Moment inequalities for functions of
independent random variables

Stéphane Boucheron*  Olivier Bousquet I Gébor Lugosi®s
Pascal Massart ¥

January 29, 2004

Abstract

A general method for obtaining moment inequalities for functions
of independent random variables is presented. It is a generalization
of the entropy method which has been used to derive concentration
inequalities for such functions [7], and is based on a generalized ten-
sorization inequality due to Latata and Oleszkiewicz [25]. The new
inequalities prove to be a versatile tool in a wide range of applications.
We illustrate the power of the method by showing how it can be used
to effortlessly re-derive classical inequalities including Rosenthal and
Kahane-Khinchine-type inequalities for sums of independent random
variables, moment inequalities for suprema, of empirical processes, and
moment inequalities for Rademacher chaos and U-statistics. Some of
these corollaries are apparently new. In particular, we generalize Ta-
lagrand’s exponential inequality for Rademacher chaos of order two to
any order. We also discuss applications for other complex functions
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of independent random variables, such as suprema, of boolean polyno-
mials which include, as special cases, subgraph counting problems in
random graphs.

1 Introduction

During the last twenty years, the search for upper bounds for exponential
moments of functions of independent random variables, that is, for concen-
tration inequalities, has been a flourishing area of probability theory. Recent
developments in random combinatorics, statistics, and empirical process the-
ory have prompted the search to moment inequalities dealing with possibly
non-exponentially integrable random variables.

Paraphrasing M. Talagrand in [41], we may argue that

While Rosenthal-Pinelis inequalities for higher moments of sums
of independent random variables are at the core of classical prob-
abilities, there is a need for new abstract inequalities for higher
moments of more general functions of many independent random
variables.

The aim of this paper is to provide such general-purpose inequalities.
Our approach is based on a generalization of Ledoux’s entropy method (see
[26, 28]). Ledoux’s method relies on abstract functional inequalities known
as logarithmic Sobolev inequalities and provide a powerful tool for deriving
exponential inequalities for functions of independent random variables, see
Boucheron, Massart, and Lugosi [6, 7], Bousquet [8], Devroye [14], Massart
[30, 31], Rio [36] for various applications. To derive moment inequalities for
general functions of independent random variables, we elaborate on the pio-
neering work of Latata and Oleszkiewicz [25] and describe so-called ¢-Sobolev
inequalities which interpolate between Poincaré’s inequality and logarithmic
Sobolev inequalities (see also Beckner [4] and Bobkov’s arguments in [26]).

This paper proposes general-purpose inequalities for polynomial moments
of functions of independent variables. Many of the results parallel those
obtained in [7] for exponential moments, based on the entropy method. In
fact, the exponential inequalities of [7] may be obtained (up to constants) as
corollaries of the results presented here.

Even though the new inequalities are designed to handle very general
functions of independent random variables, they prove to be surprisingly



powerful in bounding moments of well-understood functions such as sums
of independent random variables and suprema of empirical processes. In
particular, we show how to apply the new results to effortlessly re-derive
Rosenthal and Kahane-Khinchine-type inequalities for sums of independent
random variables, Pinelis’ moment inequalities for suprema of empirical pro-
cesses, and moment inequalities for Rademacher chaos. Some of these corol-
laries are apparently new. Here we mention Theorem 14 which generalizes
Talagrand’s (upper) tail bound [40] for Rademacher chaos of order two to
Rademacher chaos of any order. We also provide some other examples such
as suprema of boolean polynomials which include, as special cases, subgraph
counting problems in random graphs.

The paper is organized as follows. In Section 2, we state the main results
of this paper, Theorems 2, 3, and 4, as well as a number of corollaries. The
proofs of the main results are given in Sections 4 and 5. In Section 4, abstract
¢-Sobolev inequalities which generalize logarithmic Sobolev inequalities, are
introduced. These inequalities are based on a “tensorization property” of
certain functionals called ¢-entropies. The tensorization property is based
on a a duality formula, stated in Lemma 1. In Appendix A some further
facts are gathered about the tensorization property of ¢-entropies.

In Section 6, the main theorems are applied to sums of independent ran-
dom variables. This leads quite easily to suitable versions of Marcinkiewicz’,
Rosenthal’s and Pinelis’ inequalities. In Section 7, Theorems 2 and 3 are
applied to suprema of empirical processes indexed by possibly non-bounded
functions, leading to a version of an inequality due to Giné, Latala and Zinn
[16] with explicit and reasonable constants. In Section 8 we derive moment
inequalities for conditional Rademacher averages. In Section 9 a new general
moment inequality is obtained for Rademacher chaos of any order, which
generalizes Talagrand’s inequality for Rademacher chaos of order two. We
also give a simple proof of Bonami’s inequality.

In Section 10 we consider suprema of boolean polynomials. Such problems
arise, for example, in random graph theory where an important special case
is the number of small subgraphs in a random graph.

Some of the routine proofs are gathered in the appendices.



2 Main results

2.1 Notation

We begin by introducing some notation used throughout the paper. Let
Xq,...,X, denote independent random variables taking values in some mea-
surable set X. Denote by X' the vector of these n random variables. Let
F: X" — R be some measurable function. We are concerned with moment
inequalities for the random variable

Z=F(Xy,...,X,).

Throughout, E[Z] denotes expectation of Z and E[Z|F] denotes conditional
expectation with respect to F. Xj,..., X, denote independent copies of
Xq,..., Xy, and we write

ZZI = F(Xl,...,Xifl,X,Z;Xi—}—la""Xn) -

Define the random variables V* and V"~ by

r n

ve=E|Y(Z- 2% | X7

Li=1
and . )
VI=E|) (Z2-Z)2 | X]
-Z:1 .

where £, = max(z,0) and z_ = max(—=z, 0) denote the positive and negative

parts of a real number z. The variables V* and V~ play a central role in
[7]. In particular, it is shown in [7] that the moment generating function of
Z —EZ may be bounded in terms of the moment generating functions of V'
and V_. The main results of the present paper relate the moments of Z to
lower-order moments of these variables.

In the sequel, Z; will denote an arbitrary measurable function F; of X =
Xl, ce 7Xi—1; Xi—|—17 ce ,Xn, that iS,

Z; = E(Xla s 7Xi—17Xi+la . :Xn) .

Finally, define

n

v=>(z-27)".

i=1



Throughout the paper, the notation ||Z||, is used for
1211, = (E[1Z))"

where ¢ is a positive number.
Next we introduce two constants used frequently in the paper. Let

Ve

k=—F7———<1.271

2(Je—1)

Let k; =1 and for any integer ¢ > 2, define

w=(=-0))

Then (k,) increases to k as g goes to infinity. Also, define

K = < 0.935.

1
e—+/e
2.2 Basic theorems

Recall first one of the first general moment inequalities, proved by Efron and
Stein [15], and further improved by Steele [37]:

Proposition 1 (Efron-Stein inequality)

VarlZ] < %E [i(z _ z;)ﬂ .

=1

Note that this inequality becomes an equality if F' is the sum of its ar-
guments. Generalizations of the Efron-Stein inequality to higher moments
of sums of independent random variables have been known in the literature
as Marcinkiewicz’ inequalities (see, e.g., [13, page 34]). Our purpose is to
describe conditions under which versions of Marcinkiewicz’ inequalities hold
for general functions F.

In [7], inequalities for exponential moments of Z are derived in terms
of the behavior of V* and V~. This is quite convenient when exponential
moments of Z scale nicely with n. In many situations of interest this is not the



case, and bounds on exponential moments of roots of Z rather than bounds
on exponential moments of Z itself are obtained (e.g., the triangle counting
problem in [7]). In such situations, relating the polynomial moments of Z,
to VT,V ~, or V may prove more convenient.

In the simplest settings, V* and V~ are bounded by a constant. It was
shown in Boucheron, Lugosi and Massart [7] that in this case Z exhibits a
sub-Gaussian behavior. Specifically, it is shown in [7] that if V™ < ¢ almost
surely for some positive constant ¢, then for any A > 0,

EMNZ-El2) < eA% .

Our first introductory result implies sub-Gaussian bounds for the polynomial
moments of Z:

Theorem 1 If V' < ¢ for some constant ¢ > 0, then for all integers q > 2,
1(Z -E[Z])+l, < VEqc .
(Recall that K = 1/ (e — v/e) < 0.935.) If furthermore V~ < ¢ then for all
integers q > 2,
12]l, < E[Z] +2Y/Kqc.
The main result of this paper is the following inequality.

Theorem 2 For any real ¢ > 2

1
1(Z-E[Z]),], < \/(1 - 5) 264 [VFll 2

< /264 [V, = V/2ra [VV7|

)
q

and

|(Z-E[Z])_], < \/(1 - é) 2600 [Vl 2
< \f26q [Vl = V2 [V




Remark 1 To better understand our goal, recall Burkholder’s inequalities
[9, 10] from martingale theory. Burkholder’s inequalities may be regarded as
extensions of Marcinkiewicz’ inequalities to sums of martingale increments.
They are natural candidates for deriving moment inequalities for a function
Z = F(Xy,...,X,) of many independent random variables. The approach
mimics the method of bounded differences (see McDiarmid [32, 33]) classi-
cally used to derive Bernstein- or Hoeffding-like inequalities under similar
circumstances. The method works as follows: let F; denote the o-algebra
generated by the sequence (X?). Then the sequence M; = E[Z|F] is an
Fi-adapted martingale (the Doob martingale associated with Z). Let (Z)
denote the associated quadratic variation

n

(2) = Z(Mz - Mi—l)Qa

=1

let [Z] denote the associated predictable quadratic variation

2= B[ on - 010 7.

=1

and let M be defined as maxi<;<, | Z; — Z;_1|. Burkholder’s inequalities [9, 10]
(see also [12, page 384]) imply that for ¢ > 2,

12 = ELZ1l, < (6= 1)/ I2)],o = (a=1) | V(2

Note that the dependence on ¢ in this inequality differs from the dependence
in Theorem 2. It is known that for general martingales, Burkholder’s in-
equality is essentially unimprovable (see [10, Theorem 3.3]). (However, for
the special case of Doob martingale associated with Z this bound is perhaps
improvable.) The Burkholder-Rosenthal-Pinelis inequality [34, Theorem 4.1]
implies that there exists a universal constant C' such that

12 - EL21l, < ¢ (\/a [l + a1, ) -

If one has some extra information on the sensitivity of Z with respect to its
arguments, such inequalities may be used to develop a strict analogue of the
method of bounded differences (see McDiarmid [33]) for moment inequalities.
In principle such an approach should provide tight results, but finding good

q
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bounds on the moments of the quadratic variation process often proves quite
difficult.

