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ABSTRACT
Motivation: A new method for finding subtle patterns
in sequences is introduced. It approximates the multiple
correlations among residuals with pair-wise correlations,
with the learning cost ������ where � is the number of
training sequences, each of length �. The method suits to
model splicing sites in human DNA, which are reported to
have higher-order dependencies.
Results: By computational experiments, the prediction
accuracy of our model was shown to surpass that of
previously reported Markov models for the prediction of
acceptor sites in human.
Availability: The C++ source code is available on request
from the authors.
Contact: m-arita@aist.go.jp

INTRODUCTION
The prediction of splicing sites poses a challenge of
machine learning from primary nucleotide sequences.
The prediction not only contributes to gaining biological
insight into splicing, but improves the accuracy of a
gene finder, which is a gateway for virtually any type of
sequence analysis.

Two types of splicing junctions are commonly called an
acceptor (3’ splice site) and a donor (5’ splice site). Donor
sites, with GT, correspond to the beginning of introns,
while acceptor sites are their terminals with AG (GT-AG
rule)�. The present knowledge on these sites in vertebrates
is the rough consensus patterns: 5’–AG�GTAAGT–3’ for
donors, and 5’–YYYYYYNCAG�–3’ for acceptors (Mount,
1982) �. Inspired by this apparent consensus, many
researchers attempted to predict splicing sites using
weight matrices (Staden, 1986; Shapiro & Senapathy,
1987), neural networks (Brunak et al., 1991), and Markov
models (Zhang & Marr, 1993; Salzberg, 1997).

It is noteworthy that the linear-chain first-order Markov
model shows a high prediction accuracy (Salzberg, 1997).
C. Burge, who investigated the dependence structure

�We ignore the few exceptional splicing sites that do not obey this rule.
��, Y, and N denote the cleavage cite, a pyrimidine base T or C, and any of
four bases, respectively.

of splicing sites, made the following observations. (For
detail, readers are referred to his review (Burge, 1998).)

� In acceptor sites, residuals depend on pyrimidines at
adjacent positions.

� In donor sites, almost three fourth of all residual pairs
exhibit significant dependence.

� A training set of several hundreds is not enough
to estimate the transition parameters of higher-order
Markov models.

From these observations, it is concluded that a first-order
Markov model is not the best method, but rather a clever
compromise to model splicing sites. As will be shown,
both donors and acceptors have complex dependencies
among all residuals, therefore, models that can consider
distant correlations should be better for learning these
sites.

The dilemma we face is that, despite the significant
dependencies among most residual pairs in splicing sites,
we cannot introduce a complex model without a large,
high-quality data set. This impediment forced researchers
to estimate correlations among only limited residual pairs.

One solution, proposed by Burge, is the Maximal
Dependence Decomposition (MDD) method, which is
basically a decision tree bifurcating at the most influential
residuals. Since branching occurs only when statisti-
cally significant residuals are detected, this method can
suppress the increase of model parameters, compared
to higher-order Markov models, although it considers
higher-order dependencies. Indeed, the MDD model
showed an improvement over previous models, and its
accuracy had been unrivaled until the appearance of the
Bayes network model (Cai et al., 2000). The Bayes model
is obtained by (1) computing the correlations between
all residuals, (2) finding the maximum spanning tree by
linking positions of high correlations, and (3) computing
the conditional probability for each linked position. The
number of parameters is the same as in the linear-chain
Markov model.

In this paper, we propose the use of Bahadur expan-
sion (Bahadur, 1961), a representation of the probability
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distribution in multiple orders of correlations. When trun-
cated at the second order, it becomes the estimate of the
original probability distribution requiring no more com-
putation than first-order Markov models. Still, it is a more
complex model than the Markov models, because it pa-
rameterizes all pair-wise correlations.

In computational experiments, its prediction accuracy
was shown to surpass that of first-order Markov models,
including the Bayes network variant, for the prediction
of acceptor sites showing more complex correlations than
donor sites in our data set. The learning cost of our
method is ������, where � is the number of examples,
each of length �. Our model is trained much faster
than support vector machines (SVMs), which require a
quadratic programming problem of � � � coefficient
matrix.

