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Abstract

This paper analyses the Fisher kernel from a statistical point of view.
The Fisher kernel is a particularly interesting method for constructing a
model of the posterior probability that makes intelligent use of unlabeled
data, i.e. of the underlying data density. It is important to analyse
and ultimately understand the statistical properties of the Fisher kernel.
To this end, we first establish sufficient conditions that the constructed
posterior model is realizable, i.e. that it contains the true distribution.
Realizability then immediately leads to consistency results. Subsequently
we focus on an asymptotic analysis of the generalization error, which
elucidates the learning curves of the Fisher kernel and how unlabeled
data contribute to learning. We also point out that the squared or log
loss is theoretically more preferable—as they yield consistent estimators—
than other losses such as the exponential loss, when a linear classifier is
used together with the Fisher kernel. Therefore this paper underlines that
the Fisher kernel should not be viewed as a heuristics but as a powerful
statistical tool with well controlled statistical properties.

∗To appear in Neural Computation
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1 Introduction
Recently, the Fisher kernel (Jaakkola & Haussler, 1999) has been successfully
applied as a feature extractor in supervised classification (Jaakkola & Haussler,
1999; Tsuda et al., 2002; Sonnenburg et al., 2002; Smith & Gales, 2002; Vinok-
ourov & Girolami, 2002). The original intuition (Jaakkola & Haussler, 1999) for
the Fisher kernel was to construct a probabilistic model of the data in order to
induce a metric for a subsequent discriminative training. Two problems could
be addressed simultaneously: (1) it became possible to compare “apples and
oranges”—as the Fisher kernel approach measures distances in the space of the
respective probabilistic model parameters. So for example a DNA sequence of
length, say, 100 and another one of length 1000 can be easily compared by us-
ing a representation in the respective HMM parameter space. Thus, the Fisher
kernel is very much in contrast to alignment methods that compare directly
by essentially using dynamic programming techniques (e.g., Gotoh, 1982). (2)
A further feature of the Fisher kernel is that it allows to incorporate prior
knowledge about the data distribution into the classification process in a highly
principled manner.

In the practical use of support vector machines (SVM) (e.g., Vapnik, 1998;
Cristianini & Shawe-Taylor, 2000; Müller et al., 2001; Schölkopf & Smola, 2002),
where the choice of the kernel is of crucial importance, either the kernel can be
engineered using all available prior knowledge (e.g., Zien et al., 2000) or it can
be derived as the Fisher kernel from a probabilistic model (e.g., Jaakkola &
Haussler, 1999; Tsuda et al., 2002; Sonnenburg et al., 2002; Smith & Gales,
2002).1 In spite of its practical success, a theoretical analysis of the Fisher
kernel has not been sufficiently explored so far, with the current exceptions being
e.g., Jaakkola et al. (1999); Tsuda & Kawanabe (2002); Seeger (2002); Tsuda
et al. (2003). For example, Jaakkola et al. (1999) showed how to determine the
prior distribution of parameters to recover the Fisher kernel in the framework
of maximum entropy discrimination. Also Seeger (2002) pointed out that the
Fisher kernel can be perceived as an approximation of the mutual information
kernel.

This paper will aim to present theoretical results from a statistical point of
view. In particular we perceive the Fisher kernel as a method of constructing a
model of the posterior probability of the class labels.

The Fisher kernel can be derived as follows: Let X denote the domain of
objects, which can be discrete or continuous. Also let us assume that a proba-
bilistic model q(x|θ), x ∈ X , θ ∈ �d is available. Given a parameter estimate θ̂
from training samples, the feature vector (i.e. the Fisher score) is obtained as

f θ̂(x) = (
∂ log q(x|θ̂)

∂θ1
, . . . ,

∂ log q(x|θ̂)
∂θd

)�. (1.1)

The Fisher kernel refers to the inner product in this space. When used in
1Of course also brute force search over all possible kernels can be pursued using cross-

validation procedures or bounds from learning theory to finally select the ’best’ kernel (cf.
Müller et al., 2001).
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supervised classification, the Fisher kernel is commonly combined with a linear
classifier such as support vector machines (SVMs) (Vapnik, 1998), where a linear
function is trained to discriminate two classes. Since the Fisher kernel can
efficiently make use of prior knowledge about the marginal distribution p(x)
(which can be estimated rather well using unlabeled samples), it is especially
attractive in vision, text classification and bioinformatics where we can expect
a lot of unlabeled samples (Zhang & Oles, 2000; Seeger, 2001).

As the first analysis, we will show the sufficient conditions that the obtained
posterior model is realizable, i.e. that it contains the true posterior distribution,
which then immediately leads to consistency. Once realizability is assured, we
can evaluate the expected generalization error in large sample situations by
means of asymptotic statistics (Barndorff-Nielsen & Cox, 1989). This enables us
to elucidate learning curves and how unlabeled samples contribute in reducing
the generalization error. In addition, it is pointed out that, when a linear
classifier is combined with the Fisher kernel, then the log loss and the squared
loss are theoretically more preferable than other loss functions. This result
recommends us to use a classifier based on the log loss or the squared loss.

