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Abstract. We propose an algorithm to predict the leave-one-out (LOO)
error for kernel based classifiers. To achieve this goal with computational
efficiency, we cast the LOO error approximation task into a classification
problem. This means that we need to learn a classification of whether
or not a given training sample — if left out of the data set — would
be misclassified. For this learning task, simple data dependent features
are proposed, inspired by geometrical intuition. Qur approach allows
to reliably select a good model as demonstrated in simulations on Sup-
port Vector and Linear Programming Machines. Comparisons to existing
learning theoretical bounds, e.g. the span bound, are given for various
model selection scenarios.

1 Introduction

Numerous methods have been proposed [7, 8, 3, 5, 9] for model selection of kernel-
based classifiers such as Support Vector Machines (SVMs) [7] and Linear Pro-
gramming Machines (LPMs) [1]. They all try to find a reasonably good estimate
of the generalization error to select the proper hyperparameters. The data de-
pendent LOO error would in principle be ideal for selecting hyperparameters
of learning machines, as it is an (almost) unbiased estimator of the true gen-
eralization error [6]. Its computation is, unfortunately, for most practical cases
prohibitively slow.

There have been several attempts to approximate the leave-one-out error in
closed-form for SVM classifiers [8, 3, 5]. For example, a new type of bound was
proposed that relies on the span of the SVs and was empirically found to perform
best among the learning theoretical bounds [8]. However, such approximations
are limited to a special learning machine, i.e. SVM, and it seems difficult to
provide a useful approximation that is valid for a more general class of classifiers.

In this work, we introduce a learning approach for approximating the LOO
error of general kernel classifers such as SVMs or Linear Programming Machines
(LPM). We propose to use geometrical features to cast the leave-one-out error
approximation problem for kernel classifiers into a — fast solvable — classifica-
tion problem. Thus, our LOO error approximation problem reduces to learn a
classification of whether or not a training sample, if left out the data set, will be



misclassified. This task is referred to as a meta learning problem because we try
to learn about a learning machine. The meta classification task is data rich as
a large number of training patterns can be generated from all sorts of different
classification problems. Note that we are using features that are meant to reflect
the local difficulty or complexity of the meta learning problem across a large set
of possible data. In experiments, we show that our approach works well both for
SVM and LPM.

After reviewing some popular learning theoretical LOO error bounds we de-
scribe the features used as inputs for the meta learning problem and solve it by
using a classification approach. Subsequently we perform simulations showing
the usefulness of our LOO error approximation scheme in comparison to other
bounds and finally conclude with some remarks.

2 Reviewing SVMs, LPMs and Selected LOO Bounds

When learning with SVMs [7] and LPMs [1], one is seeking for the coeffi-
cients of a linear combination of kernel functions K(x;,-), i.e. fop(x) = b+
Ele a;K(x;,z). This is done by solving the following type of optimization
problem [4]:
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where || - ||p is the 2-norm of « in feature space for SVMs and the 1-norm of a
(in the coeflicient space) for LPMs, respectively. The data and labels are denoted
by x; € R",y € {1,—1} respectively. C' is the regularization parameter. When
solving (1), one usually introduces Lagrange multipliers \;, ¢ = 1,...,¢ for the
constraints in (1), which are zero if the constraint is not active. For SVMs they
turn out to be equal to «;. For LPM there is no such correspondence.

We will now review some bounds on the LOO error of SVMs that have been
proposed. A more complete presentation can be found in e.g. [2,8]. Let Z be
a sample of size £, where each pattern is defined as z; = (x;,y;). Furthermore,
define ZP = {z; € Z,i # p} and fP = L(ZP), i.e. fP is the decision obtained
when learning with the p-th sample left out of the training set. The LOO error

is defined as
¢

doo(7) = 3 S W4 P(ay)), )

p=1

where ¥(z) = 1 for z > 0 and ¥(z) = 0 otherwise. As —y, f?(x,) is positive only
if fP commits an error on x,, €/°°(Z) is the average number of patterns which
are misclassified when they are left out.

Support Vector Count: SVMs have several useful properties that can be ex-
ploited for a LOO prediction: The first is that patterns which are not Support
Vectors (SVs) do not change the decision surface and are always correctly clas-
sified. Therefore, one has to consider only the SVs in the LOO procedure and



the LOO error can be easily bounded by

doo(z) < B8, ®

where #SV is the number of SVs. However, this is a very rough estimate, because
not all SVs will be misclassified when they are removed from the training set.
For LPMs, (3) also holds, if one defines the SVs to be the patterns x; whose
expansion coefficients «; or corresponding Lagrange multipliers A; are non-zero.