SYSTEMS AND METHODS
Maximum Entropy Modeling
Let � � ���� � � � � ���� �� � ��� �� �� � � � � �� � ���
denote a sequence of length � over the alphabet �. In the
case of a DNA sequence, the cardinality of � is 4, where
its residuals A,C,G,T are coded into integers 0,1,2,3,
respectively. The purpose of probabilistic modeling is to
obtain the underlying probability distribution of sequences
����� from a finite number of examples ��� � � � ���
(Durbin et al., 1998). A simplistic model is to construct
the empirical distribution defined as

�����
���
�

�

�

��
���

	�� � ���� (1)

where 	 denotes the indicator function whose value is 1
if the equation holds and is 0 otherwise. Except when
the number of samples is close to infinity, however, ��
gives a very poor estimate of ��. Typically, �� gives a very
sparse distribution whose value is 0 for most sequences.
Therefore, �� is usually smoothed to obtain a better
estimate. In terms of information theory, this smoothing
amounts to maximizing the entropy of distribution.� To
obtain a good estimate, it is important to determine how far
it is maximized. Pushing it to its limit, for example, it ends
up with a truly randomized distribution with maximum
entropy. For this purpose, one must add constraints on ��
to prevent the entropy from growing too large. Typically,
these constraints are derived from training samples. This
probabilistic modeling technique is called “Maximum
Entropy Modeling” (MEM) (Cover & Thomas, 1991).

The moment constraints (i.e. mean and correlation) are
often used in MEM. Let 
�� and ������� denote the mean

�The entropy of distribution � is defined as�
�
�
���� ��� ����.

and correlation of � samples:
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where � and 
 are alphabet letters and � and � denote their
sequence positions. When the moments are constrained
to coincide with those of training samples, MEM is
formulated as follows:

Find � maximizing �
�

�
���� ��	 ����

such that �
�

	��� � ������ � 
��� and

�
�

	��� � ��	��� � 
����� � ��������

where
�

�
denotes the sum over every possi-

ble �.

It is known that the optimal � belongs to the parametric
family (Cover & Thomas, 1991)
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where � is a normalization constant determined so that�
�
���� � �. When parameters � and � are determined

so that the mean and correlation satisfy the constraints,
���� gives the maximum entropy distribution.

This parametric model of distribution is known as Boltz-
mann machines in the neural network community (Hertz
et al., 1991). However, the exact determination of � (in
other words, “training of the Boltzmann machine”) takes
exponential time with respect to the sequence length
� (Hertz et al., 1991). Therefore, approximation is
necessary to obtain a suboptimal but acceptable solution.

Bahadur Expansion
For approximated training of Boltzmann machines, we
adopt the Bahadur expansion of probability distribu-
tion (Bahadur, 1961; Humphreys & Titterington, 1999;
Losee, 1994). The aim of Bahadur expansion is to expand
the logarithm of the empirical distribution ����� into
multiple orders of correlations as in the Fourier transfor-
mation. When this expansion is truncated at the second
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order, a suboptimally trained Boltzmann machine is ob-
tained that gives good results in practice. In this section,
the expansion is briefly introduced. For theoretical details,
readers are referred to other literature (Humphreys &
Titterington, 1999).

For simplicity, let us assume that a sequence including
A,C,G,T is readily coded into a binary sequence. By
the sparse-coding scheme, A,C,G,T are coded as 1000,
0100, 0010, and 0001, respectively. Let �� � ��� ��
�� � �� � � � � �� denote this sequence of binary random
variables. Let 
� � ���� � ��, or the expected value of
�� � �. Let us define
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���
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��
	���� 
��

���	���

Consider a vector space of real-valued functions where the
inner product is defined as

��� �	
���
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�
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Then, the set of functions


 � ��� ��� ��� � � � � ��� ����� � � � � �������

� � � � ���� � � ����

forms orthonormal bases of this vector space, or Bahadur
space (Bahadur, 1961), where

�� � ��� � 
���
�

���� 
���

This tells that any function � can be uniquely represented
as

���� �
�
���

��� �	 ����� (4)

Let us choose ���� to be ��	��������������, or its
equivalent

��	 ����
���
� ��	 ������� 
 ����� (5)

Let � denote the set of all subsets ���� � � � � ��� �� � � �
�� of indices ��� � � � � ��. Note that the null set � is
included in �. For 	 � �, define

�
���
���
� ��� � � ���� �

where ����� � �. Note that each �
 denotes a function
in 
. Let �
 be the coefficient for �
 when � is expanded
using (4).
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Then, from (5) we have
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Each coefficient in (6) represents the followings:
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where ���� is defined in (5). Note that the coefficient ��
is the contribution of position � to the distribution, and ���
captures distant pairwise correlations between position �
and �.