The inequalities introduced in this paper have a form similar to those
obtained by resorting to Doob’s martingale representation and Burkholder’s
inequality. But, instead of relying on the quadratic variation process, they
rely on a more tractable quantity. Indeed, in many cases V™ and V'~ are
easier to deal with than [Z] or (Z).

Below we present two variants of Theorem 2 which may be more conve-
nient in some applications.

Theorem 3 Assume that Z; < Z for all1 < i < n. Then for any real ¢ > 2,

|2 =E2)), ], < \fraa VLo < \Jra IV I]po -

Even though Theorem 2 provides some information concerning the growth
of moments of (Z — E[Z])_, this information may be hard to exploit in con-
crete cases. The following result relates the moments of (Z — E[Z])_ with
[V*]|, rather than with [V 7|, . This requires certain boundedness assump-
tions on the increments of Z.

Theorem 4 If for some positive random variable M,
(Z—ZZ()+ <M, for every1 <i<n,

then for every real q > 2,

7= B12)_, < /a0 (17l v g IM12)
where C; < 4.16. If, on the other hand,
0<Z—-7; <M, foreveryl <i<mn,

then

(2~ B2, < y/Ca (Vo v aIMI2)
where Cy < 2.42.



2.3 Corollaries

Next we derive some general corollaries of the main theorems which provide
explicit estimates under various typical conditions on the behavior of V*, V|
or V.

The first corollary, obtained from Theorem 3, is concerned with func-
tionals Z satisfying V < Z. Such functionals were at the center of attention
in Boucheron, Lugosi, and Massart [6] and Rio [36] where they were called
self-bounded functionals. They encompass sums of bounded non-negative
random variables, suprema of non-negative empirical processes, configura-
tion functions in the sense of Talagrand [39] and conditional Rademacher
averages [7], see also Devroye [14] for other interesting applications.

Corollary 1 Assume that 0 < Z — Z; <1 for all1 =1,...,n and that for
some constant A > 1

0<> (Z-7Z) < AZ .
i=1
Then for all integers ¢ > 1,

qg—1
12l < B[Z] + A——, (1)
and for every real ¢ > 2, then
Aq
I(Z - B(2D)4], < V& | VAR + 52| 2)

Moreover, for all integers g > 2,
|(Z-E[2))_||, < VCaAEZ],
where C' < 1.131.

The next corollary provides a simple sub-Gaussian bound for the lower
tail whenever V'~ is bounded by a nondecreasing function of Z. A similar
phenomenon was observed in [7, Theorem 6].

Corollary 2 Assume that V— < g(Z) for some nondecreasing function g.
Then for all integers q > 2,

1(Z -E[Z])-|l, < VKqE[g(Z)] .



Finally, the following corollary of Theorem 3 deals with a generalization
of self-bounded functionals that was already considered in [7].

Corollary 3 Assume that Z; < Z for alli =1,...,n and V < WZ for a
random variable W > 0. Then for all reals ¢ > 2 and all 8 € (0, 1],

K 1
1Zll, = A+ OE[Z] + 5 (1 + 5)a[[Wl, -

Also,

1(Z = E[Z])+]l, < \/%q W1, E[Z] + rq |V, -
If M denotes a positive random variable such that for every 1 < i <n,

then we also have

17~ BIZ) 1, < /Coa( 1M1, (2B1Z1 + 271, v a1 M2).
where Cy < 2.42 1s as in Theorem 4.

The proof of Theorems 2, 3, and 4 and of Corollaries 1, 2, and 3 are
developed in two steps. First, in Section 4, building on the modified ¢-
Sobolev inequalities presented in Section 3), generalized Efron-Stein-type
moment inequalities are established. These modified ¢-Sobolev/Efron-Stein
inequalities play a role similar to the one played by modified log-Sobolev
inequalities in the entropy method in Ledoux [26, 27, 28] and Massart [30].
Second, in Section 5 these general inequalities are used as main steps of an
inductive proof of the main results. This second step may be regarded as an
analogue of what is called in [28] the Herbst argument of the entropy method.

3 Modified ¢-Sobolev inequalities

The purpose of this section is to reveal some fundamental connections be-
tween ¢-entropies and modified ¢-Sobolev inequalities. The basic result is the
duality formula of Lemma 1 implying the tensorization inequality which is at
the basis of the modified ¢-Sobolev inequalities of Theorems 5, 6. These the-
orems immediately imply the generalized Efron-Stein inequalities of Lemmas
3,4, and 5.

10



3.1 ¢-entropies, duality, and the tensorization prop-
erty

First we investigate so-called “tensorization” inequalities due to Latala and
Oleszkiewicz [25], and Bobkov (see [26]). As of writing this text, Chafai [11]
developed a framework for ¢-entropies and ¢-Sobolev inequalities.

We introduce some notation. Let L] denote the convex set of nonnegative
and integrable random variables Z. For any convex function ¢ on Ry, let
the ¢-entropy functional Hy be defined for Z € L by

Hy (Z2) =E[p(2)] -6 (E[Z]) .

Note that here and below we use the extended notion of expectation for a (non
necessarily integrable) random variable X defined as E [ X| = E [ X, |-E [X_]
whenever either X, or X_ is integrable.

The functional Hy is said to satisfy the tensorization property if for
every finite family Xi,..., X,, of independent random variables and every
(X1, ..., Xp)-measurable non-negative and integrable random variable Z,

Hy(Z) < ilE [E[3(2)| XD -9 (E[Z]XD])] .

Observe that for n = 2 and setting Z = g (X, X3), the tensorization property
reduces to the Jensen-type inequality

i ([aex)anw) < [Hawx)me, @

where p; denotes the distribution of X;. Next we show that (3) implies
the tensorization property. Indeed let Y; be distributed like X;, and Y5
be distributed like the n — 1-tuple X,,..., X,,. Let pu; and ps denote the
corresponding distributions. The random variable Z is a measurable function
g of the two independent random variables Y; and Y5. By the Tonelli-Fubini

11



Theorem,

Hy(Z)

= // (¢(g(yl,yz)) —¢ (/g(yi,m)dm(yi)>

+¢ (/g(yiayz)dm(yl))

= ([ ot )i )auatss)) Yo )
/[ 9(y1,92)) cb(/g(yiayz)dm(yi))}dul(y1)> dpa(yo)
(i)

(] / 9(v) yé)dul(yi)duz(yé)> )aat
— [ HoloWioedauaton) + o ( [ ot i)

< [ Halohmldiato) + [ Ho oY) dinto)

(
<

where the last step follows from the Jensen-type inequality (3).
If we turn back to the original notations, we get

Hy(Z) < E[E[6(2) | XW] -9 (E[Z|XM)]
+/[H¢ (Z(x1,Xoy ..., Xp))] dui(xq) .

Proceeding by induction, (3) leads to the tensorization property for every n.
We see that the tensorization property for Hy is equivalent to what we could
call the Jensen property, that is, (3) holds for every u;, X, and g such that
J g9 (z, X5) duy () is integrable.

Let ® denote the class of functions ¢ which are continuous and convex
on R, twice differentiable on R’ , and such that either ¢ is affine or ¢” is
strictly positive and 1/¢” is concave.

It is shown in [25] (see also [26]) that there is a tight connection between
the convexity of Hy and the tensorization property. Also, ¢ € @ implies
the convexity of H,, see [25]. However this does not straightforwardly lead

12



to Jensen’s property when the distribution g in (3) is not discrete. (See
Appendix A for an account of the consequences of the convexity of ¢-entropy).

The easiest way to establish that for some function ¢ the functional Hy
satisfies the Jensen-like property is by following the lines of Ledoux’s proof of
the tensorization property for the “usual” entropy (which corresponds to the
case ¢ (x) = zlog (z)) and mimic the duality argument used in one dimension
to prove the usual Jensen’s inequality, that is, to express Hy as a supremum
of affine functions.

Provided that ¢ € ®, our next purpose is to establish a duality formula
for ¢-entropy of the form

Hy (Z) = ;EI;E (1 (T) Z + 2 (T)]

for convenient functions ¢ and ¥ on R, and a suitable class of nonnegative
variables 7. Such a formula obviously implies the convexity of H, but also
Jensen’s property and therefore the tensorization property for Hy. Indeed,
considering again Z as a function of Y7 = X; and Y5, = (X4,...Y,) and
assuming that a duality formula of the above form holds, we have

H, (/g(yl,lé)dul(yl))

= s [ [T ) [ ot wdiato) + (006D diate

TeT

(by Fubini)
=1 ( [Tt ) + (T @) duz(yz)) dys (1)

TeT

< /(SHP/[wl(T(yz))g(yl,w)+1/J2(T(y2))] du2(yz)) dpa (y1)

TeT

= [ (o, Y0 dis).
Lemma 1 Let ¢ € ® and Z € LI . If ¢ (Z) is integrable, then

Hy(Z)= sw {B[# 1)~ ®1)(Z-1)+s@)]-s®I)}.

TeLf, T#0

Remark 2 This duality formula is almost identical to Proposition 4 in [11].
However the proofs have different flavor. The proof given here is elementary.

13



Proof. The case when ¢ is affine is trivial: Hj, equals zero, and so does the
expression defined by the duality formula.