Jaakkola-Haussler Bound: In [3], Jaakkola and Haussler proposed a tighter
bound than Eq.(3)
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where q; is the weight coefficient of SVM and K is the kernel function.

Span Predictions: Recently, a sophisticated way of predicting the LOO error
using the “span” of support vectors has been proposed [8]. Under the assumption
that the set of SVs does not change during the LOO procedure, the LOO error
can be exactly rewritten as
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where SV denotes the set of support vectors and Sj, is a geometric value called
“span” of a support vector [8]. Unfortunately, in practice the above assumption
made is not always satisfied, however, experimentally it is shown that this ap-
proximation works very well [8]. For computing the span one needs to solve an
optimization problem which can be very expensive, if the number of SVs is high.

3 Meta Learning: Predicting the Generalization Error
from Empirical Data

We will now outline a learning framework to predict the LOO error. The LOO
error €“90 depends on the data set Z and the parameters of the learning machine
0. We assume that the LOO errors could be measured for several data sets and
various combinations (Z1,61), - ,(Zm,0m). Then, a meta-learning machine is
trained to predict €Y©C on unseen data based on appropriate features extracted
from (Z,0).

Predicting the LOO-Error as a classification problem Recall that the LOO error
can be represented by each LOO result r(xp):



where r(zp) = sgn(ypfP(xp)). So, to predict the LOO error, it is sufficient to
predict the result of each LOO procedure, i.e. whether or not an error will be
made, if a certain pattern is left out. This meta learning problem is a binary
classification problem.

For kernel classifiers, the learning scheme can be designed as Fig.1: Here, a
coefficient ¢; is attached to every training sample x;. Features are extracted for
the left-out sample (x,, o) as well as for the neighboring samples. The neighbors
are included since they are likely to affect the LOO result as shown in Fig. 2. In
taking the neighbors, we do not care whether they are support vectors or not.
So, the features also include information from non-support vectors whereas the
span bound (5) is derived from the support vectors only.

Left out sample

(2p, ap) Meta
: Feature . Estimate of LOO result
Neighbors Learning
Extractor Machine r(zp)

(Z1,0tl)
(Zz, a2)
(z3,a3)

Fig. 1: Learning scheme for predicting the LOO result.

Features for meta classification To include the local geometry around a left-out
sample, the features for LOO are extracted as follows: for the left-out sample
T, We use

~ Weight a,, Dual weight A\, (LPM only), Margin f(z,)/|lw||?.
Additionally, we calculate the following quantities from the 3 nearest neighbors

zy, of xp:

With Neighbor Without Neighbor

Fig. 2: Consider the case with
a non-SV near the SV of in-
terest as in the left panel.
In the leave-one-out procedure,
the boundary is re-estimated
without this SV, but the non
SV takes its part and the
boundary does not change sig-
nificantly. The LOO boundary
could show a large difference,
if there was no close non-SV
neighbor as in the right panels.




— Distance in input space ||z — xp||/D;,
— Distance in feature space ||$(xx) — J(xp)||/ Dy,
— Weight ay, Dual weight A, (LPM only), Margin f(zy)/||w||?,

where D;, Dy are the maximum distances between training samples in the input
space and the feature space, respectively. All these features of , form a vector
v, which is used together with the label r(z,) to learn the LOO error prediction
{vp} = {r(zp)} for all p patterns. In this work we built the meta-classifier as a
linear programming machine with polynomial kernel of degree 2, which employs
the 1-norm regularization (in feature space) leading to sparse weight vectors.
This turns out to be beneficial as the (meta) LPM automatically selects the
relevant features.

4 Experiments

The motivation of the following experiment is to answer the following questions:
(1) Does the LOO error predictor learn from a given data set to generalize well on
unseen data sets? (2) Is the prediction good enough for reliable model selection?