These coefficients include the sum over every possible
�, but assuming that ����� � �, �� is efficiently computed
as

�� �
�

�

��
���

��������

������
���	 ������� ��	 ��������� (7)

The other coefficients can be computed similarly.
Let us define ��	 ������� as the approximated expression

of (6). In general, ���� is not a probability distribution,
that is,

�
�
������� �� �. When normalized, however, ����

belongs to the parametric family of Boltzmann machines
in (2).

In summary, ����, the truncated Bahadur expansion,
is an approximation of Boltzmann machine learning,
which would otherwise take exponential time for its exact
learning. Since it does not give the exact maximum
entropy solution, the remaining question is its accuracy,
and we will demonstrate its result in the following
experiments.

Computational Costs
For learning with the Bahadur expansion, three coeffi-
cients ��� ��� ��� in (6) are computed. The computational
cost is ������, where � and � are the sequence length
and the number of examples, respectively. Note that the
cost for computing a log-likelihood ��	 ���� for each
training example is �����. The costs for other methods
are as follows: The linear-chain Markov model takes

3



M.Arita et al.

Table 1. Three data sets of splicing sites

true donors false donors true acceptors false acceptors

Human (Genie96) (Reese et al., 1997) 1324 4922 1324 5553
Human (Asai et al., 1998) 2314 4628 2377 4754
C.elegans (Kent & Zahler, 2000) 74505 177061 74455 122154

Table 2. Learning results from 1324 positive and 4922 negative donors (Reese et al., 1997). The scores are averaged over 100 trials. The window size is 15
bases (including GT), beginning from the -5 position of the exon-intron boundary.

Bahadur Bayes network chain Markov
Training True test False test True test False test True test False test
FN (%) FN (%) FP (%) FN (%) FP (%) FN (%) FP (%)

0 0.0 31.89 0.0 33.76 0.0 29.4
1 0.8332 16.77 0.7491 19.8 0.7491 15.26

2.5 2.104 11.6 2.247 13.05 2.247 8.905
5 4.603 8.7 4.495 9.22 4.495 5.739
10 9.602 5.293 9.738 5.222 9.738 3.395
20 19.6 2.598 19.48 2.552 19.48 2.02
25 24.58 1.97 24.53 2.104 24.53 1.58
30 29.51 1.61 29.24 1.578 29.24 1.278

����� for learning and ���� for testing (i.e. computing
a log-likelihood). Also, the Bayes network model takes
������ for learning and ���� for testing.

Thus, the learning cost of our method is the same as
that for the Bayes network model, except for the quadratic
cost for testing. This quadratic cost is inevitable as long
as all pair-wise correlations are considered, meaning that
our computational cost is optimal. In an ordinary situation,
this quadratic term can be tolerated, since � is relatively
small (e.g. � � �� in our experiment). When the
number of examples � is very large, ���� term dominates
the computation. Note that other complicated learning
methods may impose a much larger cost. For example,
in SVM (Zien et al., 2000), a quadratic programming
problem of � � � coefficient matrix must be solved for
learning.

IMPLEMENTATION
Data set
The performance of the three models for donor and
acceptor sites was tested on three data sets: (Reese et al.,
1997), (Asai et al., 1998), and (Kent & Zahler, 2000),
obtained from the www (Table1).

For each set, data were randomly partitioned into
training data (90%) and test data (10%). Then, the log-
likelihood ratio ��	�������� ��	 ������� was computed

in the three different models: the truncated Bahadur ex-
pansion, the Bayes network, and the linear-chain Markov
model.

Results
Prediction accuracies of these methods are shown in tables
from 2 to 7, formatted in the same style as that used by
Cai et al (Cai et al., 2000). Tables show the percentage of
false-positives and false-negatives in the test sequences.
Test data were classified by their log-likelihood computed
in each model, according to the threshold determined by
the ratio of false-negatives in the training data.

In two data sets (Tables 2�5) the Bahadur model
showed better separation between positive and negative
acceptors than did the Bayes network and the linear-
chain Markov models. The results of the two models were
similar. For donors, however, the Bahadur model provided
no advantage.

To further investigate this result, the absolute parameter
values ������ were plotted for the data set by Asai et al.
(Figure 1). Here, ���� was derived from ��� in (6) as

���� � ���
�

���� 
��

�

���� 
���

The value ������ illustrates the contribution of 	��� �
��	��� � �� in the obtained probability distribution.
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Table 3. Learning results from 1324 positive and 5553 negative acceptors (Reese et al., 1997). The scores are averaged over 100 trials. The window size is 15
bases (including AG), beginning from the -10 position of the intron-exon boundary.