Note that the expression within the brackets on the right-hand side equals
Hy(Z) for T = Z, so the proof of Lemma 1 amounts to check that

Hy(2) > E[(cﬁ’ (T) = ¢ (E[T])) (Z=T)+(T) | — 6 (E[T]).

under the assumption that ¢(Z) is integrable and T € L .
Assume first that Z and 7" are bounded and bounded away from 0. For
any A € [0,1], we set T\ = (1 — A) Z + AT and

f) =E[(¢'(T)) = ¢ (E[TA]) (Z = TA)] + Hy (T3) -

Our aim is to show that f if non-increasing on [0, 1]. Noticing that Z —T) =
A (Z — T) and using our boundedness assumptions to differentiate under the
expectation, we have

F'O) = AE[Z-177°¢ (D)] - (E[Z-T))°¢ (E[T])]
+E[(¢' (1)) — ¢ (E[T)]) (Z — T)]
+E[¢ (D) (T-2) - ¢ (ET)ET - 2] ,
that is,

F)==XAE[Z-T)¢ (1)) - (E[Z-T)*¢ (E[D)] -

Now, by the Cauchy-Schwarz inequality,

(Ew—ﬂf::(E<z—n ¢wnr7§@5)
1 2 1
< B || Bl -0 @]

Using the concavity of 1/¢”, Jensen’s inequality, implies that

Eb&ﬁﬂg¢wﬁmn

which leads to

, 1
ElZ-1T)"< FE&m)

14

E[(Z-T)¢ (I)]



which is equivalent to f'(A) < 0 and therefore f (1) < f(0) = Hy(Z). This
means that for any T, E[(¢' (T') — ¢' (E[T])) (Z — T)]|+ Hy (T) < Hy (Z).

In the general case we consider the sequences Z,, = (ZV1/n) A n and
Ty = (T'V 1/k) Ak and our purpose is to take the limit, as k, n — oo, in the
inequality

Hy(Zy) 2 E[(¢" (Tk) — ¢' (E[Th])) (Zn = Ti) + ¢ (Ti)] — ¢ (E [Tx])
which we can also write as
EW (Za, i)l 2 —=¢' (E[T]) E[Z, — Ti] — ¢ (E[Ti]) + ¢ (E[Z,]),  (4)
where 1 (z,1) = ¢ (2) — ¢ (t) — (2 — t) ' (¢). Since we have to show that
El(Z,T)]>—-¢'(E[T)E[Z-T]-¢(E[T]) + ¢ (E[Z]) (5)

with ¢ > 0, we can always assume [¢) (Z, T')] to be integrable (since otherwise
(5) is trivially satisfied). Taking the limit when n and & go to infinity on the
right-hand side of (4) is easy while the treatment of the left hand side requires
some care. Note that 1 (z,t), as a function of ¢, decreases on (0,z) and
increases on (z, +00). Similarly, as a function of z, ¥ (z,t) decreases on (0, t)
and increases on (t,+o0c). Hence, for every t, ¥ (Z,,t) < ¥ (1,t) + ¥ (Z,1)
while for every z , ¥ (2,T;) < ¥ (2,1) + ¢ (2,T). Hence, given k

w (Zn,Tk) < w(laTk) +w(Z,Tk) )

as ¥((zV 1/n) An,Ty) — ¥(z,T}) for every z, we can apply the dominated
convergence theorem to conclude that E [¢ (Z,, Ty)] converges to E [¢ (Z, T})]
as n goes to infinity. Hence we have the following inequality:

EW(Z,Tk)] =2 =¢ (E[T]) E[Z = Ti] - ¢ (E[Tk]) + ¢ (E[Z]) . (6)

Now we also have ¢ (Z,T) < ¢ (Z,1) + ¥ (Z,T) and we can apply the
dominated convergence theorem again to ensure that [ [¢) (Z, T})] converges
to E[¢ (Z,T)] as k goes to infinity. Taking the limit as k£ goes to infinity in
(6) implies that (5) holds for every T, Z € L] such that ¢ (Z) is integrable
and E[T] > 0. If Z # 0 a.s., () is achieved for "= Z while if Z =0 a.s., it
is achieved for 7" =1 and the proof of the Lemma is now complete in its full
generality. O

15



Remark 3 Note that since the supremum in the duality formula Lemma 1
is achieved for T = Z (or T' =1 if Z = 0), the duality formula remains true
if the supremum is restricted to the class 7, of variables T such that ¢ (T)
is integrable. Hence the following alternative formula also holds

Hy(7) = sup {E (6 (T) = ¢"(E[T]) (Z =T)+ Hy (T)}- (7)

Remark 4 The duality formula of Lemma 1 takes the following (known)
form for the ”usual” entropy (which corresponds to ¢ (z) = zlog (z))

Ent (2) = sup {E [(log (T) ~ log (B[T)) ]}

where the supremum is extended to the set of non-negative and integrable
random variables T' with E [T] > 0. Another case of interest is ¢ (z) = 2P,
where p € (1,2]. In this case, one has, by (7),

Hy (2) = sup {pE [Z ("™ = BIT])")] = (0 = 1) H, ()},
where the supremum is extended to the set of non-negative variables in L,.

Remark 5 For the sake of simplicity we have focused on non-negative vari-
ables and convex functions ¢ on R,. This restriction can be avoided and
one may consider the case where ¢ is a convex function on R and define the
¢-entropy of a real valued integrable random variable Z by the same formula
as in the non-negative case. Assuming this time that ¢ is differentiable on
R and twice differentiable on R\ {0}, the proof of the duality formula above
can be easily adapted to cover this case provided that 1/¢” can be extended
to a concave function on R. In particular, if ¢ (z) = |z|’, where p € (1,2],
one gets

Hy (Z) = sup {pE [Z (g - %pﬂ —(p—1) Hy (T)}

where the supremum is extended to L,. Note that for p = 2 this formula
reduces to the classical one for the variance

Var (Z) = sup {2Cov (Z,T) — Var (1)},
T
where the supremum is extended to the set of square integrable variables.
This means that the tensorization inequality for the ¢-entropy also holds for

convex functions ¢ on R under the condition that 1/¢” is the restriction to
R\ {0} of a concave function on R.

16



3.2 From ¢-entropies to ¢-Sobolev inequalities

Recall that our aim is to derive moment inequalities based on the tensoriza-
tion property of ¢-entropy for an adequate choice of the function ¢ (namely
a properly chosen power function).

As a training example, we show how to derive the Efron-Stein inequal-
ity cited above in Proposition 1 and a variant of it from the tensorization
inequality of the variance, that is, the ¢-entropy when ¢ is defined on the
whole real line as ¢ (x) = 2. Then

Var (Z) < E

=1

S E|(Zz-E[z]x9)| X@ﬂ
and since conditionally on X, Z] is an independent copy of Z, one has
. . 1 .
E|[(Z2-E[z|x9)" 1 x9] = JE[(Z-2)"| x¥)],

which leads to Proposition 1. A useful variant may be obtained by noticing
that E [Z | X?] is the best X ¥)-measurable approximation of Z in L, which
leads to

Var(2) < 3 E[(Z - Z)’] (8)

for any family of square integrable random variables Z;’s such that Z; is
X @_measurable.

Next we generalize these symmetrization and variational arguments. The
derivation of modified ¢-Sobolev inequalities will rely on the following prop-
erties of the elements of ®. The proofs of Proposition 2 and Lemma 2 are
given in Appendix A.

Proposition 2 If¢ € @, then both ¢' andx — (¢ () — ¢ (0)) /x are concave
functions on Ry \ {0}.

Lemma 2 Let ¢ be a continuous and convez function on Ry. Then, denoting
by ¢' the right derivative of ¢, for every Z € L, one has

Hy (Z2) =it E[¢(Z) — ¢ (u) = (Z —u)¢' (u)]. (9)

u>0
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Let Z' be an independent copy of Z. Then

Hy(7) < SEI(Z ~ 7) (6 (7) & (Z)] = B[(Z - 7, (¢ (2) ~ ¢ (2))]
(10)
If, moreover, ¢ : x — (¢ (x) — ¢ (0)) /x is concave on RY., then

Hy (2) < %IE (Z-2) (W (2) -y (2N =E[Z-2), % (2)-v(2))].
(11)

Note that by Proposition 2, we can apply (11) whenever ¢ € ®. In
particular, for our target example where ¢ () = P, with p € (1,2], (11)
improves on (10) within a factor p.

Modified ¢-Sobolev inequalities follow then from the tensorization in-
equality for ¢-entropy, the variational formula and the symmetrization in-
equality. The goal is to upper bound the ¢-entropy of a conveniently chosen
convex function f of the variable of interest Z. The results crucially depend
on the monotonicity of the transformation f.

Theorem 5 Let X4,..., X, be independent random wvariables and Z be an
(X1, ..., Xp)-measurable random variable taking its values in an interval Z.
Let V,VT and (Z;)i<n, be defined as in Section 2.1.

Let ¢ € ® and let f be a non-decreasing, non-negative and differentiable
convez function on . Let ¢ denote the function x — (¢ () — ¢ (0)) /x.

Hy (1 (2) SE[V* I (2)¥ (f(2))] i o f is conver.

On the other hand, if (Z;)i<n satisfy Z; < Z for all i < n, then
1

Hy (f(2)) <

< §]E (VI?(Z)¢” (f(Z))] if¢ o f is conver.

Proof. First fix x < y.
Assume first that g = ¢’ o f is convex. We first check that

o(f(y)—o(f (@)= (f(y) = f(2) ¢ (f(x))
(-2 )¢ (fv). (12)

1
<
-2

18



Indeed, setting

we have
W(t)=—g @) (fly)—f@).

But for every ¢t < y, the monotonicity and convexity assumptions on f and
g yield

0<g(t)<g'(y) and 0 f(y)—f()<(y—1)f (v),

hence
OB VEDFEOIAOE
Integrating this inequality with respect to ¢ on [z, y] leads to (12).
Under the assumption that 1 o f is convex,

0<fy)—f@)<(y—=)f(y)

and
0<Y(fy)—v(f@) <(y—2)f (' (f(y),
which leads to

@)~ F@) @ W) —v(f @) <@—9)* 2@V (F). (13)

Now the tensorization inequality combined with the variational inequality
(9) from Lemma 2 and (12) lead to

Hy(f(2) < 3 Y E[(Z - 2) 1*(2) 8" ( (2))

and therefore to the second inequality of the theorem.
The first inequality of the theorem follows in a similar way from inequality
(11) and from (13). O

The case when f is non-increasing is handled by the following theorem.
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Theorem 6 Let Xi,..., X, be independent random wvariables and Z be an
(X1, ..., Xp)-measurable random variable taking its values in some interval Z.
Let ¢ € @ and f be a non-negative, non-increasing and differentiable convex
function on I. Let 1) denote the function v — (¢ () — ¢ (0)) /x. For any

random variable Z < mini <<y, Z;,

Hy(f(2) < SB[V (7) 07 (£(2))] i of is cones
while if ¥ o f is conver, we have
Hy (f(2) <E V2 (2) v (£ (Z))]
and

H,(f (7)) <E [w’? )W (f(2) )] .

