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Abstract

We attempt to understand visual classification in humans using both psy-
chophysical and machine learning techniques. Frontal views of human
faces were used for a gender classification task. Human subjects classi-
fied the faces and their gender judgment, reaction time and confidence
rating were recorded. Several hyperplane learning algorithms were used
on the same classification task using the Principal Components of the
texture and flowfield representation of the faces. The classification per-
formance of the learning algorithms was estimated using theface data-
base with the true gender of the faces as labels, and also withthe gender
estimated by the subjects. We then correlated the human responses to
the distance of the stimuli to the separating hyperplane of the learning al-
gorithms. Our results suggest that human classification canbe modeled
by some hyperplane algorithms in the feature space we used. For classi-
fication, the brain needs more processing for stimuli close to that hyper-
plane than for those further away.

1 Introduction

The last decade has seen tremendous technological advancesin neuroscience from the mi-
croscopic to the macroscopic scale (e.g. from multi-unit recordings to functional magnetic
resonance imaging). On an algorithmic level, however, methods and understanding of brain
processes are still limited. Here we report on a study combining psychophysical and ma-
chine learning techniques in order to improve our understanding of human classification of
visual stimuli. What algorithms best describe the way the human brain classifies? Might
humans use something akin to hyperplanes for classification? If so, is the learning rule as
simple as in mean-of-class prototype learners or are more sophisticated algorithms better
candidates?

In our experiments, subjects and machines classified human faces according to gender.
The stimuli were presented and we collected the subjects’ responses, which are the es-
timated gender, reaction time and confidence rating (sec.2). For every subject a personal
new dataset was created: the original faces but with the subject’s labels (estimated gender
responses). We then applied a Principal Component Analysisto a texture and flowfield



representation of the faces. Various algorithms such as Support Vector Machines, Rel-
evance Vector Machines, Prototype and K-means Learners (sec.3) were applied on this
low-dimensional dataset with the true and the subjects’ labels. The resulting classification
performances were compared, the corresponding decision hyperplanes were computed and
the distances of the faces to the hyperplanes were correlated with the subjects’ responses,
the data being pooled among all subjects and stimuli or on a stimulus-by-stimulus basis
(sec.4).

2 Human Classification Behaviour

We used grey-scale frontal views of human faces taken from the MPI face database [1].
Because of technical inhomogeneities of the faces in the database we post-processed each
face such that all faces have same mean intensity, same pixel-surface area and are centred
[2]. This processing stage is followed by a slight low-pass filtering of each face in the
database in order to eliminate, as much as possible, scanning artifacts. The database is
gender-balanced and contains 200 Caucasian faces (see Fig.1). Twenty-seven human
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Figure 1: Female and male faces from the processed database (left). Eigenvalue spectrum
from the PCA of our texture-flowfield representation (see sec.4): λmin = 1.01 · 103 (the
last eigenvalue being0 is not plotted) andλmax = 2.47 · 106 (right).

subjects were asked to classify the faces according to theirgender and we recorded three
responses: estimated class (i.e. female/male), reaction time (RT) and, after each estimated-
class-response, a confidence rating (CR) on a scale from 1 (unsure) to 3 (sure). The stimuli
were presented sequentially to the subjects on a carefully calibrated display using a modi-
fied Hanning window (a raised cosine function with a raising time of ttransient = 500ms
and a plateau time oftsteady = 1000ms, for a total presentation timet = 2000ms per
face). Subjects were asked to answer as fast as possible to obtain perceptual, rather than
cognitive, judgements. Most of the time they responded wellbefore the presentation of
the stimulus had ended (mean RT over all stimuli and subjectswas approximately900ms).
All subjects had normal or corrected-to-normal vision and were paid for their participation.
Most of them were students from the University of Tübingen and all of them were naive to
the purpose of the experiment.

Analysis of the classification performance of humans is based on signal detection the-
ory [3] and we assume that, on the decision axis, the internalsignal and noise distribu-
tions are Gaussian with same unit variance but different means. We define correct re-
sponse probabilities for males (+) and females (−) as P+ = P (ŷ = 1|y = 1) and
P− = P (ŷ = −1|y = −1) whereŷ is the estimated class andy the true class of the stimu-
lus. The discriminability of both stimuli can then be computed as:d′ = Z(P+) + Z(P−)
whereZ = Φ−1, andΦ is the cumulative normal distribution with zero mean and unit
variance. Averaged across subjects we obtaind′ = 2.85 ± 0.73. This value indicates
that the classification task is comparatively easy for the subjects, although without be-



ing trivial (no ceiling effect). We observe a strong male bias (a large number of females
classified as males but very few males classified as females) and express this bias as:
η = Z2(P+) − Z2(P−) = 3.14 ± 2.61. The subplots of Fig.2 show the correlations
of (a) RT and classification error, (b) classification error and CR, and (c) RT and CR. First,
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Figure 2: Human classification behaviour: mutual dependencies of the subject’s responses.

