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Core to the Centralization method [1] for the normalization of gene expression data is the
estimation of most consistent sample scaling factors based on possibly inconsistent pairwise
estimates. Here, the maximum likelihood approach that is employed in order to find the most
probable consistent scaling vector is described in detail.

1 Estimation of Most Consistent Sample Scaling Factors

Let 4,5 € A be two microarray measurements of any two samples with unknown scaling factors s;, s;.

Thus, the true relative scaling of the two samples is r; ; := j—J Let m,,; denote the background-corrected

measurement value of gene g in sample i. Now G(Z,j) C G(i) NG(j) is defined to be the set of genes that
are considered to be expressed and reliably measured (in the linear part of the dynamic range) in both
samples, as judged by the measurements. Formally, this may be defined by using a lower bound m,n
and an upper bound m,,,, on the expression levels, for example:

G(i,J) = {g S G(i) n G(J) | Mmin S m;z S Mmaz A Mmin S m;] S mmaa)} (1)

Let m; ; := |G(i,7)| be the number of these genes. The other genes are excluded, since ratios of values
that are dominated by background noise (as well as saturated intensities) are incorrectly biased towards
one. If a measurement for a gene g is available for only one of the samples, the gene is also excluded from
G(i,j)-

In order to estimate r; ;, the set of quotients of the background-corrected measurements,

QiJ = {qg qg = %79 € G(ZJJ) } ) (2)

My,
will be used. Let (qi,--.,qm, ;) be the ascendingly sorted list of these quotients. The idea is to regard
each of the ratios g, € (0;,; as an estimate of the pairwise relative bias r; ;; In general, any measure of
central tendency of the values in @); ;, including median, mean, trimmed mean and weighted mean, may
yield a sensible estimate 7; ; for r; ;. However, care must be taken whenever values are averaged: the
arithmetic mean should be computed in the space of log ratios in order to keep the symmetry of up- and
downregulation.

In the following it is assumed that reasonable estimates 7; ; of the true quotients r; ; are given for
all pairs 4,57 € A of microarrays. Now the task is to determine estimates §, of the array-dependent
multiplicative errors s, for all arrays a € A. With such values, the measurement values m, , can be made
mutually comparable between different arrays a by rescaling them accordingly via

Mga — SaMg.a- 3)

While this does not recover the true number of mRNA molecules for a gene in the sampled cells, it leads
to consistent multiples of this number. This enables comparisons of the expression of any fixed gene
between different arrays.



If the quotients (); ; were free of measurement errors and the assumptions of well-behavedness were
totally and exactly fullfilled, the estimated relative scalings #; ; would equal the true values r; ;. In
particular, they would be triangle-consistent, i.e. #; , = #; j#; . Then, the values s1,...,s, could be
determined by s; := ¢,; for all 1 <[ < n with any fixed ¢ € {1,...,n}. However, due to measurement
errors and because the assuption of well-behaved regulation is only roughly correct, usually the values
7;,; are inaccurate and do not satisfy the triangle condition. In consequence, the result of the above
computation depends on the ordering of the samples, which is unsatisfactory.

A solution that is independent of the ordering of the microarrays or other arbitrary circumstances
can be found through a maximum likelihood approach. According to this method, a set 8 of parameter
values is computed that maximizes the probability of the observed data under a given parametric model.
The maximum likelihood method may be formalized like this:

A

0 € arg mgme(data|0,model). 4)

In the case of centralization, the parameters are the scaling factors s; for the arrays and measures afj
of variances of the log ratios in @); ;. Thus, § = (s, X), where s := (s1,...,5,) and X := (Uz’,j)i,je{1,...,ni~-
Although the data are actually the measured expression levels, it will be more convenient to use the sets
Q;,; of ratios, which are directly derived from the primary data. Thus, the data will be represented by
Q = (Qi)ijeq1,... n}- Application of the maximum likelihood approach to the present situation therefore
yields the following estimation § of the true scaling factors:

§ € arg, max P(Q|s, £, model), (5)

where the model still remains to be specified. The model characterizes how the probability of observing
data depends on the parameter values. It thus consists of a parametric mathematical function.

