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ABSTRACT
Motivation: Kernel methods such as support vector
machines require a kernel function between objects to
be defined a priori. Several works have been done to
derive kernels from probability distributions, e.g. the Fisher
kernel. However, a general methodology to design a kernel
is not fully developed.
Results: We propose a reasonable way of designing a
kernel when objects are generated from latent variable
models (e.g. HMM). First of all, a joint kernel is designed
for complete data which include both visible and hidden
variables. Then a marginalized kernel for visible data
is obtained by taking the expectation with respect to
hidden variables. We will show that the Fisher kernel
is a special case of marginalized kernels, which gives
another viewpoint to the Fisher kernel theory. Although
our approach can be applied to any object, we particularly
derive several marginalized kernels useful for biological
sequences (e.g. DNA and proteins). The effectiveness of
marginalized kernels is illustrated in the task of classifying
bacterial gyrase subunit B (gyrB) amino acid sequences.
Contact: koji.tsuda@aist.go.jp

INTRODUCTION
In kernel methods such as support vector ma-
chines (Müller et al., 2001), a kernel function between
two objects should be determined a priori. In supervised
learning algorithms, the objective function to be optimized
is clearly stated (e.g. the expected risk), so one should
determine the kernel to optimize this function or its
approximations (e.g. the leave-one-out error). However,
in unsupervised learning algorithms such as clustering,
the choice of kernel is quite subjective. The kernel is
determined to reflect the user’s notion of similarity, which
cannot be justified nor falsified completely. However, it is
not an easy task to describe your notion of similarity as a
positive semidefinite kernel.

DNA and proteins are symbol sequences which may
have different lengths. So they have similar characteristics
to other symbol sequences such as texts (Frakes & Baeza-
Yates, 1992). In order to measure similarity between
such sequences, it is common to extract count features,
which represent the number of each symbol contained
in a sequence. Then, the similarity is obtained as the

weighted dot product between these features, where a
smaller weight is assigned for the symbols which appear
frequently. Although this approach (i.e. vector space
representation (Frakes & Baeza-Yates, 1992)) achieved a
great success for texts, it is not appropriate for biological
sequences. The primal reason is that the context changes
frequently in one sequence. For example, a DNA sequence
has coding and noncoding regions, whose statistical
properties are quite different. The residual ’A’ in coding
and noncoding regions have different meanings. Although
it is difficult to determine the boundaries of the regions,
they should be counted separately. If a sequence of hidden
variables which describe the context are available, it
would be easier to design a kernel (Figure 1). However,
hidden variables are unknown in general, and have to be
estimated.

In this paper, we propose a new reasonable way to
design a kernel. First, a kernel between sequences is
defined depending both on visible and hidden variables.
Because this kernel requires both visible and hidden
variables for calculation, we call it a joint kernel. Since
hidden information is assumed to be available, the kernel
can be designed depending on the hidden context of
sequences. However, the problem is that such hidden
information is actually not available. To cope with this
problem, the posterior distribution of hidden variables
are estimated by means of a probabilistic model such as
HMM. Then, we obtain a marginalized kernel by taking
expectation of the joint kernel with respect to hidden
variables.

We will show that the Fisher kernel (Jaakkola & Haus-
sler, 1999) – which has been successfully applied to
many tasks e.g. protein classification (Jaakkola et al.,
2000; Karchin et al., 2002) and promoter region detec-
tion (Pavlidis et al., 2001) – is a special case of marginal-
ized kernels. This reveals the joint kernel implicitly as-
sumed in the Fisher kernel, which helps us to understand
the Fisher kernel more in detail. For biological sequences,
we propose useful kernels, called marginalized count ker-
nels (MCKs). In order to illustrate the effectiveness of our
kernels, we will perform experiments to classify bacte-
rial gyrB amino acid sequences (Kasai et al., 2000). As
a result, it is shown that MCKs compare favorably to the
Fisher kernel.
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Fig. 1. A DNA sequence with hidden context information. Sup-
pose the hidden variable (’h’ in the figure) indicates e.g. cod-
ing/noncoding regions. If hidden variables are known, it would be
much easier to design a kernel function between sequences.