Bahadur Bayes network chain Markov
Training True test False test True test False test True test False test
FN (%) FN (%) FP (%) FN (%) FP (%) FN (%) FP (%)

0 0 36.74 0.0 47.99 0.0 48.19
1 0.7491 24.15 0.7491 35.63 0.7491 35.32

2.5 2.247 16.57 2.247 27.79 2.247 26.48
5 4.495 12.41 4.495 21.54 4.495 21.15
10 9.738 8.055 9.738 14.84 9.738 14.47
20 19.48 4.266 19.48 8.123 19.48 8.02
25 24.53 3.253 24.52 6.551 24.52 6.267
30 29.24 2.57 29.24 5.447 29.24 5.131

Table 4. Learning results from 2314 positive and 4754 negative donors (Asai et al., 1998). The scores are averaged over 100 trials. The window size is 15
bases (including GT), beginning from the -5 position of the exon-intron boundary.

Bahadur Bayes network chain Markov
Training True test False test True test False test True test False test
FN (%) FN (%) FP (%) FN (%) FP (%) FN (%) FP (%)

0 0.0 58.88 0.0 44.12 0.0 43.37
1 0.8332 39.91 0.8562 18.94 0.8562 17.69

2.5 2.104 28.39 2.141 11.35 2.141 9.66
5 4.603 20.09 4.709 7.154 4.709 5.35
10 9.602 12.51 9.846 3.643 9.846 3.353
20 19.6 6.463 19.69 1.62 19.69 1.616
25 24.58 5.016 24.56 1.198 24.56 1.126
30 29.51 4.064 29.45 0.8346 29.45 0.7982

In the figures, dark dots show high contribution to
the probability distribution. They indicate that distant
pairs have high contribution both in donor and accepter
sites, and donor sites have a stronger correlation in their
diagonal direction. This tendency contributed to the better
performance of the linear-chain Markov model for donors.
For acceptors, on the other hand, the Bahadur method
scored better because it arrested their distant correlations.

For the large data set (Tables 6�7), the Bahadur model
provided no advantage.

DISCUSSION AND CONCLUSION
Splicing Site Prediction
In our experiment on Human data, the false-positive rates
of acceptors were worse than those of donors. Although
this relative difference agreed with already reported result
(Cai et al., 2000), the error rates were higher than
the report, where most false-positive rates for the same

experiment were less than 1%.
Since the error rates were reduced for the large data set

on C. elegans, the high error rates are probably due to our
data selection. One clear reason is that, for both splicing
sites, only 15 base-pairs around the GT-AG signal were
input to the learning models to compare their performance.
This size may be too short especially for acceptors. It
is reported in (Reese et al., 1997) that acceptors were
better learned from 80 base-pairs using a neural network.
Such a long region is not applicable for the Bahadur
model, however, for its number of parameters to be learned
becomes

�
	�
�

�
. Determination of an appropriate window

size for learning is important for a practical application of
our model.

Expansion Strategy
In this paper, the Bahadur expansion was not fully
exercised because it can expand any real-valued function
� as in (5). The function � was defined so that its truncated
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Table 5. Learning results from 2139 positive and 4278 negative acceptors (Asai et al., 1998). The scores are averaged over 100 trials. The window size is 15
bases (including AG), beginning from the -10 position of the intron-exon boundary.

Bahadur Bayes network chain Markov
Training True test False test True test False test True test False test
FN (%) FN (%) FP (%) FN (%) FP (%) FN (%) FP (%)

0 0 55.71 0.0 60.94 0 61.62
1 0.8332 36.6 0.8332 39.83 0.8332 40.91

2.5 2.104 24.7 2.104 29.13 2.104 29.4
5 4.603 17.07 4.603 20.19 4.603 20.48
10 9.602 9.999 9.602 12.73 9.602 13.3
20 19.6 5.474 19.6 7.105 19.6 7.682
25 24.58 4.26 24.58 5.538 24.58 6.105
30 29.51 3.266 29.51 4.58 29.51 4.93
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Fig. 1. The absolute parameter value �� �������� which illustrates the contribution of ���� � ������ � �� ��� � � �	�
��� ��� . The

�� -axis correspond to the indices �� � and �� � as � � ��� � �� � �� � and � � ���� �� � �� �, respectively. The dotted line shows the
boundary between residuals, and the blank part (range �� � �� in donors and �� � �� in acceptors) corresponds to the fixed residuals GT
or AG.

form corresponds to the learning of Boltzmann machines,
but other choices are possible (Bahadur, 1961).