2 Realizablity Conditions
Let y ∈ {+1,−1} be the set of class labels. Denote by p(x), P (y|x) and p(x, y)
the true underlying marginal, posterior and joint distributions, respectively. Let
∂αf = ∂f/∂α, ∇θf = (∂θ1f, . . . , ∂θd

f)�, and ∇2
θf denote the d× d matrix, the

Hessian, whose (i, j)-th element is ∂2f/(∂θi∂θj).
For statistical learning, we construct a model of posterior probability P (y|x)

out of the Fisher score (1.1). The posterior probability is described via a linear
function followed by an activation function h:

Q(y|x, η) = h(y[w�fθ(x) + b]), (2.1)

where w ∈ �d, b ∈ �, parameters are summarized as η = (w�, b, θ�)�, and h
is a linear activation function2

h(t) =
1
2
t +

1
2
. (2.2)

In the following, we will investigate the conditions that Q(y|x, η) is realizable,
i.e., there is a parameter value η∗ such that Q(y|x, η∗) = P (y|x).

2.1 Core Model

First, a trivial example is shown to give a realizable model. Denote by q0(x|θ)
a mixture model of the true class distributions:

q0(x|α) = αp(x|y = +1) + (1 − α)p(x|y = −1), α ∈ [0, 1], (2.3)

2Compared with sigmoid functions, the linear activation function is not so common in
literature. However it allows us to perform statistical analysis as will shown later.
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which we call the core model. Obviously this model realizes the true marginal
distribution p(x), when α = p(y = +1) := α∗.

Lemma 1. When the Fisher score is determined as fα∗(x) = ∂α log q0(x|α∗),
the posterior model (2.1) is realizable.

(proof) The posterior model Q(y|x, η) is realizable, if there is a parameter value
η∗ such that

Q(y|x, η∗) = P (y|x), ∀x ∈ X , y ∈ {+1,−1}. (2.4)

Substituting (2.1) and (2.2), (2.4) holds if and only if

(w∗)�fθ∗(x) + b∗ = P (y = +1|x) − P (y = −1|x). (2.5)

To prove the lemma for q0, it is sufficient to show the existence of w, b ∈ � such
that

w∂α log q0(x|α∗) + b = P (y = +1|x) − P (y = −1|x). (2.6)

The Fisher score for q0(x|α∗) can be written as

∂α log q0(x|α∗) =
P (y = +1|x)

α∗ − P (y = −1|x)
1 − α∗ .

When w = 2α∗(1 − α∗) and b = 2α∗ − 1, (2.6) holds.

2.2 Deriving Realizability Conditions

Since we do not know the true class distributions p(x|y), the core model q0(x|α)
in Lemma 1 is never available. In the following, the result of Lemma 1 is
therefore relaxed to a more general class of probability models.

Denote by M a set of probability distributions M = {q0 | q0(x|α), α ∈
[0, 1]}. According to the information geometry (Amari & Nagaoka, 2001), M
is regarded as a manifold in a Riemannian space. Let Q denote the manifold
of q(x|θ): Q = {q | q(x|θ), θ ∈ �d}. Now the question is how to determine
a manifold Q such that (2.1) is realizable, which is answered by the following
theorem.

Theorem 1. Assume that the true distribution p(x) is contained in Q:

p(x) = q(x|θ∗) = q0(x|α∗), x ∈ X ,

where θ∗ is the true parameter. If the tangent space of Q at p(x) contains the
tangent space of M at the same point (Figure 1), then the Fisher score f derived
from q(x|θ∗) gives a realizable posterior model (2.1).

(proof) To prove the theorem, it is sufficient to show the existence of w ∈ �d

and b ∈ � such that

w�∇θ log q(x|θ∗) + b = P (y = 1|x) − P (y = −1|x). (2.7)
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Figure 1: Information geometric picture of a probabilistic model whose Fisher
kernel leads to a realizable posterior model. The important point is that the tan-
gent space of manifold M is contained in that of manifold Q. Details explained
in the text.

When the tangent space of M is contained in that of Q around p(x), we have
the following by the chain rule:

∂ log q0(x|α∗)
∂α

=
d∑

j=1

∂ log q(x|θ∗)
∂θj

∂θj

∂α

∣∣∣∣
α=α∗

. (2.8)

Let u be the d dimensional vector where the i-th element is

ui =
∂θj

∂α

∣∣∣∣
α=α∗

.

Then (2.7) holds when

w = 2α∗(1 − α∗)u, b = 2α∗ − 1.

This theorem indicates that realizability depends on local geometry of man-
ifold Q around the true distribution. In order to have a good posterior model,
we have to assure realizability while keeping the number of parameters small.
To this aim, we should make the manifold Q as low dimensional as possible,
while capturing the tangent space of M. If Q completely contains M, the re-
alizability condition is satisfied. One example of this case was shown by Tsuda
et al. (2003), where each class distribution is the mixture of shared Gaussian
components.