The proof of Theorem 6 parallels the proof of Theorem 5. It is included
in Appendix A for the sake of completeness.

Remark 6 As a first illustration, we may derive the modified logarithmic
Sobolev inequalities in [7] using Theorems 5 and 6. Indeed, letting f (z) =
exp (Az) and ¢ (z) = zlog(x) leads to

Hy (f(Z)) < NE [VTexp(A\Z)],
if A > 0, while if A <0, one has

Hy (f(Z)) < NVE [V~ exp (A\Z)] .

4 Generalized Efron-Stein inequalities

The purpose of this section is to prove the next three lemmas which relate
different moments of Z to V, VT, and V~. These lemmas are generalizations
of the Efron-Stein inequality.

Recall the definitions of (X3), Z, (Z;), (Z';),V*,V~,V and the constants
k and K, given in Section 2.1.
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Lemma 3 Let g denote a number larger than 2 and let o satisfy q/2 < a <
q— 1. Then

E [(Z - ]E[Z])i] <E [(Z — E[Z])i]q/a 4 M

E[(Z-E[Z) ] <E[Z-E[Z)] +a(g-a)E[V*(Z-E[2))* 7],
and

E[(Z-E[Z)' ]| <E[Z-E[Z)*]"" +a(g-a)E[V (Z-E[Z))*].

E[V(Z-E[Z)]],

Proof. Let ¢ and « be chosen in such a way that 1 < ¢/2 < a < g — 1.
Let ¢ (z) = z9/*. Applying Theorem 5 with f (z) = (z — E[Z])] leads to the
first two inequalities. Finally, we may apply the third inequality of Theorem
6 with f (z) = (z — E[Z])® to obtain the third inequality of the lemma. O

The next lemma is a variant of Lemma 3 that may be convenient when
dealing with positive random variables.

Lemma 4 Let q denote a number, ¢ > 2 and q/2 < a < ¢ — 1. If for all
1=1,...,n

0<Z, <7 a.s.,
then

E (27 < E[2°]° + q(qi;“)

E [VZ97?]
Proof. The lemma follows by choosing ¢ and « such that 1 < ¢/2 < a <
q — 1, taking ¢ (z) = 2%* and applying Theorem 5 with f (z) = 2. O

The third lemma will prove useful when dealing with lower tails.

Lemma 5 If the increments Z — Z; or Z — Z| are bounded by some positive
random variable M, then
@)

E[(Z-E[Z)']<E[(Z-E [Z])a]q/a+q(qT—

E[V(Z-E[Z]-M)""]

(14)
If the increments Z — Z| are bounded by some positive random variable M,
then

E[(Z-E2)!] <E[Z-E[2)]""+a(¢-a)E[V* (2 - E[2] - M)"

(15)
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Proof. If the increments Z — Z; or Z — Z] are upper bounded by some
positive random variable M, then we may also use the alternative bounds
for the lower deviations stated in Theorem 6 to derive both inequalities. [J

To obtain the main results of the paper, the inequalities of the lemmas
above may be used by induction on the order of the moment. The details
are worked out in the next section.

5 Proof of the main theorems

We are now prepared to prove Theorems 1, 2 and 3 and Corollaries 1, and 3.

To illustrate the method of proof on the simplest possible example, first
we present the proof of Theorem 1. This proof relies on a technical Lemma,
proved in Appendix B. Recall from Section 2.1 that K is defined as 1/(e—+/e).

Lemma 6 For all integers q > 4, the sequence

/2 (g-2)/2

g—1\"* ( 1 (qg—2 )
—> = - 1 — [
47t <Q) K g—1

is bounded by 1. Also, lim,_,o 2, = 1.

Proof. (OoF THEOREM 1.) To prove the first inequality, assume that
V* < c. Let m, be defined by

mg = |(Z - E[Z]),]], -
For ¢ > 3, we obtain from the second inequality of Lemma 3, with o = ¢—1,
mi<mi  +c(g—1) mgig. (16)
Our aim is to prove that
md < (Kqc)*? | forg>2. (17)

To this end, we proceed by induction. For ¢ = 2, note that by the Efron-
Stein inequality,
ms <E[V*t] <ec
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and therefore (17) holds for ¢ = 2.
Taking g = 3, since m; < my < /¢, we derive from (16) that

m3 < 3¢3/2,

This implies that (17) also holds for ¢ = 3.
Consider now ¢ > 4 and assume that

m; < v/ Kjc

for every j < ¢ — 1. Then, it follows from (16) and two applications of the
induction hypothesis that
K /2

q—1 q—2
mg < KQ/ch/Q\/q—l(\/q—1> + % cq/Q(q—l)(\/q—Z)
/2 (g—2)/2
ref(a—1\""  q—1[qg—2
= (e (( ) ()
(Kac) q Kq q

/2 (a-2)/2
a2 (4~ 1\ 1 (qg—2
= (Kqo) (T) (1+_K g—1 )

The first part of the theorem then follows from Lemma 6.
To prove the second part, note that if, in addition, V'~ < ¢, then applying
the first inequality to —Z, we obtain

1(Z -E[Z])-ll, < Kv/qe.

The statement follows by noting that

E[Z-E[Z]|1=E[Z-E[ZD}]+E[(Z -E[Z])1] < 2(Kqc)" .
O

The proof of Theorems 2 and 3, given together below, is very similar to
the proof of Theorem 1 above.

Proof. (OF THEOREMS 2 AND 3.) It suffices to prove the first inequality of
Theorem 2 and Theorem 3 since the second inequality of Theorem 2 follows
from the first by replacing Z by —Z.
We intend to prove by induction on k that for all integers k£ > 1, all
q€ (kk+1]
I(Z - B2, < Ve,
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where either ¢, = [|V]| o1 0r ¢g = 2|Vl 001 (1 = 1/9).
For k =1, it follows from Hdélder’s inequality, the Efron-Stein inequality
and its variant (8) that

I(Z =~ E(2)+ll, < V2TV < /260 [V 1vggo-
||(Z - E[Z])+||q < \/ ||V||1Vq/2 < 4/ Kq ||VHqu/?'

Assume the property holds for all integers smaller than some £ > 1, and
let us consider ¢ € (k, k + 1]. Holder’s inequality implies that for every non
negative random variable Y

and

E[Y (Z-EZ)5°] <Vl l(Z - E12]) ][0

hence, using the first and second inequalities of Lemma 3 with o = ¢ — 1, we
get

Iz -El2), ]2 < (2 -E[2D).]IL, +Je (2 - EL2).][2 .
Defining
Lg = ||(Z —-E [Z])+HZ (q’ﬁch)_q/2 )

it suffices to prove that z, < 1. With this notation the previous inequality
becomes

_ 1
xqqq/2cg/2ﬁg/2 S mg/—ql 1 (q _ 1)q/2 cg/_QIK:Z/_Zl + 5:E;—Q/qqq/2cg/2,{_,3/271’

from which we derive, since c,_1 < ¢; and k41 < Kq,
_ 1\ 1

zq < xg/_ql ! (1 — —) + —:v;_Q/q.

q 2K

Assuming, by induction, that z, <1 the previous inequality implies that
N 1

T, < |1—- gl

- ( q) - 2kq ¢

Since the function



is strictly concave on R, and positive at z = 0, f, (1) = 0 and f,(z,) > 0
imply that z, <1 as desired. Il

Proof. (OF THEOREM 4.) We use the notation mg = ||(Z — lEZ)qu. For
a > 0, the continuous function

z—e /24 iel/ﬁ -1
azx
decreases from +o0o to e='/2 — 1 < 0 on (0,+00). Define C, as the unique
zero of this function.
Since C; and C, are larger than 1/2, it follows from Hélder’s inequality,
the Efron-Stein inequality, and its variant (8) that for ¢ € [1, 2]

12 = E(2)-]l, < V2V, < /26 1V * vy
1Z = E(2)-ll, < \/IV g < /e 1V I vgro-

In the rest of the proof the two cases may be dealt with together. The
first case, belonging to the first assumption of Theorem 4, corresponds to
a = 1, while the second to a = 2. Thus, we define

and

2
_ ||V+||1vq/2VCZ||M2||q when ¢ =1
! ||V||1vq/2VQ||M||q when a = 2.

For ¢ > 2, either (15) or (14) with a = ¢ — 1, imply
—2
ml < mi_| +qF [v+ (Z -EBZ)_+ M)" } (18)

and
mg < mi_, + %IE [V (Z-EZ)_+ M)“] . (19)

We first deal with the case ¢ € [2,3). By the subadditivity of z — 2972
for ¢ € [2, 3], we have

(Z-EZ) + M) < M2+ (Z-E[Z)"2
Using Holder’s inequality we obtain from (18) and (19) that
mi < my +alIMIE [V

+a [V, mi

q/2 q/2
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and
q -2 q -
mi<mi |+ 2 MG V] + 3 IVllgs2myg ’.

Using the fact that m,—; < ,/c,—1 < /¢y, those two latter inequalities imply

q2—q/2
a

q _
mg < cg/z + c?/? 4 —cqgml 2
q a q

q
Let z, = ( T ) , then the preceding inequality translates into

v/ Cagcq
(! Q/2+ 1 ( o )_q+2+ /g
Yo = Caly aC, ad Yq

which in turn implies

1
xq<2—+

1-2/
<s5a tag Lre )

since ¢ > 2 and C, > 1.
The function

T — 1 1=2/9) _
gg: T 2Ca+a0a(+x ) T
is strictly concave on R, and positive at 0. Furthermore
(4+a)
1) = —1<0,
94 (1) 2aC,

since C, > (44 a) /2a. Hence g, can be nonnegative at point z, only if
x4, < 1 which settles the case g € [2, 3].

We now turn to the case ¢ > 3. We will prove by induction on k£ > 2,
that for all ¢ € [k, k+ 1), my; < 1/qCukqc,- By the convexity of x — 2972 we
have, for every 6 € (0, 1),

(Z-FEZ)_ M \??
— 5 7 (1- 0>ﬂ>

< ML (1-0) P (Z-E[Z)L°.

