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Abstract

We attempt to understand visual classification in humanmgusdth psy-
chophysical and machine learning techniques. Frontalsigithuman
faces were used for a gender classification task. Humandaslgkssi-
fied the faces and their gender judgment, reaction time anfidemce

rating were recorded. Several hyperplane learning alyostwere used
on the same classification task using the Principal Comgen&the

texture and flowfield representation of the faces. The dlaatibn per-

formance of the learning algorithms was estimated usindabe data-
base with the true gender of the faces as labels, and alsdheitipender
estimated by the subjects. We then correlated the humanomnesp to
the distance of the stimuli to the separating hyperplankefdarning al-
gorithms. Our results suggest that human classificatiorbeamodeled
by some hyperplane algorithms in the feature space we usedldssi-

fication, the brain needs more processing for stimuli closhat hyper-

plane than for those further away.

1 Introduction

The last decade has seen tremendous technological advameegoscience from the mi-
croscopic to the macroscopic scale (e.g. from multi-urdordings to functional magnetic
resonance imaging). On an algorithmic level, however, odstand understanding of brain
processes are still limited. Here we report on a study coimgpipsychophysical and ma-
chine learning techniques in order to improve our undeditegof human classification of
visual stimuli. What algorithms best describe the way thman brain classifies? Might
humans use something akin to hyperplanes for classificatibgo, is the learning rule as
simple as in mean-of-class prototype learners or are maueisticated algorithms better
candidates?

In our experiments, subjects and machines classified huawes faccording to gender.
The stimuli were presented and we collected the subjectpamses, which are the es-
timated gender, reaction time and confidence rating (seE@) every subject a personal
new dataset was created: the original faces but with thesstibjabels (estimated gender
responses). We then applied a Principal Component Analgsistexture and flowfield
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representation of the faces. Various algorithms such ap@upector Machines, Rel-
evance Vector Machines, Prototype and K-means Learnets3fseere applied on this
low-dimensional dataset with the true and the subject&l&abrhe resulting classification
performances were compared, the corresponding decisjmerplanes were computed and
the distances of the faces to the hyperplanes were comlelatie the subjects’ responses,
the data being pooled among all subjects and stimuli or oinaukis-by-stimulus basis
(sec.4).

2 Human Classification Behaviour

We used grey-scale frontal views of human faces taken frarMRI face database [1].
Because of technical inhomogeneities of the faces in thedbdat we post-processed each
face such that all faces have same mean intensity, samespiKeke area and are centred
[2]. This processing stage is followed by a slight low-pakerfing of each face in the
database in order to eliminate, as much as possible, scpanifacts. The database is
gender-balanced and contains 200 Caucasian faces (sé¢. FigTwenty-seven human
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Figure 1: Female and male faces from the processed datdbfiseEigenvalue spectrum
from the PCA of our texture-flowfield representation (seedec\,,;, = 1.01 - 103 (the
last eigenvalue beingis not plotted) and\, .. = 2.47 - 10 (right).

subjects were asked to classify the faces according to geeider and we recorded three
responses: estimated class (i.e. female/male), reaatien(RT) and, after each estimated-
class-response, a confidence rating (CR) on a scale fronsiigirto 3 (sure). The stimuli
were presented sequentially to the subjects on a carefalilyrated display using a modi-
fied Hanning window (a raised cosine function with a raisingetof t;,.qysien: = 500mMs
and a plateau time of;.eqqy = 1000ms, for a total presentation timte= 2000ms per
face). Subjects were asked to answer as fast as possiblédio plerceptual, rather than
cognitive, judgements. Most of the time they responded Welbre the presentation of
the stimulus had ended (mean RT over all stimuli and subjeassapproximatel900ms).
All subjects had normal or corrected-to-normal vision aredepaid for their participation.
Most of them were students from the University of Tubinged all of them were naive to
the purpose of the experiment.

Analysis of the classification performance of humans is tbame signal detection the-
ory [3] and we assume that, on the decision axis, the intesigalal and noise distribu-
tions are Gaussian with same unit variance but differentnsieaMe define correct re-
sponse probabilities for males-{ and females{) asP, = P(j = 1lly = 1) and
P_ = P(y = —1]y = —1) wherej is the estimated class apdhe true class of the stimu-
lus. The discriminability of both stimuli can then be comgalias:d’ = Z(Py) + Z(P-)
whereZ = ®~!, and® is the cumulative normal distribution with zero mean and uni
variance. Averaged across subjects we obtfin= 2.85 + 0.73. This value indicates
that the classification task is comparatively easy for thgjemis, although without be-



ing trivial (no ceiling effect). We observe a strong malesbfa large number of females

classified as males but very few males classified as fematak)egpress this bias as:
= Z%(P;y) — Z*(P-) = 3.14 £ 2.61. The subplots of Fig.2 show the correlations

of (a) RT and classification error, (b) classification ernod £R, and (c) RT and CR. First,
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Figure 2: Human classification behaviour: mutual depeniésraf the subject’s responses.