RT’s are longer for incorrect answers than for correct ones (a). Second, a high CR is cor-
related with a low classification error (b) and thus subjectshave veridical knowledge about
the difficulty of individual responses—this is certainly not the case in many low-level psy-
chophysical settings. Third, the RT decreases as the CR increases (c), i.e. stimuli easy to
classify are also classified rapidly. It may thus be concluded that a high error (or equival-
ently a low CR) implies higher RT’s. This may suggest that patterns difficult to classify
need more computation, i.e. longer processing, by the brainthan patterns easy to classify.

3 Machine Learning Classifiers

In the following, various hyperplane classification algorithms are expressed as weighted
dual space learners with different learning rules. Given a dataset{~xi, yi}p

i=1, we assume
classification is done in the input space, i.e. we consider linear kernels. Moreover, the input
space is normalized since this has proved to be effective in the case of SVMs [4]. The
hyperplanes can be written using a weight (or normal) vector~w and an offsetb in order to
yield a classification rule asy(~x) = sign(〈~w|~x〉 + b) in the first three cases whereas in the
last one, the decision rule is a collection of hyperplanes. These classifiers are compared on
a two-dimensional toy dataset in Fig.3.
Support Vector Machine (SVM, [5]). The weight vector is given as:~w =

∑
i αiyi~xi

where~α is obtained by maximising
∑

i αi − 1
2

∑
ij yiyjαiαj〈~xi|~xj〉 subject to

∑
i αiyi =

0 and0 ≤ αi ≤ C whereC is a regularisation parameter, determined using for instance
cross-validation. The offset is computed as:b = 〈yi − 〈~w|~xi〉〉i|0<αi<C .
Relevance Vector Machine(RVM, [6]). The weight vector (incorporating here the off-
set) is expressed as~w =

∑
i αi~xi. A Bernoulli distribution describesP (~y|X, ~α) where

X = {~xi}p
i=1. A hyperparameter~β is introduced in order to retrieve a sparse and smooth

solution for~α using a Gaussian distribution forP (~α|~β). Learning amounts to maximising
P (~y|X, ~β) =

∫
P (~y|X, ~α)P (~α|~β)d~α with respect to~β. Since the latter is not integrable

analytically, the Laplace approximation (local approximation of the integrand by a Gaus-
sian) is used for resolution, yielding an iterative update scheme for~β.

Prototype Learner (Prot, [7]). Defining the prototypes~p± =
Pp

i=1
~xi(yi±1)

Pp

i=1
(yi±1)

=
∑

i|yi=±1 αi~xi as the centre of mass of each class, the weight vector is then expressed

as: ~w = ~p+ − ~p− =
∑

i αiyi~xi and the offset as:b = ‖~p
−
‖2−‖~p+‖2

2 = − 〈~w|
P

i
αi~xi〉

2 .
K-means Clustering with Nearest-neighbor Learner(Kmean, [8]). Once theK centres
of the clusters for each class are computed using the K-meansalgorithm, one mean
~k±(~x) =

∑
i ϕ±

i (~x)~xi for each class is selected for a pattern~x using the nearest-neighbour



rule. The weight is then computed as:~w(~x) = ~k+(~x)−~k−(~x) =
∑

i(ϕ
+
i (~x)−ϕ−

i (~x))~xi,

the offset being given by:b(~x) = ‖~k
−

(~x)‖2−‖~k+(~x)‖2

2 . Since the nearest-neighbour rule is
used for each pattern, the decision function ispiecewiselinear. The appropriate value ofK
is determined for instance using cross-validation.

SVM RVM Prot Kmean

Figure 3: Two-dimensional toy example illustrating classification for a SVM, RVM, Prot
and Kmean: the lines indicate the separating hyperplanes and the circles show the SVs,
RVs, prototypes or means respectively.

4 Human Classification Behaviour Revisited by Machine

Each face taken from the MPI database is represented by threevectors: an intensity-
standardisedtexture map, and space-standardisedx- and y-flowfields representing the
shape. The texture and shape vectors contain the information required to generate a spe-
cific face from an “average” reference face by putting each face of the database intocor-
respondence. This format makes intensity and structural information about the faces expli-
cit. For the sake of numerical tractability, especially when using cross-validation methods,
the dimension of the image vectors has to be reduced to be usable by machine learning
algorithms. We use Principal Component Analysis (PCA) to represent the concatenated
texture- and flowfield vectors of each face of size3 · 2562 in only 200 dimensions. In con-
trast to [9] where PCA is applied only to the intensity (or pixel) information of standard
images, the use of PCA on the texture-flowfield representation forces learning machines to
encode information about local structure and spatial correspondences.