(Z-EZ)_+M)"" = (0

Using Holder’s inequality we obtain from (18) and (19) that

mg < mi_ + g0 P MLV, +a (1= 0) V|, me

q/2
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and

q,- -2 q —q+3 _
mg < mgy + 50 ENMNT NVl + 5 (1= 0) [V jg ml 2

a/2 " 9

Now assume by induction that m, ; < \/Ca (g — 1) cq—1. Since ¢4_1 < ¢y,
we have

1 1 _
mg < 03/2 (¢ — 1)q/2 C3/2 + aq—q+20—q+3qq/2cg/2 + aq (1-10) q+3 cqmg_Q.

Let z, = C,;q/ng (ch)_q/Q. Then it suffices to show that z, < 1 for all
q > 2. Observe that

1 q/2 1 —q+2
Tg < (1 — —) ta <9q+3 (\/C'aq) Ty (1—0)"e* x;Q/q) :

q

We choose # minimizing

9(0) =077 (VCug) " (1-0)T,

that is, § =1/ (\/Caq + 1). Since for this value of #

the bound on z, becomes

N 1 1 \"? VCag
<l1-= — (1 14 | —— 12/q_1>.
= ( Q) e ( " x/Caq> ( " (1+\/Caq> (@ )

Hence, using the elementary inequalities

1\"” 1/2 1 v 1/vCa
1—- <e" and 1+ ) <e e
< Q) ( VCag

1/VCa

we get

T, <e 7+

Since the function

1/vVCa /
foix— e 1?4 °c (1+ (TC\}C&'Q) (115172/(1 — 1)) -z
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is strictly concave on R, and positive at 0 and C|, is defined in such a way
that f, (1) =0, f, can be non-negative at z, only if z, < 1 which proves the
theorem by induction. O

Proof. (OF COROLLARY 1.) Applying Lemma 4 with o = ¢ — 1 leads to
q _
121G < 120G + SE V2]
But by assumption, we have V' < AZ, and therefore

qA -1
121l < 121lg- + 5 1215
2

q gA
< [1Z]l;_, 1+2”T”1
—

Since for any non-negative real number u, 1 + ug < (1 + u)? for u > 0,

A q
121l < W21 {1+ 57—
! - 2(121l,-

A

3

Thus, [|Z]|, < |Z]l, + (A/2) (¢ — 1) by induction, and (1) follows.
To prove (2), note first that by Theorem 3,

1(Z =EZ), |, < \/rallVlly2 < \/raAl Z]lgss -

Let s be the smallest integer such that ¢/2 < s. Then (1) yields

or, equivalently,
121l < 12l +

A(s—1 Aq
121 < Blz)+ 227D < iz 2

so that

q2A2

Z-Ef2),], < V&

\/ gAE [Z] +

IN

\/E[ qAE[Z]Jr%]
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and inequality (2) follows.
In order to prove the last inequality of Corollary 1, we first define C as
the unique positive root of the equation

671/2 4 Lefl—l—l/C —1=0.

2C

We derive from the upper bound V < AZ and the modified Efron-Stein
inequality (8) that

(E|Z-EZ|)*<E[(Z-EZ)’] < AEZ .
Since C' > 1, this proves the inequality for ¢ = 1 and ¢ = 2. For ¢ > 3, we

assume, by induction, that my < \/CkAE[Z],fork=q—2and k=q—1
and use V < AZ together with (14) with a = ¢ — 1. This gives

mg < mi_, + gA]E [Z (Z-E[2])_+ 1)"‘2] .

Recall Chebyshev’s negative association inequality which asserts that if f is
non-decreasing and g is non-increasing, then

E[fg] < E[f]E[g].

Since the function z — ((z — E[Z])_ + 1)(1_2 decreases, by Chebyshev’s neg-
ative association inequality, the previous inequality implies

q -2
mj < mi_, + S AE[Z]E [((z ~EZ)_+1)" ] .
Thus, this inequality becomes
q _
my < myy + HAB(Z] (1 +mqg)" ’
and therefore our induction assumption yields

CqAE [Z])?
20

my < (1 - é)m (CqAE [2])72+

q—2
1 2
+1=2 .
VCqAE [Z] QI

Now we use the fact that since Z is nonnegative, m; < EZ. Then we
may always assume that CgA < [EZ, since otherwise the last inequality of
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Corollary 1 is implied by this crude upper bound. Combining this inequality
with A > 1, leads to

1 1
—— <,
VCOGAE[Z] ~ Cq
so that plugging this in the inequality above and setting x, = m] (CQAEZ)_‘I/Q,
we derive that
1\N? 1 (/1 2\
<(1-- — | = 1—- .
xq‘( Q> +2C<0q+ Q)
Now we claim that
1 7\
4 /1 - —> < emHC 20
(Cq q (20)

Indeed, (20) may be checked numerically for ¢ = 3, while for ¢ > 4, combining

11
1-2/¢g<1-=—-—
q 2¢*

with In (1 +u) < u leads to

1 2\ ¢ 1(3 1 2)
ot f1-2 < 1410+ = (242
(Cq q) ] / ¢\2 ¢ C

< —1+1/C+g<z—3)

4 C

which, since C' < 8/7, implies (20). Hence

w1 N L ey L e
7= q 2C - 2C ’

which, by definition of C', means that x, < 1, completing the proof of the
third inequality. O

Proof. (OF COROLLARY 2.) This corollary follows by noting that if V™~ is
bounded by a nondecreasing function of Z. Then by negative association,

E[V-(Z-E[Z)"? <E[4(2)(Z - E[Z)"*] <E[4(2)]E [(Z - B[2))"?] .

30



Thus, writing H( 2 H
=((Z-E[Z])_

q Y

we have
ml <ml_ +E[g(Z)](q—1)mi_)

This recursion is identical to the one appearing in the proof of Theorem 1,
so the rest of the proof is identical to that of Theorem 1. [l

Proof. PROOF OF COROLLARY 3. Let ¢ be a number, ¢ > 2. Let 6 > 0.
Then

1(Z =ElZD+ll, < \/ralWZ],

(by Theorem 3)

< /wqllZl, W1,
(by Hoélder’s inequality)
< —||Z|| + ||W||

(forf > 0,smce Vab < (a® 4 b%)/2 for a,b > 0).

Now Z > 0 implies that ||(Z — E[Z])-||, < E[Z] and we have [[Z]|, <
E[Z] + (Z — E[Z])+]|,- Hence, for 0 <6 <1,

1 Kq
= 12973 20(1 — 0/2)

< (14 0)E[Z]+ ZJ( )IIWII

121l E[Z]+ 3 Wi,

concluding the proof of the first statement. To prove the second inequality,
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note that

1(Z =ElZD+ll, < /KW Z[,

(by Theorem 3)

< /wqlWl, 112,
(by Holder’s inequality)
< fmall Wil (25121 + s W1,
(by the first inequality with 6 = 1)
< y/2rq W, ELZ] + rq W],
as desired. 0

6 Sums of random variables

In this section we show how the results stated in Section 2 imply some clas-
sical moment inequalities for sums of independent random variables such
as the Khinchine-Kahane, Marcinkiewicz, and Rosenthal inequalities. In all
cases, the proof basically does not require any further work. Also, we obtain
explicit constants which only depend on q. These constants are not optimal,
though in some cases their dependence on ¢ is of the right order. For more
information on these and related inequalities we refer to the book of de la
Pefia and Giné [13].
The simplest example is the case of the Khinchine’s inequality:

Theorem 7 (KHINCHINE'S INEQUALITY.) Let aq,...,a, be non-negative
constants, and let X1, ..., X, be independent Rademacher variables (i.e., with
P{X;, = -1} =P{X, =1} =1/2). If Z =)"" | a;X; then for any integer
q22,

1(2)+ll; = 1(2)-1l, < vV2Kq

and

1Z]l, < 2"9y/2Kq
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where K =1/ (e — y/e) < 0.935

Proof. We may use Theorem 1. Since

= ZE [(aZ(XZ — X;))i | X,} = QZaf]laiXpo S QZGZZ 5
=1 =1 i=1

the result follows. O

Note also that using a symmetrization argument (see, e.g., [13, Lemma
1.2.6]), Khinchine’s inequality above implies Marcinkiewicz’ inequality: if
Xi,...,X, are independent centered random variables then for any ¢ > 2,

< 9l+1/q /2K q
q

>
i q/2

The next two results are Rosenthal-type inequalities for sums of indepen-
dent non-negative and centered random variables. The following inequality
is very similar to inequality (H,) in Giné, Latala, and Zinn [16] which fol-
lows from an improved Hoffmann-Jgrgensen inequality of Kwapien and Woy-
czynsky [24]. Note again that we obtain the result without further work.

Theorem 8 Define
7=3x.
i=1

where X; are independent and non-negative random variables. Then for all
integers ¢ > 1 and 6 € (0,1),

Y

IZ=ELZ)l, < /20 e

1(Z-E[Z])-l, < /KqZE[X?],

171, < 1+ 08121+ 3q (14 5)

E[Z] + kq Hmax
q 2

and

max X; H

1<i<n
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Proof. We may use Corollary 3 to get the first and the third inequalities,
just note that

V=Y X <WZ,
i=1
where
W = max X;.

1<i<n

In order to get the second inequality, just observe that
o<y E[x7],
i
and apply Theorem 1 to —Z. O
Next we use the previous result to derive a Rosenthal-type inequality
for sums of centered variables. In spite of the simplicity of the proof, the

dependence of the constants on ¢ matches the best known bounds. (See
Pinelis [35] who extends the theorem below for martingales.)

Theorem 9 Let X;, i =1,...,n be independent centered random variables.
Define

1<i<n

Z:zn:X,-, o’ =Y E[X7], Y =max|X,.
i=1 1

Then for any integer ¢ > 2 and 0 € (0,1),

1
||(Z)+||q <ov262+60)g+qry/1+ 0 ||Y||q .