For classification problems, the following definition is
another possibility:

����
���
�

	
� (positive sample �)
�� (negative sample �)�

This definition results in a simpler expansion:

���� 
 ��������
�
���

���� �
�
���

������

where � and � denote positive and negative samples,
respectively. Its prediction rates were sometimes better

than the original expansion 6 (data not shown), but for
this formula, we could not assign any theoretical meaning,
such as the Boltzmann machines.

Theoretical Drawbacks
First, there is no performance guarantee on the approxi-
mation error of the truncated Bahadur expansion. Our ex-
periments showed that its result is better than first-order
Markov models in case of complex correlations, but this
empirical conclusion on its performance needs theoretical
confirmation. This is an important open problem.

The second theoretical problem concerns the validity of
computing the log-likelihood ratio of the positive and neg-
ative models using the truncated Bahadur expansion, be-
cause the truncated result is not a probability distribution.
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Table 6. Learning results from 74505 positive and 177061 negative donors (Kent & Zahler, 2000). The scores are averaged over 10 trials. The window size is
15 bases (including GT), beginning from the -5 position of the exon-intron boundary.

Bahadur Bayes network chain Markov
Training True test False test True test False test True test False test
FN (%) FN (%) FP (%) FN (%) FP (%) FN (%) FP (%)

0 0 86.49 0.0 93.87 0 94.05
1 0.7649 44.84 0.9834 49.5 0.9834 48.25

2.5 1.912 29.88 2.472 31.24 2.472 30.32
5 4.207 18.56 4.944 17.89 4.944 17.22
10 8.796 9.485 9.9 8.192 9.9 7.967
20 17.98 3.76 19.8 2.808 19.8 2.801
25 22.56 2.52 24.75 1.93 24.75 1.904
30 27.15 1.8 29.7 1.397 29.7 1.402

Table 7. Learning results from 74455 positive and 122154 negative acceptors (Kent & Zahler, 2000). The scores are averaged over 10 trials. The window size
is 15 bases (including AG), beginning from the -10 position of the intron-exon boundary.

Bahadur Bayes network chain Markov
Training True test False test True test False test True test False test
FN (%) FN (%) FP (%) FN (%) FP (%) FN (%) FP (%)

0 0 82.1 0.0 85.66 0 87.73
1 0.7649 17.41 0.9841 17.32 0.9841 16.73

2.5 1.912 10.38 2.473 10.21 2.473 10.25
5 4.207 6.585 4.947 6.307 4.947 6.554
10 8.796 3.776 9.894 3.68 9.894 3.844
20 17.98 1.928 19.8 1.927 19.8 2.005
25 22.56 1.557 24.75 1.505 24.75 1.564
30 27.15 1.279 29.7 1.226 29.7 1.274

The solution to these problems are prerequisites for
engineering a good function for expansion, as well as for
evaluating the classified results.

Conclusion
We introduced a new approximation method, using
Bahadur expansion, for representing multiple correlations
on sequences. The expansion can be applied to any
real-valued function; this paper showed one example
whose truncation corresponds to the approximated learn-
ing of the Boltzmann machine. Although its theoretical
background is incomplete, our method is sound; it mod-
els probability distribution among all residuals. In the
computational experiments on splicing sites, the Bahadur
model predicted acceptors better than did Markov models
because acceptors exhibited multiple correlations among
residuals in our data set.

In general, if the training data are known to have higher
order correlations, there is little reason to use Markov

models, for they presume correlations only between adja-
cent positions. If enough data are provided, therefore, our
model is more suitable than Markov models for biological
sequences with complex correlations. Our strategy is
similar to that of Agarwal and Bafna (Agarwal & Bafna,
1998) in this respect, but the implementation is as easy as
for Markov models.

Since our model does not directly suggest a correspond-
ing biological mechanism, locating major (or influential)
correlations out of learned results is the important next
step toward the elucidation of the hidden mechanism(s)
behind splicing. Application to subtle signals other than
splicing sites also adds another prospect to the Bahadur
method.
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Zien, A., Rätsch, G., Mika, S., Schölkopf, B., Lengauer, T. &
Müller, K.-R. (2000). Engineering Support Vector Machine Ker-

nels That Recognize Translation Initiation Sites. BioInformatics,
16, 799–807.

8