METHODS
Marginalized Kernels
Let us describe a visible variable as ����� , where the
domain � is a finite set � . Our task is to define a kernel��� �	�
���� between two visible variables �	�
��� . Suppose we
have a hidden variable ����� , where � is a finite set.
By utilizing the hidden information in � , the joint kernel������� � � �� is designed between two combined variables����� �	������ � � ��� � � ��� �  . The marginalized kernel in �
is derived by taking the expectation with respect to hidden
variables:

��� �	�
� �  �! 
"$#&%

 
"('�#&%*)

� �,+ �- )
� � � + � �  �.����� � � � �/ (1)

The posterior distribution )
� �,+ �- is unknown in general,

and has to be estimated from the data e.g. by HMMs. The
calculation of

�
can be intractable when the cardinality

of � is too large. However, for useful stochastic models
such as HMMs, there are algorithms which enable effi-
cient computation as shown in later sections. Since the
class of positive semidefinite (Mercer) kernels are closed
under addition and multiplication (Haussler, 1999), the
marginalized kernel

�
is positive semidefinite as long as

the joint kernel is positive semidefinite. In convolution ker-
nels (Haussler, 1999), sub-kernels for the parts are aggre-
gated into a kernel for the whole set. This is constrastive
to our approach deriving the kernel for the part (i.e. visi-
ble variables) from the kernel for the whole set (i.e. visible
and hidden variables).

Marginalized Kernel from Gaussian Mixture
For intuitive understanding, we provide a simple example
of marginalized kernels. Here we derive a marginalized
kernel from Gaussian mixture with 0 -components. The
visible variable is a point in the 1 -dimensional space 23�465

, and the hidden variable is an index of component�7�98;:��</</</$�
0>= . The probabilistic model is written as

)
� 2*+ ?- � @3A"(BDC )

� �DFE � 2G+ �H��I " �KJ " �� where the � -th

� Here we determine L as a finite set for simplicity, but the results in this
paper can be easily extended to continuous domains.

Fig. 2. Contours of the marginalized kernel-based distance from a
specified point. The left figure shows sample points generated from
the Gaussian mixture model. Here the crossing point of dotted lines
indicates the central point from which the kernel-based distance
(4) is measured. The right figure shows the distance contours.
The contour shapes are adapted to the shape of cluster which the
central point belongs to. Compared with the Euclidean distance, this
distance emphasizes the cluster structure.

component is a Gaussian distribution with mean I " and
covariance matrix JNM C" :

E � 2*+ �H��I " �KJ "  �PORQTS �VU CW � 2 U I " VXHJ " � 2 U I " 
Y�Z + J[M C" + C]\ W /
(2)

Let us define the joint kernel as
�^�_��` � ` �� �baD� � �

�c�d � 2eX-J " 2f�g�� where
aD�ih  is the indicator function which

is 1 if the condition
h

is true and 0 otherwise. Note that
�j�

is a positive semidefinite kernel. The marginalized kernel
is obtained as

��� 2k�K2 �  �
A 
"�B�C )

� �l+ 2e )
� �,+ 2 � F2 X J " 2 � / (3)

We illustrate the shape of this kernel in Figure 2. Here, the
kernel is converted to the distance in the feature space

m>� 2k�K2 �  �!n ��� 2k�K2oHp ��� 2 � �K2 �  U Y ��� 2q�K2 � (/
(4)

Fixing 2 � at a point, the contours of distance
mr� 2k�K2 � 

are shown. When 2 � belongs to one cluster, the contour
shape is similar to the shape of the cluster. The shape
gradually changes when the point 2 � moves to one cluster
to the other. In comparison with the Euclidean distance,
this distance emphasizes the cluster structure. This kind
of kernel is considered to be useful in visualizing cluster
structure in a high dimensional space (Tipping, 1999).