Remark A classifier is called Bayes optimal, if it achieves the Bayes error in
the limit that the number of samples goes to infinity (Devroye et al., 1996).
Realizability is only a sufficient condition for Bayes optimality. It would be an
interesting research topic to derive the conditions for Bayes optimality as well.
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3 Consistency Results
Denote by zn = {xi, yi}n

i=1 the set of n i.i.d. labeled samples derived from
p(x, y). Denote by xu

m = {xu
j }m

i=1 the set of m unlabeled i.i.d. samples derived
from p(x). In learning with the Fisher kernel from these samples, the learning
procedure is typically separated into two steps (e.g., Jaakkola & Haussler, 1999).
First, θ is obtained as

θ̂ = argmaxθ

n∑
i=1

log q(xi|θ) +
m∑

j=1

log q(xu
j |θ). (3.1)

Then, in the second step, w and b are obtained as

[ŵ, b̂] = argmaxw,b

n∑
i=1

log h(yi[w�f θ̂(xi) + b]). (3.2)

The second step maximizes the conditional likelihood Q(y|x, η). Let �(y, y′)
denote a loss function. Then (3.2) is generalized as follows:

[ŵ, b̂] = argminw,b

n∑
i=1

�(w�f θ̂(xi) + b, yi), (3.3)

where the loss function in (3.2) corresponds to

�(y, y′) = − logh(yy′). (3.4)

First we prove that the consistency is assured for the log loss (3.4), that is, in
the limit that n goes to infinity, the estimator η̂ converges to the true one η∗.
Further it will be shown that the consistency can be proved for the squared loss,
which has advantages from the practical viewpoint.

Lemma 2. Assume that q(x|θ) satisfies the realizablity conditions in Theo-
rem 1. The two step estimator with the log loss (3.4) is consistent.

(Proof) In the two step scheme, θ is estimated separately as maximum likelihood
(3.1), so obviously θ̂ converges to θ∗. When we have infinite samples, (3.3) is
written as

[w+, b+] = argminw,b

∑
j∈{1,−1}

P (y = j)
∫

�(w�fθ∗(x) + b, j)p(x|y = j)dx.

Therefore, we should prove w+ = w∗ and b+ = b∗. In other words, this problem
is rewritten as a constrained variation problem (Gelfand & Fomin, 1963), where
we find a function g : X → � that minimizes the following functional

L(g) =
∑

j∈{1,−1}
P (y = j)

∫
�(g(x), j)p(x|y = j)dx, (3.5)
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subject to the constraint g ∈ G where

G = {g | g(x) = w�fθ∗(x) + b, w ∈ �d, b ∈ �}. (3.6)

If the optimal solution of the variation problem without the above constraint is
eventually contained in G, it is the solution of the constrained problem (3.5) as
well. So let us consider the unconstrained problem first: When the log loss is
substituted into (3.5), we have

L(g) = −
∑

j∈{1,−1}
P (y = j)

∫
log

{
jg(x) + 1

2

}
p(x|y = j)dx.

The variation of L with respect to small increment of g is written as

δL = −
∑

j∈{1,−1}
P (y = j)

∫
δg

j

jg(x) + 1
p(x|y = j)dx.

In order that g is an minimum, it is necessary that δL = 0 holds for any δg,
thus we have

1
1 + g(x)

p(x, y = 1) − 1
1 − g(x)

p(x, y = −1) = 0, (3.7)

⇔ ĝ(x) = P (y = 1|x) − P (y = −1|x). (3.8)

Since realizability is assured by assumption, Q(y|x, η∗) = P (y|x). According to
(2.1) and (2.2), it holds that

(w∗)�fθ∗(x) + b∗ = P (y = +1|x) − P (y = −1|x).

Thus ĝ is contained in G, and the true parameters are obtained by solving the
constrained problem (3.5).

Note that Lemma 2 holds even if m = 0. Here ŵ and b̂ cannot be obtained
in closed form for the log loss. This turns out to be possible for the squared loss

�(y, y′) = (y − y′)2, (3.9)

and as we will see in the following, the consistency is assured as well in this
case.

Lemma 3. The two step estimator with the squared loss (3.9) is consistent.

(proof) When the squared loss is substituted into (3.5), we have

L(g) =
∑

j∈{1,−1}
P (y = j)

∫
(g(x) − j)2p(x|y = j)dx. (3.10)

In this case, the variational equation (3.7) turns out that

g(x)p(x) −
∑

j∈{1,−1}
jp(x, y = j) = 0,

7



which is solved as

ĝ(x) =
p(x, y = +1) − p(x, y = −1)

p(x)
= P (y = +1|x) − P (y = −1|x). (3.11)

Since this solution is the same as (3.8), this lemma is proved by following the
same procedure as Lemma 2.

Interestingly, one cannot assure consistency for general loss functions. For
example, when we use the exponential loss

�(y, y′) = exp(−1
2
yy′)

or the logistic loss
�(y, y′) = log(1 + exp(−yy′)),

the unconstrained variational solution is obtained as follows (Eguchi & Copas,
2001):

ĝ(x) = log P (y = +1|x) − log P (y = −1|x).

Since this solution may not be included in G, such losses do not necessarily
achieve consistency.3 The squared loss is the appropriate choice for the Fisher
kernel because from the theoretical viewpoint it achieves consistency and be-
cause from the practical point of view the solution can be obtained analytically
in closed form.