Proof. We use Theorem 2. Note that

vi=Y X2+ Y E[XS]
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Thus,

1(Z)+ll, < /2kq[[V*],2 (by Theorem 2),
< \/2/1(] (ZE[XZ'IZ])—{— ZXZQ

< \/m\/ZE RARCRT) SR (R TIE

(by Theorem 8)

Kq 1
= \/2/£q\/(2 +6) ZZ:]E (X2 + > (1 + 5) ||Y2||q/2
1
< oV2k(2+0)g+ qry /1 + 7 1Y, -

q/2

7 Suprema of empirical processes

In this section we apply the results of Section 2 to derive moment bounds for
suprema of empirical processes. In particular, the main result of this section,
Theorem 12 below, may be regarded as an analogue of Talagrand’s inequality
[40] for moments. Indeed, Talagrand’s exponential inequality may be easily
deduced from Theorem 12 by bounding the moment generating function by
bounding all moments.

As a first illustration, we point out that the proof of Khinchine’s inequality
in the previous section extends, in a straightforward way, to an analogous
supremum:

Theorem 10 LetT C R™ be a set of vectorst = (ty,...,t,) andlet Xq,..., X,
be independent Rademacher variables. If Z = sup,.; Y », t:X; then for any
integer q > 2,

(Z = BlZ).], < veKasup | 2
i=1
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where K =1/ (e — y/e) < 0.935, and

1(Z-E[2])-]|, < \/201q5u713 > 12V 2y/Cigsup [t;].
te i—1 it

where C is defined as in Theorem 4.

Before stating the main result of the section, we mention the following
consequence of Corollary 3.

Theorem 11 Let F be a countable class of non-negative functions defined
on some measurable set X. Let X1,...,X, denote a collection of X -valued
independent random variables. Let Z = sup;cx»; f(Xi) and

eV S

Then, for all ¢ > 2 and 0 € (0,2),
K 1
121, < 1+ OBLZ]+ a (14 5 ) 1M,

Next we introduce the relevant quantities for the statement and proof of
our main theorem about moments of centered empirical processes.

Let F denote a countable class of measurable functions from X — R. Let
Xy,..., X, denote independent X-valued random variables such that for all
feFandi=1,...,n, Ef(X;) =0. Let

n

Z = sup

f(X)]|-

The fluctuations of an empirical process are known to be characterized by
two quantities that coincide when the process is indexed by a singleton. The
strong variance .2 is defined as

Y2 —FE

sup Z f2(Xi)] :
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while the weak variance o? is defined by

Z f2(Xz')] -

A third quantity appearing in the moment and and tail bounds is

o> =supE
i)

M = sup [ f(X;)].
i,f
Before stating the main theorem, we first establish a connection between the
weak and the strong variances of an empirical process:

Lemma 7
3% <o” + 32E [M?E [Z] + 8E [M?]

If the functions in F are uniformly bounded, then ¥ may be upper bounded
by a quantity that depends on ¢ and E[Z] thanks to the contraction principle
(see Massart [30]). Giné, Latala, and Zinn [16] combine the contraction prin-
ciple with a Hoffmann-Jgrgensen-type inequality. To follow their reasoning,
we need the following lemma.

Lemma 8 Lete,..., €, denote independent Rademacher variables. Let A >

4 and define to = \/NE [M?]. Then

E {sup
f

Z % (Xi) Loup, | £(X0)[>t0

2

]‘ 2
| < o

The proof of this lemma, is postponed to Appendix C.

Proof. (OF LEMMA 7.) Let €,...,¢, denote independent of Rademacher
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random variables, and let t) = \/AE [M?]. Then

22 < E[sgplg:fQ(Xi)—E[fQ(Xi)H}+SI;PE[Z:J‘2(X¢)]

VAN

o’ +2E sup‘z eifz(Xi)‘}
L5 5
(by the symmetrization inequalities [29, Lemma 6.3])

0’ +2E S‘}{P‘Z €if*(Xi) Loup, f(Xi)5t0|]

IN

+2E [sl}P|Z eifz (Xi)I]‘SUPf [f(X3)|>to ‘]

IN

02 + 4tOIE |:Sl}p|z ezf(Xz) ‘:| + 2E [Sl}p‘z 6ifQ(*Xvi)ﬂsupf \f(Xi)\>to|

(the contraction principle for Rademacher averages [29, Lemma 6.5]
since u — u?/(2ty) is contracting on [—ty, t])
2
2 2
o” + 4t {sup 6 f(X:) ] +———E[M7]
P26l O+

IN

(by Lemma 8)
2

< o*+8VAE[MY||Z]), + mﬂa [M?]

which, by taking A = 16, completes the proof. O

The next theorem offers two upper bounds for the moments of suprema
of centered empirical processes. The first inequality improves inequality (3)
of Pinelis [35]. The second inequality is a version of Proposition 3.1 of Giné,
Latala, and Zinn [16]. It follows from the first combined with Lemma 8.

Theorem 12 Let F denote a countable class of measurable functions from
X — R. Let Xq,...,X, denote independent X -valued random variables such
that for all f € F andi=1,...,n, Ef(X;) =0. Let

n

> (X))

i=1

Z = sup
feF
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Then for all ¢ > 2,

12 = B(2))., < v/20a (S +0) + 260 (1M1, + sup [IF(X0)l,)
i,fEF

and furthermore

1Z1|, < 2EZ + 20+/2kq + 20kq || M|, + 4/Kq || M]], .

Proof. The proof uses Theorem 2 which states that

1(Z = E[Z])+ll, < /26 [[VF 2 -

We may bound VT as follows:

Vvt <

IN

<

Thus, by Minkowski’s inequality and the Cauchy-Schwarz inequality,

VIV g2

supzlE — f(X))* | X7

fE]-"

n

supz (]E [f(XZ)Q] + f(XZ)Q)

fer i
sup IE + sup f

< supzlE[f

IN

= o+ ||sup sup

< o+ X+

JeF aillall,<17°, 25

( sup Y oif(X;)—E

fE€F aellal|,<1 7,

2]+

supi

q/2

q
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The last summand may be upper bounded again by Theorem 2. Indeed, the
corresponding V' is not more than

maxsup f2(X;) + maxsup E [f2(X;)] ,
v feF b feF

and thus

This completes the proof of the first inequality of the theorem. The second
inequality follows because by non-negativity of Z, [[(Z — E[Z])_|, < EZ
and therefore || Z]|, < EZ +||(Z — E[Z]) ||, and since by the first inequality,
combined with Lemma 7, we have

n

sup Yo f(Xi)] >+

feF eliall,<1 4

sup i f(Xi) — E
<f67,04=||04||251 Zzzl

q

mz(nan + maxsup IIf(Xz-)II2> .
v feF

Iz~ E(2):l, < V(o +/32VEDLPIE[Z] + VBEDI] +0)
+2e (1M1, + sup 1 (X))

< E[Z]+ 20\/ﬁ(; + 16K/ E [M2] + 1/16KqgE [M?]
+2q (1Ml + sup (X))

(using the inequality vab < a + b/4) .

Using [|M]|, < [[M]|, and sup; e || f(Xi)ll, < [|M]],, we obtain the desired
result. g

8 Conditional Rademacher averages

Let F be a countable class of measurable real-valued functions. The condi-
tional Rademacher average is defined by

Y af(Xi)

i

Z = ]E[sup
feF

| X7]

40



where the ¢; are i.i.d. Rademacher random variables. Conditional Rademacher
averages play a distinguished role in probability in Banach spaces and in sta-

tistical learning theory (see, e.g., Koltchinskii [22], Koltchinskii and Panchenko
[23], Bartlett, Boucheron, and Lugosi [1], Bartlett, Bousquet, and Mendelson

[2], Bartlett and Mendelson [3]). When the set of functions is bounded, Z

has been shown to satisfy a Bernstein-like inequality [7]. Here we provide

bounds on the growth of moments in the general case.

Theorem 13 Let Z denote a conditional Rademacher average and let M =
sup, ; f(X;). Then

1(Z = E(2))4l, < /25a||M ]|, ELZ] + rq | M],

(2~ Bi21)-1, < V2G| \Jal, B(Z + 24 o1, |

Proof. Define

and

> &f(X))
J#i

The monotonicity of conditional Rademacher averages with respect to the
sequence of summands is well-known, as it was at the core of the early con-
centration inequalities used in the theory of probability in Banach spaces (see
[29]). Thus, for all 4, Z — Z; > 0 and

Z(Z—Zi)SZ-

i

Z; = E[sup
feF

X7

Thus, we have
VLZM ,and Z—-Z; < M .

The result now follows by Corollary 3, noticing that M = W. [l

9 Moment inequalities for Rademacher chaos

Throughout this section, Xi, Xs,..., X, denote independent Rademacher
random variables. Let Z, 4 be the family of subsets of {1,...,n} of size d
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(d < n). Let T denote a set of vectors indexed by Z,, 4. T is assumed to be

a compact subset of R(3).
In this section we investigate suprema of Rademacher chaos indexed by

T of the form
Z (H Xi) lr

I€T, 4 Vi€l

For each 1 < k < d, let W}, be defined as

Z = sup
teT

Wy = sup sup
LT oM, a® eRm:||aM || <1,h<k

> (H Xj) ( > (’E[l ag,’f)) t{il,...,ik}w) ‘ :

JEL, q—r “JEJ 01 yeenybl {81 eyl JUTET, g

(Note that W, is just a constant, does not depend on the value of the X;’s.)
The main result of this section is the following.

Theorem 14 Let Z denote the supremum of a Rademacher chaos of order
d and let W1,... Wy be defined as above. Then for all reals g < 2,

1(Z-E[Z)+l, < i(‘lfﬁq)j/zE[W]‘]+(4K)(d_1)/2\/ﬁqd/2Wd
< 2(4%(1)”21’5 [W;] -

Before proving the theorem, we show how it can be used to obtain expo-
nential bounds for the upper tail probabilities. In the special case of d = 2
we recover an inequality proved by Talagrand [40].

Corollary 4 For allt > 0,

IP{Z > E[Z] +t} < 2exp<—1°i(3) AL (M%W)Q/j) .