Marginalized Count Kernel
Next we propose an important example of marginal-
ized kernels for biological sequences. Let 2 �
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� � C �</</</$�
� A �� � � � 8;:��</</</ ����� = denote a symbol se-
quence of length 0 . Assume that each sequence can have
a different length. One simple kernel for such sequences is
the count kernel:

��� 2k�K2 �  �
��� 
	
BDC 
 	

� 2o 
 	 � 2 � �� (5)

where 
 	 � 2o is the number of symbol
�

normalized by the
length:


 	 � 2o � :
0

A 
� B�C

aD� � � � � �/
The count kernel is often used in text processing liter-
atures (Frakes & Baeza-Yates, 1992), but it is not suit-
able for biological sequences because of frequent context
changes. We are going to extend the count kernel to in-
clude (hidden) context information.

Assume that there is a sequence of hidden variables � �� � C �</</</&��� A �� � � ��8;:��</</</_��� " = . Define the combined
sequence as`� � ��� C �</</</ � � A  � � 8&� C ��� C = �</</</ �R8&� A ��� A =_
where each

� � can have � � � ����� " symbols. The count
kernel for

`
can be defined as

�.�_��` � ` �  �
� � 
	KBDC

��� 
� BDC 
 	 �

��`  
 	 � ��` � ��

 	 � ��`  �b:

0
A 
� BDC

aD� � � � � ��� � ��� �/ (6)

When � is regarded as the context information, symbols
are counted separately in each context (Figure 3). For
example, if the sequences are DNA and the hidden
contexts are exon/intron, the frequencies of ’A’, ’C’, ’G’,
’T’ are counted and compared separately for exon/intron.

Setting (6) as a joint kernel, the marginalized count
kernel is defined as��� 2k�K2 �  �  

�
 
� ' )

� �*+ 2o )
� � � + 2 �  � � ��` � ` � �� (7)

where
@ � � @ � �"�� BDC������ @ � �"��-BDC . This kernel (7) is

rewritten as

� � 2k�K2 �  �
��� 
	
BDC

� � 
� B�C � 	��

� 2o � 	�� � 2 � ��
where the marginalized counts � 	�� � 2o are described as

� 	�� � 2e � :
0
 
� )

� �q+ 2 
A 
� BDC

aD� � � � � ��� � ��� 
� :
0

A 
� BDC

� � 
"��gBDC )

� � � + 2o a�� � � � � ��� � ��� �/

(T,1) = 0
(T,2) = 2

(G,1) = 1
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Fig. 3. Illustration of the marginalized count kernel (MCK1). Each
feature is obtained by counting the number of combined symbols,
and the joint kernel is defined as the dot product between these
features. Finally, MCK1 is obtained by marginalizing the joint
kernel.

Fortunately, the sum over all hidden variables � can be
replaced by the sum over each � � , which reduces the
computational cost.

When the probability distribution )
� 2o is represented

as HMM, the posterior probability )
� � � + 2o is computed

easily by the forward-backward algorithm (Durbin et al.,
1998). An HMM is described as

)
� 2*+ ?- �  

� E " �! " � � ��"
A#
� B W%$ "��'& � "��  "�� � �)( 1 " � � (8)

where the parameters ? � 8 $ �  �KE �K1 = are transition prob-
abilities, emission probabilities, initial state distribution
and terminal state distribution, respectively. The forward
and backward algorithms provide the following probabili-
ties, respectively:* 	 �)+  � )

� � C �</</</ �
� � ��� � � � ��, 	 �)+  � )
� � �.- C �</</</&�
� A + � � � � �/

Then the posterior probability is described as

)
� � � ��� + 2o �

* � �)+  , � �)+ 
)
� 2o

which is known as � � �/�  in HMM literatures (Rabiner,
1989).