In bioinformatics, the mathematical models used in probabilistic methods frequently form a compro-
mise between an accurate representaion of reality and what is mathematically and/or algorithmically
feasible. For example, most prominent sequence alignment methods assume that the character distribu-
tions at the different sequence positions are indepent, although in reality dependencies are known to exist.
However, this allows to sum positional scores, which represent logarithms of (products and quotients of)
probabilities. Similar compromises will be taken for centralization, as is detailed now.

First, the likelihood functions is assumed to be decomposable into n? (conditionally) independent
terms, one for each pairwise comparison of arrays:

P(Qls,®) = [ P(Qijlsirs5,04) (6)
i,j=1

This assumption of independence can be considered to be violated, because the %(n — n) essentially
different sets of quotients Q;,; (fi,j,0,;) are computed from only n microarrays, and the £ (n?—n) different
variances relate to only n independent multiplicative errors s;. On the other hand, the dependencies
among the values are symmetrical, and not systematically biased towards certain arrays or pairs of
arrays. Thus, while the optimal probability value will not be meaningful in itself, one can still expect to
obtain a close to optimal scaling s through maximizing the product probability. In any case, it simplifies

the coming calculations.
Second, the distribution of the log-ratios of each pairwise comparison is assumed to follow a normal
distribution, where the mean corresponds to the log of the pairwise scalings, log g—], and the variance
2

2

o; ; results from the amount of measurement error and biological change between the two measurements.
Thus,
S; 2
¢ ~ N (10%,0,) ™
S5
for ¢ € Q;,;, or more explicitly:
1 1 (logg—log 2\ *
P(q€Qi,j|si,s5,0i;) = ———exp|—=|—2L . 8
(g Qz,_1| i S35 z,]) Ui,j\/ﬂ p 2 ( oy ) (8)



This is a possible formalization of the essential properties of well-behaved gene regulation: changes of
expression are symmetric (with respect to up- and downregulation), and most of the genes are close to
unregulated. Of course, other distributions than the normal distribution can also deliver one or both
of these properties. But as was shown in the preceding section, there are theoretical arguments for the
normal distribution, and it also has the advantage that it makes the calculation of maximum likelihood
parameter values possible and easy, as will be shown during this section.

While Equation 8 assigns a probability to each ratio ¢ € ); ;, Equation 6 requires a single probability
for each entire set Q; ;. One possibility is to model the genes g € G(3, j) as being independently regulated:

P(Qijlsis5,005) = ] P(a€Qijlsisj,0u5) 9)

94E€Qi,;

However, it is known that dependencies between the expression levels of genes exist in reality, for example
caused by shared transcription factor binding sites in their promoters. It can even be hypothesized that in
a typical microarray measurement (with a large numbers of genes), virtually all independent information is
covered and that most genes, whether included on the array or not, are therefore redundant. Consequently,
here the approach is taken to give each pairwise comparison the same weight, independent of the sizes of
the sets @; ; (which, in typical application cases, are similar anyway), by computing an average single-gene
probability for each pair (3, j):

1
Q4,51

P(Qijlsi 85,0i5) = II P(a€Qijlsi,si,0i) (10)
9€Qi,;

Although the equation becomes more complex at this stage, the resulting algorithm will be simplified by
this operation, as is shown in the following calculations.
Insertion of Equations 10 and 8 into Equation 6 yields the final likelihood function:

si\ 2\ ] 1@t
& 1 1 (logg —log ’
P(Q|s,X) = H H WGXP 3 (Uij) (11)

ij=1 | q€Q; ,; O WJ

Parameter values § are sought that maximize this likelihood function. Since the logatithm is a strictly
monotonic increasing function, it is equivalent to search for parameters that maximize the log-likelihood,
which can be written like this:

log P(Q[s, ) (12)
log g — log %=

& 1 1{ o 2\ @t
= log H H 701’,,‘\/%(@ 2 <70i,j J)}

1,j=1 | 4€Q;,;

4,5=1 9€Qi,j
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In the following auxilliary calculations the rightmost sum of the latter latter formulation of the log-
likelihood is expressed in terms of the empirical mean

1
fuij=—=— Y loggq (13)
|Qi’j| 9€Qi ;



and the empirical variance

. 1 .
675 = > (logq — fui;)? (14)