Proof. By Theorem 14, for any g¢,

B((Z - B[Z).)"
14
. (zjzl(%q)jﬂla [Wj]> |

t

IP{ZEIE[Z]—H} <
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The right-hand side is at most 277 if for all j = 1,...,d, (4kq)?/?E [W};] <
t/(2d). Solving this for ¢ yields the desired tail bound. O

Proof. (oF THEOREM 14). The proof is based on a simple repeated appli-
cation of Theorem 2. First note that the case d = 1 follows from Theorem
10. Assume that d > 1. By Theorem 2,

(2 - BlZ))ll, < Vasg [VIF
Now straightforward calculation shows that

VV+ < VoW,

and therefore
12 —E(2)).)], < vV (E Wil + |(W; — E [W1D+Ilq) -

To bound the second term on the right-hand side, we use, once again, The-
orem 2. Denoting the random variable V* corresponding to W; by V*, we
see that V7 < 2W2, so we get

Wy —EWi]))l, < \/ﬁﬁ(E [Wa] + |(W> — E [W21)+|Iq> :

We repeat the same argument. For k = 1,...,d — 1, let V" denote the
variable V' corresponding to Wj. Then

Vb < 2sup sup
T aM),...a® eRrr:||a®|| <1,1<h<k

(2 (I fe)u)

i \JEL, g g€ Njed\{i i1yt i {1 yoons b JUTET,, g =1
_ 2

Thus, using Theorem 2 for each Wy, k£ < d — 1, we obtain the desired in-
equality. O
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Remark 7 Here we consider the special case d = 2. Let 7 denote a set
of symmetric matrices with zero diagonal entries. The set 7 defines a
Rademacher chaos of order 2 by

Z = 2sup

X Xitgis
o Z 74,5}

i#j

Let Y be defined as

n
Y =sup sup Z X Z a;t;
te€T ailall,<1%5 j#i

and let B denote the supremum of the Ly operator norms of matrices t € 7.
Theorem 14 implies the following moment bound for ¢ > 2:

I(Z —E[2])+], < 4/RIE[Y] +4V2VkK(B.

By Corollary 4, this moment bound implies the following exponential upper
tail bound for Z:

]P{Z > E[Z] +t} < 2exp (_log(2)64;€1§[Y]Q A 16\@3&3)

This is equivalent to Theorem 17 in [7] and matches the upper tail bound
stated in Theorem 1.2 in [40]. Note, however, that with the methods of
this paper we do not recover the corresponding lower tail inequality given by
Talagrand.

We finish this section by pointing out that a version of Bonami’s inequality

[5] for Rademacher chaos of order d may also be recovered using Theorem
14.

Corollary 5 Let Z be a supremum of Rademacher chaos of order d. Then

d+1
2, 1)

Note that Bonami’s inequality states [|Z]|, < (¢ — 1)%?||Z]|, so that the

bound obtained by Theorem 14 has an extra factor of the order of d%/? in the
constant. This loss in the constant seems to be an inevitable artifact of the

121l, <
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tensorization at the basis of our arguments. On the other hand, the proof
based on Theorem 2 is remarkably simple.

Sketch of proof. By Theorem 14, it suffices to check that for all 5,1 <
j<d, |
E[W;] <& Z], .

Letting Wy = Z, the property obviously holds for j = 0. Thus, it is enough
to prove that for any £ > 1,

E[Wi] < [Wlly < VA [Wiall, -

To this end, it suffices to notice that, on the one hand,
2
Wil

= E [sup sup
€T o),...,atk=1:||alr) ||2§1,h<k

= () (1)

TJ'€T, 4 (k1) jeJ jeJ

k—1
(s ([)rn)
h

il,---,ikl{il,---,ik_l}UJGIn,d =1

k-1
( Z (H ag:)>t{z‘1,...,ik_1}uJ'):|
h

D1 yeensbl {81 eyl —1 JUJ €Ly, g =1

(the cumbersome but pedestrian proof of this identity is omitted), and on
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the other hand,
2
[We-ll

= E [sup sup
teT a(l),...,a(k—l):”a(h) ||2§1,h,<lc

> (Ie)(1x)

JJ €Ly g (k—1) " IJEJ jeJ’'

k—1
( 2 (H az(:))t{il,...,z‘kl}w>
h

i1 yernsit i {81 eensif—1 JUTET, g “h=1

k—1
( Z (H az(:)>t{i1,...,ik1}ujl):| )
h=1

’il,...,ik:{il ,...,ik_1}UJ’ EIn,d

Noticing that the contraction principle for Rademacher sums (see Ledoux and
Talagrand [29, Theorem 4.4]) extends to Rademacher chaos in a straightfor-
ward way, and using the fact that |J N J'| < d, we get the desired result. [

10 Boolean polynomials

The suprema of Rademacher chaos discussed in the previous section may be
considered as special cases of suprema of U-processes. In this section we
consider another family of U-processes, defined by bounded-degree polyno-
mials of independent {0, 1}-valued random variables. An important special
case is the thoroughly studied problem of the number of occurrences of small
subgraphs in a random graph.

In this section X1, ..., X,, denote independent {0, 1}-valued random vari-
ables. Just like in the previous section, Z, 4 denotes the set of subsets of size d

of {1,...,n} and T denotes a compact set of non-negative vectors from R(3).
Note that in many applications of interest, for example in subgraph-counting
problems, 7 is reduced to a single vector.

The random variable Z is defined as

Z=sup ) (HX) tr.

€T rez, 4 \ier
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For the case d = 1, moment bounds for Z follow from Theorem 11. For
k=0,1,...,d —1, let M} be defined as

e 3 | I fu
IE€T, 4:JCI \jeI\J

Note that all M, are again suprema of non-negative boolean polynomials,
but the degree of M is k < d.

Lower tails for booleans polynomials are by now well-understood thanks
to the Janson-Suen inequalities [17, 38]. On the other hand, upper tails
for such simple polynomials are notoriously more difficult, see Janson and
Rucinski [20] for a survey. We obtain the following general result.

Theorem 15 Let Z and My, be defined as above. For all reals ¢ > 2,

1(Z -E[Z])+

Proof. The proof is based on a repeated application of Corollary 3, very
much in the spirit of the proof of Theorem 14. For each i € {1,...,n}, define

Zz' = Sup Z ir (H XJ) .
€T 1e1, gugl jer

The non-negativity assumption for the vectors t € T implies that Z; < Z.
Moreover

Z— Zi < Mg,

and

Y (Z2-2z)<dz.

i

Thus, V < dM,_1Z. Hence, by Corrolary 3,

1(Z —E[Z])+]l, < \/%qdllMd il E[Z] + rdg || My, -
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We may repeat the same reasoning to each My, k =d —1...,1, to obtain
nkq
[Mill, <2 E[M] + —= ([ Mgl

By induction on k, we get

k=d—1

1Myl < 2{ > e+ g [Mk]}

which completes the proof. ]

Remark 8 Just like in the case of Rademacher chaos, we may easily derive
an exponential upper tail bound. By a similar argument to Corollary 4, we
get

P{Zz]E[Z]+t}

log 2

2/J 1/
4
i s (4d\/1E[Z]]E[M ) : (4dlE [Mj])

Remark 9 If d = 1, Theorem 15 provides Bernstein-like bounds, and is, in
a sense, optimal. For higher order, naive applications of Theorem 15 may not
lead to optimal results. Moment growth may actually depend on the special
structure of 7. Consider the prototypical triangle counting problem (see
Janson, Luczak and Rucinski [18] for a general introduction to the subgraph
counting problem).

In the G(n,p) model, a random graph of n vertices is generated in the
following way: for each pair {u,v} of vertices, an edge is inserted between
u and v with probability p. Edge insertions are independent. Let X, ,
denote the Bernoulli random variable that is equal to 1 if and only if there
is an edge between u and v. Three vertices u,v and w form a triangle if
Xup = Xy = Xy, = 1. In the triangle counting problem, we are interested
in the number of triangles

<exp | -

Z = Z Xu,'uXv,wXu,w .

{u,v,w}€ly, 3
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Note that for this particular problem,

M1 = sup Z Xu,va,w .
{u,0}€Zn,2 wwég{u,v}

M, is thus the maximum of (}) (correlated) binomial random variables with
parameters n — 2 and p?. Applying Corollary 1 (with A = 2), we get for
g1,

My, <m A (E[Ml] +q-— 1) :
Simple computations reveal that
E [M)] < 2(logn + np?).

Applying Corollary 3, to Z, we finally get:

1(Z = E[Z])+]l, < V6rqE [M{] E[Z]
+q (VOREZ] +35(n A (E[Mi] +3(g — 1)),

which represents an improvement over what we would get from Theorem 15,
and provides exponential bounds with the same flavor as those announced
in [7]. However, the above inequality is still not optimal. In the following
discussion we focus on upper bounds on P{Z > 2E[Z]} when p > logn/n.

n’p? VE[Z]

The inequality above, taking ¢ = [5g5-| or ¢ = |3 \/EJ implies that for
sufficiently large n

P{Z > 2E[Z]} < exp (—mgén%’g v log 2V E[Z]) .

3144k 12\/k

Recent work by Kim and Vu [21] show that better, and in a sense opti-
mal, upper bounds can be obtained with some more work, see also Janson,
Oleszkiewicz, and Rucinski [19] for related recent results. Kim and Vu use
two ingredients in their analysis. In a first step, they tailor Bernstein’s in-
equality for adequately stopped martingales to the triangle counting prob-
lem. This is not enough since it provides bounds comparable to the above
inequality. In the martingale setting, this apparent methodological weakness
is due to the fact that the quadratic variation process (Z) associated with Z
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may suffer from giant jumps (larger than ©(n?p?)) with a probability that is
larger than exp(—©O(n?p?)). In the setting advocated here, huge jumps in the
quadratic variation process are reflected in huge values for M; (in fact, the
probability that M; > np is larger than the probability that a single binomial
random variable with parameters n and p? is larger np which is larger than
exp (—=O(np))). In order to get the right upper bound, Kim and Vu suggest
a partitioning device. An edge (u,v) is said to be good if it belongs to less
than np triangles. A triangle is good if its three edges are good. Let 79
and Z° denote the number of good and bad triangles. In order to bound the
probability that Z is larger than 2[E [7], it suffices to bound the probability
that Z9 > 3/2E [Z] and that Z° > [E[Z] /2. Convenient moment bounds for
Z9 can be obtained easily using the main theorems of this paper. Indeed
Z9 [np satisfies the conditions of Corollary 1 with A = 3. Hence,

127 — B2, ), < f[ 3B 77 + 3%]

This moment bound implies that

4 2,2
IP{Z-‘JE gE[Z]} < exp (—log—np ) .