It may be argued that the Principal Components of faces form abiologically-plausible basis
for representation of faces [10], the so-called eigenfaces. Standard PCA on the images
themselves may thus be considered a biologically-plausible representation of faces. Given
that we use PCA on texture and flow-fields, any claim of biological plausibility of our
representation is somewhat tenuous, however.

The variant of PCA considered in this paper searches to express the eigenvectors as linear
combinations of the data vectors [10, 11]. It has the computational advantage over classic
PCA that it does not require the computation of a correlationbetween the dimensions of the
input but between the patterns of the input. For the stimuli considered here, the eigenvalue
spectrum as shown in Fig.1 is a monotonically decreasing function with no flat regions.
Thus PCA seems to be a sensible choice to represent the human face stimuli used in this
study (for a comparative study of PCA against Locally LinearEmbedding, where PCA is
clearly superior for machine learning purposes, see [2]).

4.1 Classification Performance of Man and Machine

We compare the classification performance of man and machinein plot (a) of Fig.4. For
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Figure 4: Classification performance of man and machine on the true and subject dataset
(a) and correlation of behaviour of man with machine for datapooled across subjects and
stimuli (b-d).

humans, the classification error on the true dataset is obtained by comparing the estimated
class to the true one, whereas the classification error on thesubject dataset is the mean over
all subjects of the error the other subjects made on the stimuli presented to each subject.
For machines it is obtained using the dataset with either thetrue or the subject’s labels by
a single10-fold cross-validation for RVM and Prot and a double10-fold cross-validation
to determineC for SVMs andK for Kmeans. Since every subject gets a different set of
148 randomly chosen faces from the200 available, the mean and standard error of the
classification errors of man or machine across the subjects’datasets is plotted.

When classifying the dataset with the true labels, the combination of PCA with Kmean
yields a classification performance comparable to that of humans. The better classification
performance of Kmean compared to the simple prototype classifier may be explained by
the piecewise linear decision function. The prototype classifier, popular in neuroscience,
psychology and philosophy, performs on average worse than humans. Either humans do
not classify gender using prototypes in the linear PCA space, or they use prototypes but not
the PCA representation, or, of course, they use neither.

An intriguing fact is that SVMs and RVMs perform better than man, which is contrary to
what is reported in [5, 12] where human experts and machines are tested on digits from the
postal service database USPS. The context of the study presented here is different, however.
Our subjects were presented with human faces with some high-level features such as hair,
beards, or glasses removed. However, such features were likely used by the subjects to
create their representation of gender-space during their lifetime. Subjects are thus trained
on one type of data and tested on another. The machines on the other hand are trained and
tested on the same type of stimuli. This may explain the quitedisappointing performance
of man in such a biologically-relevant task compared to machine.



However while humans learn the gender classification duringtheir lifetime, it seems that
they solve the problem in a manner not as optimal from a statistical point of view as SVMs,
but similarly to RVMs and Kmeans and better than prototype learners.

The classification on the subject’s labels represents the ability of the classifier to learn what
we, based on the responses of the subjects, presume to be their internal representation of
face-space. The machines have more difficulty in learning the dataset with the subject’s
labels than the one with the true labels. Given our aim of re-creating the subjects’ decision
boundaries using artificial classifiers—to compare human response patterns to machine
learning concepts—this makes Kmean a mediocre, and the prototype learner a rather poor
candidate for this enterprise using the PCA representation.

4.2 Correlation of Behaviour of Man with Machine

Here we correlate the classification behaviours of man and machine. The results are sum-
marized in plot (b-d) of Fig.4 and in Fig.5 where the parameters are averaged over the
subjects as before. This type of data analysis simply correlates the subject’s classification
error, RT, and CR to the mean distance|δ| = 〈 |〈~w|~xi〉+b|

‖~w‖ 〉i of the face stimuli to the separ-
ating hyperplane (SH) obtained for the four types of hyperplane classifiers (in the case of
Kmean this distance is computed for each pattern with respect to the SH constructed using
its nearest mean of each class.). The hyperplanes are determined using cross-validation
(see above) on the dataset with the subject’s labels. The distance of a pattern~x to the SH is
then calculated using the hyperplane computed using the training set corresponding to the
testing set~x is belonging to. Notice that|δ| reflects the construction rule of the classifica-
tion hyperplane rather than the generalisation ability of the algorithm. SVMs maximise the
distance to the nearest point but not the average distance toall points, which may yield a
small value of|δ|. Moreover the number of SVs, here](SV ) = 74± 1 out of148 patterns,
indicates that most patterns are close to the SH since classification is done in a space of
dimensionality200. The number of RVs,](RV ) = 9 ± 0, is comparatively small, this
sparsity being a well-known feature of RVMs.