4.1 Two Class Benchmarks

In our study, we considered three data sets': twonorm, ringnorm and heart.
Here, twonorm and ringnorm are quite similar because the input dimensionality
is 20 and the number of training samples is 400 for both data sets. But, heart is
a quite different data set, where the input dimensionality is 13 and the number of
training samples is only 170. For the evaluation of our meta classifier we use the
following experimental setup: For each data set we considered ten realizations
(train/test-splits, used for averaging and obtaining error bars). On each realiza-
tion, we trained SVMs and LPMs for wide ranges of the regularization constant
C and the (RBF) kernel parameter o, i.e. K(z,y) = exp(—||z — y||/o?). For
each training sample we extracted the features described in Section 3. These
features and the corresponding labels (which have been computed by the actual
LOO procedure) are used for training and testing our classifier. We learned from
two data sets and tested on the third. To evaluate the performance, the model
selection erroris used: First, the kernel parameter o and regularization constant
C are selected where the predicted LOO error is minimized. The model selec-
tion error is then defined as the classification error on the test set at the chosen
parameters.

The results for SVM and LPM are shown in Fig. 3 and 4, respectively. Results
on the span bound and JH bound are not available for LPMs, as the respective
bounds simply do not exist. The experiments show that in most cases our LOO
predictor performs almost as well as the actual (highly expensive) LOO calcu-
lation. Compared to the bounds we observe that both methods achieve similar

! The data sets incl. training/test splits and the LOO results can be obtained at
http://ida.first.gmd.de/ raetsch.
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Fig. 3: Model selection errors in SVM. The labels denote: OPT: optimal choice based on
the test error, LOO: actual leave-one-out calculation, Span: span bound, JH: Jaakkola-
Haussler Bound, SVC: Support Vector Count, Pred: our method. Two data sets are
used for training and the test error is assessed on the third one.

performance, note however that our method can also be applied to LPMs. Com-
paring the three cases in Fig. 4, our method performs slightly worse when heart
is used for testing in comparison with the other two cases. This shows the ten-
dency that LOO error prediction works well if data with a similar characteristics
is contained in training set. This indicates also that the statistics of the feature
set still varies considerably for different data sets. However, it is still surprising
that our simple features can show such a good generalization performance in
benchmark problems.

4.2 A Multiclass Example

As one application of our approach, we consider multi-class problems. In solving
c-class problems, it is common, e.g. for SVMs, to use ¢ single (two-class) classi-
fiers, each of which is trained to discriminate one class from all the other classes.
Here, the hyperparameters of each SVM have to be properly set by some model
selection process. Clearly, it takes prohibitively long to perform leave-one-out
procedures in all SVMs for all possible hyperparameter settings. To cope with
this problem, the leave-one-out procedure is performed with respect to only one
of the c classification problems and our meta classifier is then trained based on
this result. Then, the hyperparameters of the other SVMs can be efficiently se-
lected according to the LOO error predictions from the meta classifier.

We performed an experiment with the 3dobj data set? with 8 classes and 640
samples (i.e. 80 samples per class). The task is here to choose a proper value
of kernel width ¢ from a prespecified set of 11 values. The sample is randomly
divided into 320 training and 320 test samples for obtaining error bars on our

2 This dataset will be added to the IDA website.
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Fig. 4: Model selection errors in LPM.

results. One class is chosen for the training and the remaining classes are used
for testing. For each o in X = {0.4,0.6,--- ,2.4}, we computed the LOO error
predictions using the meta classifier.

Figure 5 shows the model selection errors of SVMs and LPMs. Here, our
method performed as well as the actual LOO calculation for both: SVMs and
LPMs. The task of model selection in multiclass problems appears very suitable
for our method, because the data sets for training and testing are considered to
have similar statistical properties.

5 Conclusion

To train a learning machine that learns about the generalization behavior of a
set of learning machines seems like an appealing idea and introduces a meta level
of reasoning. Our goal in this work was to obtain an effective meta algorithm for
predicting the LOQO error from past experience, i.e. from a variety of data sets. By
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Fig. 5: Model selection errors in the multiclass problem.



adding the twist of casting the meta learning problem into a specific classification
task allowed to achieve an accurate and fast empirical estimate of the LOO error
of SVM and LPM. The crucial point was to use simple geometrical features for
classifying whether a given training sample would be misclassified, if left out.
Once given a reliable LOO error estimate it can easily be used for model selection.
Careful simulations (using approximately 1.5 CPU years of 800Mhz Pentium
IIT mostly for obtaining the actual LOO error) show that our meta learning
framework compares favorably over the conventional bounds. Apparently, our
heuristic geometrically motivated features have a good generalization ability
for different data sets. We speculate that using these features could provide
new ways to improve bounds, in a way, by integrating particularly meaningful
features from our meta learning problem into new learning theoretical bounds.
Future research will be dedicated to a further exploration of the meta learning
idea also for other learning machines and to gaining a better learning theoretical
understanding of our findings.
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