4 Generalization Errors
In this section, the generalization error of Fisher kernel classifiers is investi-
gated. Specifically, we will study the behavior of the generalization error when
the number of training samples is sufficiently large. Such an analysis is often
called “learning curve analysis”, where a learning curve describes the relation of
the generalization error against the number of training samples (e.g., Baum &
Haussler, 1989; Amari & Murata, 1993; Müller et al., 1996; Haussler et al., 1996;
Malzahn & Opper, 2002). The studies about learning curves have been playing
an important role in elucidating the behavior of learning machines. For studying
generalization errors apart from bounds derived in a statistical learning theory
framework (e.g., Devroye et al., 1996; Vapnik, 1998), researches in asymptotic
statistics (e.g., Cox & Hinkley, 1974; Barndorff-Nielsen & Cox, 1989; Amari &
Murata, 1993; Müller et al., 1996; van der Vaart, 1998; Amari & Nagaoka, 2001)
and statistical mechanics approaches (e.g., Seung et al., 1992; Watkin et al.,
1993; Haussler et al., 1996; Malzahn & Opper, 2002) have contributed. In this
section, we will adopt asymptotic statistical techniques following (Barndorff-
Nielsen & Cox, 1989).

The generalization error is defined as R(η) := Ex,y[r(x, y, η)] with a risk
function r(x, y, η). Here Ex,y[·] denotes the expectation with respect to p(x, y).

3As discussed in the Remark of Section 2, the lack of consistency does not necessarily mean
that they are not Bayes optimal. Further analyses are needed to clarify this point.

8



In the following, the risk function is determined as the Kullback-Leibler diver-
gence:

R(η) = Ex,y

[
log

p(x, y)
q(x, y|η)

]

=
∑

y∈{−1,1}

∫
p(x, y) log

p(x, y)
q(x, y|η)

dx. (4.1)

We will study the asymptotic generalization error of the two step estimator
typically used in the context of the Fisher kernel: (1) estimating the parameter
of the marginal model using (3.1) and (2) fixing these parameters and estimating
the parameters of the linear model in (3.2).

The Cramér-Rao bound (Barndorff-Nielsen & Cox, 1989) effectively deter-
mines the theoretical limit of learning. We will especially elucidate how the
generalization error is reduced to the theoretical limit as the number of unla-
beled samples increases.

4.1 Asymptotics of M-estimators

Before getting into details, we briefly review how to derive the generalization
error of a general M-estimator (Barndorff-Nielsen & Cox, 1989). An M-estimator
is calculated from an equation like

v(zn, xu
m, η̂) = 0, (4.2)

where zn is the labeled data of size n, xu
m is the unlabeled data of size m, η is an

s-dimensional parameter and v is an s-dimensional vector valued function (i.e.
an estimating function). The function v is assumed to satisfy the unbiasedness
condition

E [v(zn, xu
m, η∗)] = 0, (4.3)

and other regularity conditions which guarantee the consistency of the estimator
η̂. Here E[·] denotes the expectation with respect to training samples (both zn

and xu
m). When n goes to infinity (r = m/n is fixed), we have

1
n
∇ηv(zn, xu

m, η∗) → Γ, in probability, (4.4)

1√
n

v(zn, xu
m, η∗) → N (0, Λ), in distribution, (4.5)

where

Γ = lim
n→∞

1
n

E [∇ηv(zn, xu
m, η∗)] , (4.6)

Λ = lim
n→∞

1
n

E

[
v(zn, xu

m, η∗) {v(zn, xu
m, η∗)}�

]
. (4.7)
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We calculate the asymptotic distribution of the M-estimator η̂. From the esti-
mating equation and (4.4), we have

0 =
1
n

v(zn, xu
m, η∗) +

1
n
∇ηv(zn, xu

m, η∗)(η̂ − η∗) + Op(‖η̂ − η∗‖2)

=
1√
n

ζ + Γ(η̂ − η∗) + Op(n−1),

where ζ = v(zn, xu
m, η∗)/

√
n. Therefore, the estimator η̂ can be approximated

as √
n(η̂ − η∗) = −Γ−1ζ + Op(n−1/2) (4.8)

and it is asymptotically Gaussian distributed,
√

n(η̂ − η∗) ∼ N (0, Γ−1ΛΓ−�), (4.9)

where Γ−� = (Γ�)−1.

4.2 Asymptotic Expansion of the Generalization Errors

Next, let us consider the asymptotic expansion of generalization error (4.1). By
Taylor expansion, we can calculate the expectation of R(η̂) over labeled and
unlabeled samples zn and xu

m,

E[R(η̂)] = R(η∗) + ∇�
η R(η∗) E[η̂ − η∗]

+
1
2

tr
{∇2

ηR(η∗) E[(η̂ − η∗) (η̂ − η∗)�]
}

+ O(n−3/2)

= R(η∗) +
1
2n

tr
{∇2

ηR(η∗) Γ−1ΛΓ−�}+ O(n−3/2). (4.10)

When we adopt the KL divergence (4.1), it turns out that R(η∗) = 0, and the
Hessian is equal to the Fisher information matrix (Barndorff-Nielsen & Cox,
1989):

∇2
ηR(η∗) = −Ex,y

[∇2
η log q(x, y|η∗)

]
= G.

where
G = Ex,y[∇η log q(x, y|η∗)∇�

η log q(x, y|η∗)].