Looking at Fig.4 (b-d) across all classifiers, we observe, first, that the error of the subjects is
high for |δ| low, suggesting that elements near the SH are more difficult to classify. Second
|δ| is low for high RT’s: the elements near the SH seem to require more processing in the
brain resulting in a higher RT. Third, the high CR for high|δ| indicates that the subject
is sure when stimuli are far from SH. Thus elements far from the SH are classified more
accurately, faster and with higher confidence than those near to the SH.

Thus far we only considered data averaged across all face-stimuli. In the following we
assess the relation between the distance of each face representation to the SH and the mean
across all subjects of one of their responses (classification error, RT or CR) for that face.
We perform a non-parametric rank correlation analysis using the tied rank of the subject’s
response and of|δ| across the set of200 faces. Fig.5 presents the resulting scatter plots for
each classifier and for each type of response. Qualitatively, it seems that RVMs show most
and prototype learners least correlation between the subject’s response and|δ|. In order to
compare these behaviours in a more quantitative manner, we indicate in fig.5 Spearman’s
rank correlation coefficientsr (linear correlation between the tied rank of one variable and
the tied rank of the other) between the parameter of machine (distance of a face to the SH)
and the responses of man (classification error, RT and CR). Under the null hypothesis of
no correlation between man and machine, the variablez = r

√
N − 1 follows a standard

normal distribution,N = 200 being the number of points in the scatter plots, and the
significance of the hypothesis test is computed asP = Φ(z) whereΦ is the cumulative
normal distribution with zero mean and unit variance. We getfor all casesP < 5 · 10−4

which allows us to reject the null hypothesis with a high degree of confidence.

From these results it can be seen that RVMs correlate best allthe subject’s responses with
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Figure 5: Scatter plots relating the subjects’ responses (classification error, RT and CR)
to the distance|δ| to the SH for each face in the database, the pooling being doneacross
subjects.

the distances of the stimuli to the SH. We can also notice thatthe CR is the performance
measure where least correlation between man and machine canbe asserted. The RT, on the
other hand, seems to be most appropriate for this type of study although all performance
measures are related as shown in sec.2. The prototype algorithm again behaves in the
least human-like manner of the four classifiers. The correlation between the classification
behaviour of man and machine indicates for RVMs, and to some extent SVMs and Kmeans,
that heads far from the SH are more easily processed by humans. It may be concluded that
the brain needs to do more processing (higher RT) to classifystimuli close to the decision
hyperplane, while stimuli far from it are classified more accurately (low error) and with
higher confidence (high CR).

5 Conclusions

Our study compared classification of faces by man and machine. Psychophysically we
noted that a high classification error and a low CR for humans is accompanied by a longer
processing of information by the brain (a longer RT) as shownin Fig.2. Moreover, elements
far from the SH are classified more accurately, faster and with higher confidence than those
near to the SH if we pool data across all our subjects and stimuli (Fig.4 (b-d)). We also
find three noteworthy results. First, SVMs and RVMs can learnto classify faces using the
subjects’ labels but perform much better when using the truelabels (Fig.4(a)). Second, cor-



relating the average response of humans (classification error, RT or CR) with the distance
to the SH on a face-by-face basis using Spearman’s rank correlation coefficients shows that
RVMs recreate human performance most closely in every respect. Third, the mean-of-class
prototype, its popularity in neuroscience notwithstanding, is the least human-like classifier
in all cases examined.

Obviously our results rely on a number of crucial assumptions: first, all measurements were
done in a linear space; second, the conclusions are only valid given the PCA representation
(pre-processing). Third, when rejecting the prototype learner as a plausible candidate for
human classification we assume the representativeness of our face space: we assume that
the mean face of our human subjects’ is close to the sample mean of our database. Clearly,
a larger face database would be welcome, but is not trivial aswe need texture maps and the
corresponding flowfields. Finally, there is the different learning regime. Machines were
trained on the dataset proper, whereas humans were assumed to have extracted the relevant
information during their lifetime, and they were tested on faces with some cues removed.
However, the representation we used does allow the genders to be separated well, as shown
by the SVM classification performance on the true labels. As afirst attempt to extend
the neuroscience community’s toolbox with machine learning methods we believe to have
shown the fruitfulness of this approach.
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