3 144

We refer the reader to [21, Section 4.2] for a proof that P{Z° > E[Z] /2} is
upper bounded by exp(—0(n?p?)).

The message of this remark is that (infamous) upper tail bounds concern-
ing multi-linear boolean polynomials that can be obtained using Bernstein
inequalities for stopped martingales can be recovered using the moment in-
equalities stated in the present paper. However, to obtain optimal bounds,
subtle ad hoc reasoning still cannot be avoided.

Appendix A: modified ¢-Sobolev inequalities

Recall the notation used in Section 3. As pointed out in [25], provided
that ¢” is strictly positive, the condition 1/¢” concave is necessary for the
tensorization property to hold. Here we point out the stronger property
that the concavity of 1/¢” is a necessary condition for the ¢-entropy H,
to be convex on the set L (Q, A, P) of bounded and non-negative random
variables.
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Proposition 3 Let ¢ be a strictly convexr function on R, which is twice
differentiable on RY. . Let (2, A,P) be a rich enough probability space in the
sense that P maps A onto [0,1]. If Hy is conver on LE (2, A, P), then
¢ (x) > 0 for every x > 0 and 1/¢” is concave on R .

Proof. Let 6 € [0,1] and z,2',y,y" be positive real numbers. Under the
assumption on the probability space we can define a pair of random variables
(X,Y) to be (z,y) with probability # and (z',y") with probability (1 — 8).
Then the convexity of H; means that

Hy(AX+(1-NY)<AH,(X)+(1—=X)Hy,(Y)
for every X € (0,1). Defining, for every (u,v) € R% x R*
Fy(u,v) == Au+ (1 =XN)v)+Xp(u)+ (1 =)o (v),
the inequality is equivalent to
Fax(@(z,y)+ (1 —0)(z",y)) <OF\(z,y) + (1 —0) F\(z',y).

Hence, F) is convex on R} X R} . This implies, in particular, that the de-
terminant of the Hessian matrix of F) is non-negative at each point (z,y).
Thus, setting zy = Az + (1 — A) v,

[07 () = 20" (22)][0” (1) — (1 = 2) ¢ ()] 2 A (1 = N) [¢” ()]

which means that

¢ (2) @7 (y) 2 A¢” (y) @7 (22) + (1 = A) @7 () ¢7 (23) - (22)

If ¢” () = 0 for some point z, we see that either ¢” (y) = 0 for every y, which
is impossible because ¢ is assumed to be strictly convex, or there exists some
y such that ¢” (y) > 0 and then ¢” is identically equal to 0 on the nonempty
open interval with endpoints  and y which also leads to a contradiction with
the assumption that ¢ is strictly convex. Hence ¢” is strictly positive at each
point of R} and (22) leads to

LA L =Y
" A+ (1-Ny) ~ ¢ (z) ¢ (y)

which means that 1/¢” is concave. O
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Proof. (oF PROPOSITION 2) Without loss of generality we may assume
that ¢ (0) = 0. If ¢ is strictly convex,

1 1—A A
> + by concavity of 1/¢"
¢//((1 _ /\)U, + )\37) ¢”(U,) (ZS"(J?) ( / )
A
> 7@ (by positivity of ¢", i.e. strict convexity of @).

In any case, the concavity of 1/¢” implies that for every A € (0,1) and every
positive x and u,

AP” (1= A)u+ Az) < ¢” (),
which implies that for every positive ¢,
AP” (t+ Ax) < ¢” ().

Letting A tend to 1, we derive from the above inequality that ¢” is non-
increasing, that is, ¢’ is concave. Setting v (z) = ¢ (x) /z, one has

2P (z) = 2%¢” (z) — 22¢' () + 26 (z) = [ (2).

The convexity of ¢ and its continuity at 0 imply that z¢' (z) tends to 0 as =
goes to 0. Also, the concavity of ¢’ implies that

2’9" (z) < 22 (¢ (2) — ¢' (2/2)),

so 22¢” () tends to 0 as z — 0 and therefore f (r) — 0 as x — 0. Denoting
(abusively) by ¢ the right derivative of ¢” (which is well defined since 1/¢”
is concave) and by f' the right derivative of f, we have f'(z) = 22¢® (z).
Then f’(z) is non-positive because ¢” is non-increasing. Thus, f is non-
increasing. Since f tends to 0 at 0, this means that f is a non-positive
function and the same property holds for the function ”, which completes
the proof of the concavity of 1. O

Proof. (or LEMMA 2) Without loss of generality we assume that ¢ (0) = 0.
The convexity of ¢ implies that for every positive u,

—¢(E[Z]) < =¢ (u) - (E[Z] = u) ¢ (u) ,

and therefore
Hy(Z) <E[¢(Z2) = ¢ (u) = (Z —u) ¢ (u)].
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Since the latter inequality becomes an equality when u = m, the variational
formula (9) is proven. Since Z' is an independent copy of Z, we derive from
(9) that

Hy(Z) < E[6(2)-9(2)—(Z2—-2)¢'(Z)]

—E[(Z-2)¢ (2]

VANRIVAN

and by symmetry
2Hy(Z) < -E[(Z' - 2)¢' (2)] - E[(Z - Z) ¢' (Z')],
which leads to (10). To prove (11), we simply note that
%E (Z=2Z") (¢ (2) =4 (Z2")] - Hy (Z2) = —E[Z]E[¢ (2)] + ¢ (E[Z]).
But the concavity of ¢ implies that E [¢) (2)] < ¢ (E[Z]) = ¢ (E[Z]) /E[Z]

and we derive from the preceding identity that (11) holds. O

Proof. (oF THEOREM 6) Fix first ¥ < z < y. Under the assumption that
g = ¢' o f is convex,

(W)= (f (@)= (f () = f (@) ¢ (f () < 5 (y—2)" 2@ (f 7))

(23)

N —

Indeed, denoting by h the function
h(t)=¢(f () —¢(f@)—(fy)—F@)g(®),

we have

W (t)=—g' () (f (y) = f (1)
But for every t < y, the monotonicity and convexity assumptions on f and
g yield

0<—g' () <—¢g'(y) and 0<=(f(y)—f () <—-(y—0) (@),

hence

—h @) <(y=0)f g ©)-
Integrating this inequality with respect to ¢ on [z, y] leads to (23). Under the
assumption that 1 o f is convex, we notice that

0<-(fly)-fl@)<-(y—2)f©)
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and
0<-@W(fW)—v(f@)<--2) @Y (f®),

which implies

W= f@) W) -v(f @) < @—y)° 2w (F). (24)

The tensorization inequality combined with (9) and (23) leads to
(7)< 3 SB[z -2 17 (2) 0 (£ (7))]
i=1

and therefore to the first inequality of Theorem 6, while we derive from the
tensorization inequality (11) and (24) that

H,y (1 (2)) < z_j E|z-2z), 1 (2)v (£(2))]

which means that the second inequality of Theorem 6 indeed holds.

In order to prove the third inequality, we simply define f(ac) = f(-x)
and Z = —Z. Then fis nondecreasing and convex and we can use the first
inequality of Theorem 5 to bound Hy (f (Z)) = H, (f (Z)), which gives

n(7(7)) < Le[(2-2). 7 (2) v (7(2))]
< ilE[(Z—Z{)Qf’Z(Z)w’(f(Z))]

completing the proof of the result. Il

Appendix B: proof of Lemma 6

Proof. By Stirling’s formula,

(&

k
k! = <E> V2rke?Pr,

o4



where [ is positive and decreases to 0 as £ — oo. Using the above formula
with k =q¢— 2, k=q—1 and k = ¢ leads to

1/4 1/4
2. < ePi—Ba1=1/2 <_q - 1) / 4L papaam ((q - 1)2> /
q > .
q K a(q—2)

By the monotonicity of Stirling’s correction, we have 8, < 8,_1 < B,_2, and
the preceding inequality becomes

Our aim is to prove that z, < 1. Let

a, = e V2 (q— 1)1/4 g\ and
6_1 (q _ 1)1/2 (q _ 2)71/4 q_1/4
1—a, .

Uy, =
Then
1
Tq < ag+ il (1—aq)

and since u, — K as ¢ — 00, in order to show that z, < 1, it is enough
to prove that u, < ugq for every ¢ > 4. Let 6 = 1/q. Then u, < ugyq is
equivalent to g () > 0, where

g(0) = (1—20)* (1 e 21— 0)1/4) ve (19t (25)
—(1—6)"2 (1 -

Now, t — ¢72 ((1 - 2t)1/4> is easily seen to be increasing on
(0,1/2) (just notice that its power series expansion has nonnegative coeffi-
cients), so since § < 1/4, settingy = 16 (\/3/4 — 2_1/4), one has (1 — 26)"/* >
(1 —6)"/? — 492, Plugging this inequality in (25) yields

9O > (1-0)" (1= (1-6)"") =962 (1= (1-0)""")

and therefore using again that 6 < 1/4,

g(0) > (2)1/2 (1- (1 -e)") — e (1 e (Z)M) _

)



Finally, note that 1 — (1 — 02)1/4 > 6? /4 which implies

=3 (0) = - ())

and since one can check numerically that the right-hand side of this inequality
is positive (more precisely, it is larger than 0.041), we derive that the sequence
(uq) is increasing and is therefore smaller that its limit K and the result
follows. O

Appendix C: Proof of Lemma 8

Proof. The statement follows from a version of Hoffmann-Jgrgensen’s
inequality. In particular, we use inequality (1.2.5s) on page 10 in de la Pena
and Giné [13] with p = 1 and ¢ = 0. Then we obtain

E [Sl}p Z EifQ(Xi)lsupf |F(X3)>t0

(3

< (i Y
—\1-— (4P [supf 1> 6 fAH(X)| > to])1/2 .

The right-hand side may be bounded further by observing that, by Markov’s
inequality,

P [sup > €f*(Xi) Loup, 1(x0)15t0

i

sup
i)

> o] - P [sup X)) > to]
I

]E[MQ]_l
- N
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