Therefore, the generalization error is described as

E[R(η̂)] =
1
2n

tr
{
GΓ−1ΛΓ−�}+ O(n−3/2). (4.11)

Notice that the derivation of the generalization error (4.11) relies heav-
ily on the regularity conditions governing the limiting properties of M-
estimators (Barndorff-Nielsen & Cox, 1989). When the regularity conditions
do not hold, we need a different mathematical machinery to analyze the gener-
alization error (Watanabe, 2001).
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4.3 Generalization Error of the Two Step Estimator

The two step estimator (3.1) and (3.2) is regarded as a special case of M-
estimators, where the estimating function is

vθ(zn, xu
m, θ̂) =

n∑
i=1

∇θ log q(xi|θ̂) +
m∑

j=1

∇θ log q(xu
j |θ̂) = 0, (4.12)

vξ(zn, xu
m, ξ̂, θ̂) =

n∑
i=1

∇ξ log h
{
yi (ŵ�f θ̂(xi) + b̂)

}
= 0, (4.13)

where we will write ξ = (w�, b)� for convenience.
Following the general recipe presented in Section 4.1, the generalization error

can be derived. To this aim, let us define important notations first. Let us
decompose the Fisher information matrix G as

G =
(

Gξξ Gξθ

Gθξ Gθθ

)
,

where Gξξ,Gξθ, Gθθ are the matrices of size (d + 1) × (d + 1), (d + 1) × d and
d × d, respectively, and Gθξ = G�

ξθ. Then its inverse is written as

G−1 =
(

Sξξ Sξθ

Sθξ Sθθ

)
,

where Sθθ = (Gθθ −GθξG
−1
ξξ Gξθ)−1 (others not shown for brevity). From these

sub matrices, we define the effective Fisher information (Kawanabe & Amari,
1994) as

GE
θθ := S−1

θθ = Gθθ − GθξG
−1
ξξ Gξθ, (4.14)

which is the net information of θ after subtracting the amount shared with the
other parameter ξ. We also define

Uθθ = Ex[∇θ log q(x|θ∗)∇θ log q(x|θ∗)�].

Then, the generalization error is derived as follows:

Theorem 2. The generalization error of the two step estimator is

E[R(η̂)] =
1
2n

{
d + 1 +

1
1 + r

tr
(
GE

θθU−1
θθ

)}
+ O(n−3/2). (4.15)

The proof is described in Appendix A.

4.4 Cramér-Rao Bound

As we have derived the generalization error (4.15), the next question would be
how it compares to other estimators. In order to answer this question, we will
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consider the lowerbound of the generalization errors among a reasonable set of
estimators.

It is well known that the parameter variance of any asymptotically unbiased
estimator4 is lowerbounded by means of the Fisher information (e.g., Barndorff-
Nielsen & Cox, 1989).

Theorem 3 (Asymptotic Cramér-Rao bound). Assume that there are n
samples x1, . . . , xn derived i.i.d. from p(x|η∗). Also assume that an estimator
η̂(x1, . . . , xn) is asymptotically unbiased, that is,

E[η(x1, . . . , xn)] = η∗ + o(n−1/2).

The covariance matrix of the estimator is asymptotically lowerbounded as

lim
n→∞nV [η̂ − η∗] ≥ J−1, (4.16)

where J is the Fisher information matrix,

J = Ex[∇η log p(x|η∗)∇η log p(x|η∗)�],

and A ≥ B means that A − B is positive semidefinite.

Our problem is slightly more complicated than stated in this Theorem, be-
cause we have both n labeled and m unlabeled samples. In this case, the total
Fisher information is simply the sum of Fisher information of labeled and unla-
beled data (e.g., Zhang & Oles, 2000; Seeger, 2001). Therefore, fixing the ratio
r = m/n, the bound (4.16) is rewritten as follows:

lim
n→∞ nV [η − η∗] ≥ (G + rU)−1,

where U is the Fisher information of the marginal model q(x|θ):

U = Ex[∇η log q(x|θ∗)∇�
η log q(x|θ∗)].

Once the parameter variance is bounded, we can bound the generalization error
asymptotically as follows:

Theorem 4. The generalization error of any asymptotically unbiased estimator
is lowerbounded as

lim
n→∞n E[R(η̂)] ≥ 1

2
tr(I + rG−1U)−1. (4.17)

(proof) Let us abbreviate V [η̂ − η∗] as V . As seen in (4.11), the generalization
error is asymptotically expanded as

E[R(η̂)] =
1
2n

tr {GV } + O(n−3/2). (4.18)

4One could consider asymptotically biased estimators, but typically such estimators are
too tricky to be used in practice.
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Since limn→∞ nV ≥ (G + rU)−1, we derive (4.17) as

lim
n→∞n E[R(η̂)] ≥ 1

2
trG(G + rU)−1

=
1
2

tr(I + rG−1U)−1.