Second-order Marginalized Count Kernel
When adjacent relations between symbols have essential
meanings, the count kernel is obviously not sufficient. In
such cases, it would be better to count the number of
combinations of two adjacent symbols (Figure 4). The dot
product of such counts is described as

��� 2k�K2 �  �
� � 
	
BDC

� � 
	 ' BDC 
 	!	
'

� 2e 
 	!	
' � 2 � �� (9)


 	0	 ' � 2  � :
0 U :

A M C 
� BDC

a�� � � � �  aD� � �.- C � � � �/
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We call it the second order count kernel. Incorporating
hidden variables to (9), one can easily extend the marginal-
ized count kernel to second order: Let us define� �	 � 	 '.� '  �3a�� � � � � ��� � ��� �
� � - C � � � ��� � - C ��� � �/
The joint kernel is described as

�.�_��` � ` �  �
��� 
	KBDC

� � 
� BDC

��� 
	 ' BDC

� � 
� ' BDC 
 	 � 	 '.� '

��`  
 	 � 	 ' ��' ��` � ��
(10)

where 
 	 � 	
' � ' ��`  � CA M C
@ A M C� BDC � �	 � 	
' � ' / The marginalized

kernel of (10) is described as

��� 2k�K2 �  �
��� 
	
B�C

� � 
� BDC

��� 
	
'dBDC

� � 
� ' B�C � 	 � 	 '.��' � 2e X � 	 � 	 '.��' � 2 � 

(11)
where� 	 � 	
' � ' � 2o � :

0 U :
 
� )

� �6+ 2o
A M C 
� BDC

� �	 � 	
' � '
� :
0 U :

A M C 
� B�C

� � 
"���BDC

� � 
"���� � BDC<) � � � ��� �.- C + 2o � �	 � 	 '.� ' /

We call it the second order marginalized count kernel. As
in the first order case, the posterior probability )

� � � ��� � p:;+ 2e is obtained from forward and backward algorithms
as

)
� � � ��� ��� �.- C ��� � + 2o � $

�)� '  � ' � ��� � * � �)+  , � ' �)+ p3:$
)
� 2o /

Note that this quantity is well known as � � �/� � � �� parameter
in Baum-Welch algorithm, which gives estimation of tran-
sition probabilities in HMMs. The second order marginal-
ized count kernel is particularly useful, because it can uti-
lize second order information as well as hidden context in-
formation. Higher order extension is straightforward, but
not written here for brevity.

Connections to the Fisher Kernel
In the following, we will show that the Fisher ker-
nels (Jaakkola & Haussler, 1999) derived from latent vari-
able models are described as marginalized kernels. This
section will give a new analysis to explain the nature of
the Fisher kernel.

Definition of the Fisher Kernel Assume a probabilistic
model )

� �f+ ?- is defined on � , where ? is a � -dimensional
parameter vector. Let �? denote parameter values which
are obtained by some learning algorithm (e.g. maximum
likelihood). Then the Fisher kernel (FK) (Jaakkola &
Haussler, 1999) between two objects is defined as

��� � �	�
� �  �
	D� �	� �?H X�� M C � �?- 	D� � � � �?H�� (12)
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Fig. 4. Illustration of the second-order marginalized count kernel
(MCK2). Each feature is obtained by counting the number of
combinations of two adjacent symbols. The joint kernel is defined
as the dot product between these features, and MCK2 is obtained by
marginalization.

where
	

is the Fisher score	�� �,��?� �������� C������ ) � � +��?-��</</</$� ������ ����� ) � � +��?-�� X �! #" ����� ) � �f+��?H��
and � is the Fisher information matrix:� � �?- �%$'&(	D� �	��?H 	D� �	��?H X*))) �?�+�  

� #-, ) � �f+ �?H 	c� �,� �?H 	D� �,� �?- X /
The Fisher kernel is a general method which can be
applied for any objects. However, the Fisher kernel
is particularly effective for biological sequences when
combined with HMMs (Jaakkola et al., 2000; Karchin
et al., 2002; Pavlidis et al., 2001).