Qudl Eo

of the set {logg¢|g € Qi ;} of log ratios. This simplification is possible thanks to the term 2] Q n introduced
by taking the geometric mean over the g € Q; ;.
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log g — log —’) (15)
Q5 2 ( 8
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Inserting the result into Equation 12 yields the final version of the log-likelihood function:

log P(Q]s,X) (16)
1< 1 PN
= log - — + (/:LiJ —log —) ‘|
le i,V 2T 2 i,jZ:1 01'2,1' 83

a]

n 1 1 g; s 1 & Hij — IOg
= 1 _— LS A
e Lol Sy (R leh)
Thus, optimal parameter values of the model are defined by:

s € arg,max[logP(Qs, Y] (17)
2 n 1
1 fii,j — log 3
. iz( )

n Ai,' _1 z_z 2 n
= argsmizn Z (%) Z -2 Z loga \/ﬂ
i, i,j

s
= i,j=1 ’J i,j=1

lv

1 1
= ar Smax lo -z
ramax | 3 ok D )

1,j=1

In order to slightly simplify the following calculations, the substitution variable ¢; := log §; is introduced.
This leads to the following objective function to be minimized:

3 (M) Ly % . 18)

O
i,j=1 %] i,5=1 7] ij=1

A minimum of the function in Equation 18 can be found by equating all partial derivatives with zero.
First, the derivatives with respect to the variables ¥ are calculated. For each oy, with k,1 € {1,...,n}



this yields the equation:

n N n ~9 n
! 4 fij — i i 1
0 L (;7) i 93 g (19)
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Using 61, > 0, this can be equivalently reformulated as:
0 = (fws—tr+t)+6%;,—0k, (20)
& oiy = Oyt (kg —tr+ 1)

At this place it is useful to go back to one original assumption of centralization: that the central tendency
of gene expression ratios between two microarrays represents a reasonable estimate of their pairwise
relative rescaling: fir; ~ log j—J This implies that the amount of inconsistency in the estimates of the
pairwise relative rescaling of the microarrays is moderate. With this assumption, it follows from Equation
20 that the empirical standard deviations are reasonable approximations of the true standard deviations,

U/%,l ~ 62,;; (21)

which may also be expected by intuition.
Second, the derivatives of the objective function Equation 18 with respect to the variables s are

calculated and equated to zero for each £k =1,...,n:
L0 = (i —ti )\ = 07
0 = — My = 9 1 22
6tk Z ( 0i,j5 ) + Z Z 08 0ij ( )
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A simultaneous solution of these n equations together with the %(n — n) non-redundant instances of

Equation 20 is difficult. Solving those equations for a,%il and substituting the result into Equation 22
introduces the variables ¢; into the denominators. Since the least common denominator contains the
product of all variables t; for [ = 1,...,n, it becomes difficult or even impossible to find a closed form
solution of the problem.
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Fortunately, the problem simplifies considerably when the approximation given by Equation 21 is
used. The resulting system of equations

ﬂkl 1 -1
Y = tr + — | &
52 § : 52 k § : (52 ) ! (23)

£k kil I#k kil I#k k,l

(again, for each k) is linear in ¢ and can thus easily be solved in O (n®) time by Gauss elimination.

However, this system of equations has no unique solution. The corresponding matrix has rank n —
1, since there is one degree of freedom left that relates the measurement values to mRNA molecule
numbers. In this equation, the array-dependent scaling factors s, can be multiplied by an arbitrary
positive constant, when the gene-dependent scaling factors d, are simultaneously divided by the same
value. Since there is no way to determine the gene-dependent factors from microarray measurement data
alone, the array-dependent scaling can only be determined modulo a common factor.

By simply adding any constraint on the absolute values of ¢ to any row of the matrix, the full rank
can be restored to the matrix and thereby a unique solution enforced.! Here, the constraint

Ztk = 0 (24)

is chosen, corresponding to the claim for unbiased (over the set of arrays) array-wise multiplicative errors
8q. This keeps the normalized expression levels as close to the raw intensities as possible. After solving
the equation system, the normalization factors §, are obtained by reversal of the substitution:

S0 = exp(ta)- (25)

The total runtime of both steps of centralization sums up to O (n2m + n3). In practice, the application
of a Java implementation to the data sets of this study takes a couple of seconds on a current workstation.
A simple software tool has been made available through the Internet?.
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2at http://cartan.gmd.de/~zien/centralization/