4.5 Effect of Unlabeled Data

As we compare the generalization error (4.15) with the lowerbound (4.17), it
is obvious that the generalization error does not achieve the lowerbound by
equality. This means that the two step estimator fails to exploit all the Fisher
information provided by the samples. Intuitively, it is because we only use x’s
in estimating θ at the first step, throwing away the information of y.

However, we will show that the difference to the lowerbound gets smaller as
the number of unlabeled samples increases. In order to compare the generaliza-
tion error and the lowerbound, the lowerbound is expanded as follows:

Lemma 4. When expanded with respect to r, the lowerbound in (4.17) is de-
scribed as

lim
n→∞n E[R(η̂)] ≥ 1

2
tr(I + rG−1U)−1 =

1
2

{
d + 1 +

1
r

tr
(
GE

θθU−1
θθ

)}
+ O(r−2).

(4.19)

The proof is described in Appendix B. On the other hand, the n−1 coefficient
of the generalization error (4.15) is described as

1
2

{
d + 1 +

1
r

tr
(
GE

θθU−1
θθ

)}
+ O(r−2). (4.20)

Thus the difference to the lowerbound is within the order of r−2, which becomes
very small when r is large.

In order to illustrate this result, we actually calculate the learning curves for
a simple model. The Fisher score is derived from the core model (2.3), where
class distributions are one-dimensional unit Gaussians centered on -1 and 1,
respectively:

x | y = +1 ∼ N (−1, 1), x | y = −1 ∼ N (1, 1).

The learning curves at r = 0, 1 and 3 are shown in Figure 2. When there are
no unlabeled samples (r = 0), the difference between the learning curve and the
lowerbound is substantially large. However, the difference gets smaller quickly
as r increases, and the two curves become almost identical at r = 3. This illus-
trative result underlines our theorerical analysis, and suggests the importance
of unlabeled samples in learning with the Fisher kernel.
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Figure 2: Theoretical learning curves of the Fisher kernel classifier. The hori-
zontal axis shows the number of labeled samples n and the vertical axis shows
the generalization error E[R(η̂)]. The solid and broken curves correspond to
the generalization error of the two step estimator and the lowerbound deter-
mined by the Cramér-Rao bound, respectively. As the unlabeled/labeled ratio
r increases, the two curves get closer.
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5 Conclusion
In this paper, we have investigated several theoretical aspects of the Fisher ker-
nel. One contribution is that we have put the Fisher kernel into the framework
of statistic inference by showing the realizability conditions. This allows for
a subsequent analysis about discriminative classifiers, consistency and learning
curves of the generalization error (including unlabeled data). Thus our study
has put the Fisher kernel approach on a more solid statistical basis, from which
new algorithmic directions can be explored (e.g. the Bayes inference). In this
paper only one option for feature extraction from marginal models was pursued:
the combination of the Fisher kernel, a linear classifier and a linear activation
function. In practice, it makes sense to consider alternative combinations. Ulti-
mately our goal is to construct a universal statistical theory of feature extraction
from marginal models, that allows an even wider practical use and a better in-
clusion of prior knowledge (e.g. hidden in unlabeled data or in industrial domain
knowledge) into kernel based learning methods.

Acknowledgements. KRM acknowledges partial financial support by DFG
(MU 987/1-1) and and BMBF under contract FKZ 01IBB02A.

References

Albert, A. (1972). Regression and the Moore-Penrose Pseudoinverse. Academic
Press.

Amari, S. & Murata, N. (1993). Statistical theory of learning curves under
entropic loss criterion. Neural Computation 5, 140–153.

Amari, S. & Nagaoka, H. (2001). Methods of Information Geometry. American
Mathematical Society.

Barndorff-Nielsen, O. & Cox, D. (1989). Asymptotic Techniques for Use in
Statistics. Chapman and Hall.

Baum, E. & Haussler, D. (1989). What size net gives valid generalization?
Neural Computation 1, 151–160.

Campbell, S. & Meyer, C. (1979). Generalized Inverse of Linear Transforma-
tions. Pitman Publishing.

Cox, D. & Hinkley, D. (1974). Theoretical Statistics. Chapman & Hall, London,
UK.

Cristianini, N. & Shawe-Taylor, J. (2000). An Introduction to Support Vector
Machines. Cambridge University Press, Cambridge, UK.

Devroye, L., Györfi, L. & Lugosi, G. (1996). A Probabilistic Theory of Pattern
Recognition. Springer.

15



Eguchi, S. & Copas, J. (2001). Information geometry on discriminant analysis
and recent development. Journal of the Korean Statistical Society 27, 101–
117.

Gelfand, I. & Fomin, S. (1963). Calculus of Variations. Prentice-Hall.

Gotoh, O. (1982). An improved algorithm for matching biological sequences.
Journal of Molecular Biology 162, 705–708.

Haussler, D., Kearns, M., Seung, H. & Tishby, N. (1996). Rigorous learning
curve bounds from statistical mechanics. Machine Learning 25, 195–236.

Jaakkola, T. & Haussler, D. (1999). Exploiting generative models in discrimi-
native classifiers. In Advances in Neural Information Processing Systems 11,
(Kearns, M., Solla, S. & Cohn, D., eds), pp. 487–493, MIT Press.