The Fisher Kernel from Latent Variable Models When
a latent variable model )

� � + ?H � @ "$#&% )
� �,���,+ ?H is

adopted, the Fisher score is described as " �.��� ) � �f+ �?� �
@ "$#&%  " ) � �	���l+��?H

)
� � +��?-

�  
"$#&% )

� �,���,+ �?H
)
� � +��?-

 "
)
� �	���l+ �?H

)
� �,���,+��?H

�  
"$#&% )

� �l+ �	�/�?H  " ����� ) � �	���,+��?H�/
So, the Fisher kernel is described as a marginalized kernel
�0� � �,�
� �  �1 " ����� ) � � +��?- X�� � �?- M C  " �.��� ) � � � +��?H �  

"$#&%
 
" ' #&% )

� �l+ �	�/�?H ) � � � + � � ��?� �.� ��� � � � ��
(13)

where the joint kernel is described as
�^� ��� � � �  � " ����� ) � �	���l+ �?HVX � � �?� M C  " ����� ) � �D� ��� � + �?H�/ Thus the
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Fisher kernel is one special case in the class of marginal-
ized kernels. One characteristic aspect of the Fisher kernel
is that the joint kernel is determined by the probabilistic
model, while, in our approach, the joint kernel is designed
to fit users’ purposes. Since the joint kernel of the Fisher
kernel is not suitable for every purpose, you have to check
whether it fits your purpose or not. If not, the joint kernel
should be engineered.

The Fisher Kernel from HMM In this section, we derive
the Fisher kernel from HMM (8) and discuss its connec-
tion to marginalized count kernels. The joint distribution
of HMM is described as

)
� 2k� �*+ ?� � E " �� " � � ��"

A#
� B W $ "�� & � "��  "�� � �)( 1 " � /

As in the literature (Jaakkola et al., 2000), we take the
derivatives with respect to emission probabilities  only:

��  � 	 ����� ) � 2k� �*+ �?H � 0 
 	 � ��` � � 	 U 0
��� 
	
BDC 
 	 �

��` �� (14)

where � � 	 is the estimated emission probability and 
 	 � ��` 
is defined as (6). Note that the second term of (14) comes
from the constraint of emission probabilities

@ � �	
BDC  � 	 �
: . If we do not use the Fisher information matrix as in
(Jaakkola et al., 2000), the joint kernel is described as � ����� ) � 2k� �6+��?- X  � �.��� ) � 2 � � � � + �?H�/ (15)

This is rewritten as
� � 
	KBDC

��� 
� BDC

0 0 �� W� 	 � 
 	 � ��`  U��
 	 � ��` 
 � 
 	 � ��` �  U��
 	 � ��` � 
��
(16)

where
�
 	 � ��`  � � � 	 @ ���	
' BDC 
 	 ' � ��`  . This has a similar

form to the count kernel (6), however the count is
centralized and the dot product is taken with respect to the
weight � 	 � � AlA '����	�
 / The weight is dependent on the length
0 , so a proper normalization is needed for the Fisher
kernel. Since  � 	 represent the emission probability that
symbol

�
is produced from state

�
, the weight becomes

large when the symbol
�

is rarely produced from state
�
.

It makes sense, because the cooccurence of a rare symbol
is a strong clue of high similarity. However this weight is
still argueable, because a huge weight can appear when � 	 is very small.

DISCUSSION
In the previous section, we derived the Fisher kernel
only from emission probabilities. However, if you take
the derivatives of transition probabilities as well, you

obtain a different joint kernel from the one shown in
(16). How should we choose the subset of parameters to
take derivatives? More generally, you can derive a new
parameter as a function of a subset of original parameters.
How about taking the derivative with respect to the new
parameter?

As suggested in this example, one theoretical problem
about the Fisher kernel is that it depends not only on
the distribution itself, but also the parametrization which
a user has intentionally chosen. Consider two parametric
models:

)
� �,���,+ ?H��e?r� 4 � � � )

� �,���,+ I*�� I � 4 � � � � C�� � W /
Let us assume that a joint distribution )

� �,���D is repre-
sented by two different parametric models:

)
� �,���D � )

� �	���l+ �?H � ) � �	���l+ �I*�/
In general, the Fisher kernels derived from )

� � + �?H and

)
� � + �Iq are different although the underlying distribution

is the same � . Since there is no admitted way to choose
proper parametrization so far, it is basically determined by
trial and error.

