-
port of the data distribution. It works by applying a variant
of the SVM algorithm with all y; set to 1. The result is a
non-linear boundary that encloses the data (or a prescribed
fraction of the data). An important application is the prob-
lem of outliers or novelty detection [7].

Finally other types of algorithms that are often used in
signal processing have been recently extended to the non-
linear case via kernels. These include Vector Quantization
[8], Independent Component Analysis [9, 10] and Canoni-
cal Correlation Analysis [11].

4. SIGNAL PROCESSING APPLICATIONS

Kernel methods have been applied to several signal process-
ing and communications problems. Some of them are di-
rect application of the standard SVM algorithm for detec-
tion or estimation and others incorporate prior knowledge
into the learning process, either using virtual training sam-
ples or by constructing a relevant kernel for the given prob-
lem. The applications include speech and audio processing
(speech recognition [12], speaker identification [13], extrac-
tion of audio features [14], audio signal segmentation [15]),
image processing (face detection and recognition [16], im-
age coding [8]) and communications (channel equalization
[17, 18], non-stationary channel models [19], multi-user de-
tection [20], signal classification [21]). This list is not ex-
haustive but shows the diversity of problems that can be
treated by the techniques presented in previous sections.

4.1. Examples

Speech recognition has been usually solved applying Hid-
den Markov Models (HMM) trained using maximum like-
lihood estimates. The limitation of the approach is that the
probability density function of the models is unknown and
making assumptions about it can be difficult. It has been

proposed [12] to incorporate the SVM into the HMM de-
cision process [12], to be able to process the voice as it is
generated but at the same time make the decisions accord-
ing to the maximum margin principle that will ensure best
separability under any density model.

Channel equalization and estimation is one of the key
issues in digital communication because it involves linear
and non-linear distortions and in many situations the train-
ing sequence need to be short in order not to reduce the
payload bits. Indeed, communication channels introduce
inter-symbol interference, i.e. each transmitted symbol is
spread between some contiguous received symbols. There-
fore a linear transversal filter, that contains several consec-
utive symbols, is used to estimate the incoming symbol.
Least squares regression is frequently used to compute the
weights of these filters. SVMs has been used with great suc-
cess over non-linear channels directly using linear and non-
linear kernels with very short training sequences [17] and
some modifications using hidden Markov models have been
also proposed [18]. One of the challenging issues in equal-
ization is that the channel does not need to be stationary, so
that the decision function has to change over time, without
necessarily receiving a new training sequence. The SVM
has been initially proposed for i.i.d. training sample, and
has subsequently been modified for time varying commu-
nication channels by incorporating prior information about
the time evolution of the channel in the cost function and
margin [19].

An important feature of audio signals is that they carry
information over time, which means that their amplitude at a
given moment is less meaningful than the variations of this
amplitude in time. It is thus of crucial importance, when
applying data analysis techniques to signals, to represent
them in an appropriate way. An approach based on kernels
defined on time frequency representations (TFR) has been
proposed [21] and promising results for signal classification
and segmentation [15] were demonstrated.

4.2. Discussion and Per spectives

A large number of kernel methods applications to Signal
Processing involve the use of the standard SVM algorithm
with a Gaussian kernel applied to a vector representation of
the data.

This surely yields a flexible and efficient method for
classification. Indeed, the algorithm is simple, can be ef-
ficiently implemented and has few parameters (unlike e.g.
neural networks). Moreover, the maximum margin prin-
ciple allows to reduce the effective dimensionality of the
problem, making generalization possible even with limited
data. Finally, the fact that this method directly addresses the
classification problem makes it really efficient in high di-
mensions compared to density estimation based approaches.
This last remark is at the heart of Vapnik’s philosophy and



has been fully demonstrated in applications such as speaker
recognition [22] where previous approaches were based on
probabilistic speaker models trained from the data. The
guideline is thus: apply classification algorithms whenever
possible.

So the easy things (proper reformulation of the problems
and use of standard techniques) have been done, but now the
focus should be on the kernels themselves which can really
make a difference if correctly designed. Promising direc-
tions include the development of kernels for sequences or
incorporating invariances [23] with respect to information-
preserving signal transformations.
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