Jaakkola, T., Meila, M. & Jebara, T. (1999). Maximum entropy discrimination.
Technical Report AITR-1668 MIT.

Kawanabe, M. & Amari, S. (1994). Estimation of network parameters in semi-
parametric stochastic perceptron. Neural Computation 6, 1244–1261.

Malzahn, D. & Opper, M. (2002). A variational approach to learning curves. In
Advances in Neural Information Processing Systems 14, (Dietterich, T. G.,
Becker, S. & Ghahramani, Z., eds), MIT Press.

Müller, K.-R., Finke, M., Schulten, K., Murata, N. & Amari, S. (1996). A
numerical study on learning curves in stochastic multi-layer feed-forward net-
works. Neural Computation 8, 1085–1106.
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A Proof of Theorem 2

Let us decompose the matrices Γ, Λ as

Γ =
(

Γξξ Γξθ

Γθξ Γθθ

)
, Λ =

(
Λξξ Λξθ

Λθξ Λθθ

)
.

The submatrices are computed as follows:

Γξξ = lim
n→∞

1
n

E

[
∇ξ

n∑
i=1

∇ξ log Q(yi|xi, η
∗)

]

= E
[∇2

ξ log q(x, y|η∗) −∇2
ξ log q(x|θ∗)

]
= −Gξξ,

Γξθ = lim
n→∞

1
n

E

[
∇θ

n∑
i=1

∇ξ log Q(yi|xi, η
∗)

]

= −Gξθ,

Γθξ = lim
n→∞

1
n

E


∇ξ




n∑
i=1

∇θ log q(xi|θ∗) +
m∑

j=1

∇θ log q(xu
j |θ∗)






= 0,

Γθθ = lim
n→∞

1
n

E


∇θ




n∑
i=1

∇θ log q(xi|θ∗) +
m∑

j=1

∇θ log q(xu
j |θ∗)






= −(1 + r)Uθθ,

Λξξ = lim
n→∞

1
n

E

[
n∑

i=1

∇ξ log Q(yi|xi, η
∗)

n∑
i=1

∇ξ log Q(yi|xi, η
∗)�

]

= Gξξ,

Λξθ = lim
n→∞

1
n

E

[
n∑

i=1

∇ξ log Q(yi|xi, η
∗)

×



n∑
i=1

∇θ log q(xi|θ∗) +
m∑

j=1

∇θ log q(xu
j |θ∗)




� = 0,

Λθξ = 0,

Λθθ = lim
n→∞

1
n

E






n∑
i=1

∇θ log q(xi|θ∗) +
m∑

j=1

∇θ log q(xu
j |θ∗)




×



n∑
i=1

∇θ log q(xi|θ∗) +
m∑

j=1

∇θ log q(xu
j |θ∗)




�
= (1 + r)Uθθ.
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In summary, we have the following:

Γ = −
(

Gξξ Gξθ

0 (1 + r)Uθθ

)
, Λ =

(
Gξξ 0
0 (1 + r)Uθθ

)
.

The inverse matrix of Γ becomes

Γ−1 =
(

Γ−1
ξξ −Γ−1

ξξ ΓξθΓ−1
θθ

0 Γ−1
θθ

)
= −

(
G−1

ξξ − 1
1+rG−1

ξξ GξθU−1
θθ

0 1
1+r U−1

θθ

)
.

The asymptotic covariance of η̂ is

Γ−1ΛΓ−� =
(

A B
B� D

)
,

A = Γ−1
ξξ ΛξξΓ−1

ξξ + Γ−1
ξξ ΓξθΓ−1

θθ ΛθθΓ−1
θθ Γ�

ξθΓ−1
ξξ

= G−1
ξξ +

1
1 + r

G−1
ξξ GξθU−1

θθ GθξG
−1
ξξ ,

B = −Γ−1
ξξ ΓξθΓ−1

θθ ΛθθΓ−1
θθ = − 1

1 + r
G−1

ξξ GξθU−1
θθ ,

D = Γ−1
θθ ΛθθΓ−1

θθ =
1

1 + r
U−1

θθ .

Therefore,

GΓ−1ΛΓ−�

=
(

Gξξ Gξθ

Gθξ Gθθ

)(
G−1

ξξ + 1
1+r G−1

ξξ GξθU−1
θθ GθξG

−1
ξξ − 1

1+r G−1
ξξ GξθU−1

θθ

− 1
1+rU−1

θθ GθξG
−1
ξξ

1
1+rU−1

θθ

)

=
(

I 0
GθξG

−1
ξξ − 1

1+rGE
θθU−1

θθ GθξG
−1
ξξ

1
1+r GE

θθU−1
θθ

)
.

By subsutituting it to (4.11), we get the asymptotic expansion of the general-
ization error as

E[R(η̂)] =
1
2n

{
d + 1 +

1
1 + r

tr
(
GE

θθU−1
θθ

)}
+ O(n−3/2). (A.1)

We remark that GE
θθ > Uθθ in this case. This can be shown as follows. The

conditional information matrix

J(Y |X) = Ex,y [∇η log Q(y|x, η∗)∇η log Q(y|x, η∗)]
= −Ex,y [∇η∇η log Q(y|x, η∗)]

=
(

Gξξ Gξθ

Gθξ Gθθ − Uθθ

)

is positive definite, if the probabilistic model is regular. Let us transform the
information matrix as

FJ(Y |X)F� =
(

Gξξ 0
0 GE

θθ − Uθθ

)
,
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where

F =
(

I 0
−GθξG

−1
ξξ I

)
.