In (13) we represented the Fisher kernel as a function
of the joint kernel and posterior probabilities of hidden
variables. While the joint kernel is not invariant to
parametrization, " ����� ) � �	���l+ �?H X � � �?� M C  " ����� ) � � � ��� � +��?H��  �� �.��� ) � �	���l+ �I* X � � �Iq M C  �� ����� ) � � � ��� � + �I6��
the posterior probabilities are invariant,

)
� �,+ �	��?H � ) � �,+ �,� �I*�/

Therefore choosing the parametrization amounts to
choosing the joint kernel. You may be able to derive the
joint kernel to fit your purpose by changing parametriza-
tion. However, in our opinion, this is an awkward and in-
direct way.

In the Fisher kernel scheme, you have to control
two things (i.e. joint kernel and posterior probability)
simultanously by the choice of a parametric model. In our
opinion, there is no need to control them in such an unified
manner, because this scheme is sometimes too restrictive.
For example, when you would like to incorporate the
second-order information into the Fisher kernel, you have
to use second-order HMMs (Durbin et al., 1998). Since the
number of parameters of the second-order HMM is much

� When there is one-to-one correspondence between two parameter spaces
around �� and �� , the Fisher kernel is invariant to parametrization because of
the Fisher information matrix (Jaakkola & Haussler, 1999). However it is not
the case in general.
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larger, it would be difficult to learn the parameters reliably
with a small sample set. This drawback is caused by the
fact that the joint kernel is tied to the probabilistic model.
In our approach, the joint kernel and the probabilistic
model are completely separated, so you can utilize second
order information with a first order HMM as in the second
order marginalized count kernel.

RESULTS
In this section, we illustrate the performance of marginal-
ized kernels in classification experiments using bacterial
gyrB amino acid sequences. gyrB - gyrase subunit B - is a
DNA topoisomerase (type II) which plays essential roles
in fundamental mechanisms of living organisms such as
DNA replication, transcription, recombination and repair
etc. One more important feature of gyrB is its capability
of being an evolutionary and taxonomic marker alternat-
ing popular 16S rRNA (Kasai et al., 1998). Our dataset
consists of 84 amino acid sequences of gyrB from five
genera in Actinobacteria which are Corynebacterium, My-
cobacterium, Gordonia, Nocardia and Rhodococcus, re-
spectively (Kasai et al., 2000). For brevity these genera
will be called genus 1 to 5, respectively. The number of se-
quences in each genus is listed as 9, 32, 15, 14 and 14. The
sequences are, by their nature, quite similar in terms of se-
quence similarity. Pairwise identity for each sequence is at
least 62% and 99% at most. For computing distance matrix
based on the sequence similarity, one can use the BLAST
scores (Altschul et al., 1990). However, since such scores
cannot directly be converted into positive semidefinite ker-
nels, kernel methods cannot be applied to them in princi-
ple.

In order to investigate how well the kernels reflect un-
derlying genera, we performed two kinds of experiments
– clustering and supervised classification. The following
kernels are compared:
� CK1: Count kernel (5)

� CK2: Second-order count kernel (9)

� FK: Fisher kernel (16)

� MCK1: Marginalized count kernel (7)

� MCK2: Second-order marginalized count kernel (11)

As the first experiment, K-Means clustering is per-
formed in feature spaces corresponding to kernels (see
(Müller et al., 2001) for details). The number of clus-
ters are determined as five (i.e. the true number). In FK
and MCKs, we used complete-connection HMMs with 3,5
and 7 states. Note that FK is normalized by the sequence
lengths. In training HMMs, all 84 sequences are used. One
can also train HMMs in a classwise manner (Tsuda et al.,
2002). However, we did not do so because the number

of sequences is not large enough. For evaluating clusters,
we used the adjusted Rand index (ARI) (Yeung & Ruzzo,
2001). The advantage of this index is that you can com-
pare two partitions whose number of clusters are different.
The ARI becomes 1 if the partitions are completely cor-
rect. Also, the expectation of the ARI is 0 when partitions
are randomly determined.

The kernel matrices by FK and MCKs are shown in
Figure 5. Additionally, the ideal kernel is shown for
reference, where

��� 2k�K2 �  is 1 for any two sequences in
the same genus, and -1 otherwise. Here, the number of
HMM states is three in all cases. For fair visualization,
each kernel matrix is normalized in the same manner:
First, the kernel matrix is “centralized” as

� �  � � U
: � � U � : � p : � � : � where : � is the � � � matrices
whose elements are all : � � . Here � denotes the number
of sequences, i.e. � �����

in this experiment. Then,
� �

is normalized by the Frobenious norm as
� � �	� � � ��
 .

As seen in the figure, MCK2 is the best to recover the
underlying structure. This result is quantitatively shown
by ARI in Figure 6, where CK1 and CK2 correspond to
the MCKs with only one HMM state. Notably the Fisher
kernel was worse than MCK1, which shows that the joint
kernel of the Fisher kernel (16) is not appropriate for this
task.

In order to see how genera are separated by introduc-
ing the second order information and hidden variables, we
performed the following supervised classification experi-
ments as well. First, we pick up two genera out of three
genera (3,4,5). Genera 1 and 2 were not used because
they can be separated easily by all kernels. The sequences
of two genera are randomly divided into 25% training
and 75% testing samples. Kernels are compared due to
the test error by the kernel Fisher discriminant analysis
(KFDA) (Roth & Steinhage, 2000), which compares fa-
vorably with the SVM in many benchmarks. Note that the
regularization parameter � of KFDA (Roth & Steinhage,
2000) is determined such that the test error is minimized  .
The test errors of five kernels are shown in Table 1. The
second order kernels (i.e. CK2 and MCK2) were signif-
icantly better than the first order kernels. This result co-
incides with the common understanding that higher order
information of protein sequences is essential for classifi-
cation and structure prediction (e.g. Asai et al. (1993)).
Comparing CK2 and MCK2, MCK2 always performed
better, which indicates that incorporating hidden variables
(i.e. context information) is meaningful at least in this task.

CONCLUSION
In this paper, we proposed marginalized kernels, which
provide a new reasonable way to design a kernel from

 For regularization parameter � , 10 equally spaced points on the log scale are
taken from � ����������������� . Among these candidates, the optimal one is chosen.
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Table 1. Mean error rates (%) of supervised classification between two bacterial genera ( � � � shows the standard deviation). The best result in each task is written
in bold face.

Genera CK1 CK2 FK MCK1 MCK2

3-4 24.5 [9.67] 9.10 [7.87] 10.4 [9.15] 12.8 [9.85] 8.48 [7.76]
3-5 12.7 [8.93] 6.43 [7.76] 10.9 [10.1] 10.4 [8.17] 5.71 [7.72]
4-5 25.6 [13.0] 13.5 [15.5] 23.1 [14.3] 20.0 [14.6] 11.6 [14.6]
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FK

−0.02
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MCK1

−0.02

0    

0.02 

0.04 

MCK2

Fig. 5. (Upperleft) Ideal kernel matrix to illustrate the true clusters. (Upperright) Kernel matrix of the Fisher kernel. (Lowerleft) Kernel
matrix of the first-order marginalized count kernel. (Lowerright) Kernel matrix of the second-order marginalized count kernel.

latent variable models. The Fisher kernel was described as
a special case of marginalized kernels, which have added a
new aspect to the Fisher kernel theory. Finally, we showed
that marginalized count kernels perform well in protein
classification experiments.

Our work provides a general framework from which
diverse kernels are expected to be constructed. In future
works, we would like to derive useful kernels as many as
possible not only in bioinformatics but also in other areas
in information technology.
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Fig. 6. Evaluation of kernels in clustering in terms of the adjusted
Rand index (ARI). The � -axis corresponds to the number of states
in HMM, from which the kernels are derived. The Fisher kernel
(FK), the marginalized count kernels of first-order (MCK1) and
second-order (MCK2) are compared. Note that the count kernels
of first-order (CK1) and second-order (CK2) correspond to MCK1
and MCK2 at one HMM state, respectively.
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