Since the matrix FJ(Y |X)F� is positive definite, GE
θθ − Uθθ must be positive

definite, too.
Although we only showed the result in the case of log likelihood loss, it is

possible to calculate the generalization error for general loss functions. The
fomula becomes

E[R(η̂)] =
1
2n

{
tr(GξξL−1

ξξ ΛξξL
−1
ξξ ) +

1
1 + r

tr(HU−1
θθ )

}
+ O(n−3/2), (A.2)

where

H = Gθθ − GθξL
−1
ξξ Lξθ − LθξL−1

ξξ Gξθ + LθξL
−1
ξξ GξξL

−1
ξξ Lξθ

Lηη = −Ex,y

[∇η∇η�(w�fθ(x) + b, y)
]

Λξξ = Ex,y

[∇ξ�(w�fθ(x) + b, y)∇ξ�(w�fθ(x) + b, y)
]
.

B Proof of Lemma 4

In order to prove (4.19), we will use the following expansion (Sugiyama, 2001):

Lemma 5. For any symmetric matrix Z and r �= 0, (I + rZ)−1 is expanded as
follows:

(I + rZ)−1 = (I − ZZ†) −
k∑

j=1

(−1
r
Z†)j − (−1

r
Z†)k+1(I +

1
r
Z†)−1, (A.1)

where † indicates the Moore-Penrose pseudo inverse (Campbell & Meyer, 1979)
and k is an arbitrary positive integer.

The proof is described in Appendix C. The lowerbound in (4.17) is rewritten as

1
2

tr(I + rG−1U)−1 =
1
2

tr
[
(G1/2 + rG−1/2U)−1G1/2

]
=

1
2

tr
[
G1/2(G1/2 + rG−1/2U)−1

]
=

1
2

tr(I + rG−1/2UG−1/2)−1.

Setting Z = G−1/2UG−1/2, it is expanded as follows:

1
2

tr(I + rG−1U)−1 =
1
2

{
ξ0 +

ξ1

r

}
+ O(r−2), (A.2)

where the coefficients are described as

ξ0 = tr(I − ZZ†), ξ1 = tr(Z†). (A.3)

The equation (4.19) is proved because the coefficients are derived as follows:
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Lemma 6. The coefficients ξ0 and ξ1 are described as

ξ0 = d + 1, (A.4)
ξ1 = tr(GE

θθU−1
θθ ), (A.5)

respectively.

(proof) Since q(x|θ) does not depend on w and b, U is described as

U =
(

0 0
0 Uθθ

)
.

Then Z is rewritten as

Z = G−1/2UG−1/2 = BB�,

where B is a (2d + 1) × d matrix

B = G−1/2

[
0

U
1/2
θθ

]
.

In terms of B, the pseudo inverse of Z is written as

Z† = B(B�B)−2B�.

The coefficient ξ0 is rewritten as

ξ0 = tr(I − ZZ†) = (2d + 1) − tr(ZZ†),

where

tr(ZZ†) = tr(BB�B(B�B)−2B�) = tr(B(B�B)−1B�) = tr(B�B(B�B)−1) = d,

we thus have ξ0 = d + 1. On the other hand, ξ1 = tr(Z†) is rewritten as

tr(Z†) = tr
[
B(B�B)−2B�]

= tr(B�B)−1

= tr
([

0 U
1/2
θθ

]
G−1

[
0

U
1/2
θθ

])−1

= tr
[
U

−1/2
θθ S−1

θθ U
−1/2
θθ

]
= tr(S−1

θθ U−1
θθ ) = tr(GE

θθU−1
θθ ).
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C Proof of Lemma 5

This expansion was originally derived in Lemma 4.8 of (Sugiyama, 2001). In the
following, we quote his proof for readers’ convenience. Let us define α = 1/r.
According to Theorem 4.8 in (Albert, 1972), the following holds for a symmetric
matrix Z:

(I + α−1Z)−1 = (I − ZZ†) + αZ†(I + αZ†)−1. (A.1)

Also for any matrix B, we have the following equation:

(I + B)−1 = I(I + B)−1 = (I + B − B)(I + B)−1 = I − B(I + B)−1.

Defining B = αZ†, we have

(I + αZ†)−1 = I − αZ†(I + αZ†)−1. (A.2)

By repeatedly applying (A.2) to (A.1), we have

(I + α−1Z)−1 = (I − ZZ†) + αZ†[I − αZ†(I + αZ†)−1]
= (I − ZZ†) + αZ† − (αZ†)2(I + αZ†)−1

= (I − ZZ†) + αZ† − (αZ†)2 + (αZ†)3(I + αZ†)−1

...

= (I − ZZ†) −
k∑

j=1

(−αZ†)j − (−αZ†)k+1(I + αZ†)−1.
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