RT'’s are longer for incorrect answers than for correct oag¢s $econd, a high CR is cor-
related with a low classification error (b) and thus subjbetge veridical knowledge about
the difficulty of individual responses—this is certainlytitioe case in many low-level psy-
chophysical settings. Third, the RT decreases as the CRases (c), i.e. stimuli easy to
classify are also classified rapidly. It may thus be condiuti@t a high error (or equival-
ently a low CR) implies higher RT’s. This may suggest thatgrat difficult to classify

need more computation, i.e. longer processing, by the lthaim patterns easy to classify.

3 Machine Learning Classifiers

In the following, various hyperplane classification algioms are expressed as weighted
dual space learners with different learning rules. Givem@aset{z,,y;}”_,, we assume
classification is done in the input space, i.e. we considesli kernels. Moreover, the input
space is normalized since this has proved to be effectivea@rcase of SVMs [4]. The
hyperplanes can be written using a weight (or normal) vectand an offseb in order to
yield a classification rule ag ) = sign({w|Z) + b) in the first three cases whereas in the
last one, the decision rule is a collection of hyperplané®se classifiers are compared on
a two-dimensional toy dataset in Fig.3.

Support Vector Machine (SVM, [5]). The weight vector is given asti = >, a;y;Z;
whered is obtained by maximising_, o; — % Zij Yiyjo0 (T;]Z;) subjecttoy , ay; =

0 and0 < a; < C where(C is a regularisation parameter, determined using for ircgtan
cross-validation. The offset is computed s+ (y; — (W|Z;));j0<a;<C-

Relevance Vector Maching(RVM, [6]). The weight vector (incorporating here the off-
set) is expressed a8 = ), ;@;. A Bernoulli distribution describe®(y]X, &) where

X ={z}_ . A hyperparamete@ is introduced in order to retrieve a sparse and smooth
solution fora using a Gaussian distribution fét(c|3). Learning amounts to maximising
P(§X,5) = [ P(j|X,a)P(d|F)da with respect to3. Since the latter is not integrable
analytically, the Laplace approximation (local approxiima of the integrand by a Gaus-
sian) is used for resolution, yielding an iterative updateesne forﬁ.

Prototype Learner (Prot, [7]). Defining the prototypegy = 2 Tyl

Ef:1(yii1)
Zi‘yi_ 1, 047; as the centre of mass of each class, the weight vector is tEessed

asiw = py — p- =Y., a;y;@; and the offset ash = 7 1I* "“”*”2 w\z i)
K-means Clustering with Nearest- neighbor Learner(Kmean [8]) Once thé{ centres
of the clusters for each class are computed using the K-malgwsithm, one mean

(%) =Y, ¢; ( Z)Z; for each class is selected for a patt@msing the nearest-neighbour



rule. The weight is then computed ag{Z) = k(&) — k_(Z) = > o (2) — o5 (2))Z,

the offset being given byb(z) = IE- (I)”Z I+ @)1 . Since the nearest-neighbour rule is
used for each pattern, the decision functlopleacemsdmear The appropriate value &f
is determined for instance using cross-validation.

SVM RVM Prot Kmean

Figure 3: Two-dimensional toy example illustrating cléissttion for a SVM, RVM, Prot
and Kmean: the lines indicate the separating hyperplangéstencircles show the SVs,
RVs, prototypes or means respectively.

4 Human Classification Behaviour Revisited by Machine

Each face taken from the MPI database is represented by Hewters: an intensity-
standardisedexture map, and space-standardised and y-flowfields representing the
shape The texture and shape vectors contain the informationiredjto generate a spe-
cific face from an “average” reference face by putting eack faf the database intmor-
respondenceThis format makes intensity and structural informationattihe faces expli-
cit. For the sake of numerical tractability, especially whising cross-validation methods,
the dimension of the image vectors has to be reduced to béeusglmachine learning
algorithms. We use Principal Component Analysis (PCA) foresent the concatenated
texture- and flowfield vectors of each face of size2562 in only 200 dimensions. In con-
trast to [9] where PCA is applied only to the intensity (orgdjxinformation of standard
images, the use of PCA on the texture-flowfield represemtédicces learning machines to
encode information about local structure and spatial spwadences.

It may be argued that the Principal Components of faces fdsinlagically-plausible basis
for representation of faces [10], the so-called eigenfac&sndard PCA on the images
themselves may thus be considered a biologically-plagiségresentation of faces. Given
that we use PCA on texture and flow-fields, any claim of biatagplausibility of our
representation is somewhat tenuous, however.

The variant of PCA considered in this paper searches to sgphe eigenvectors as linear
combinations of the data vectors [10, 11]. It has the contfmurtal advantage over classic
PCA that it does not require the computation of a correlatietaveen the dimensions of the
input but between the patterns of the input. For the stimarisidered here, the eigenvalue
spectrum as shown in Fig.1 is a monotonically decreasingtimm with no flat regions.
Thus PCA seems to be a sensible choice to represent the hawstimuli used in this
study (for a comparative study of PCA against Locally LinEarbedding, where PCA is
clearly superior for machine learning purposes, see [2]).

4.1 Classification Performance of Man and Machine

We compare the classification performance of man and madahipket (a) of Fig.4. For
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Figure 4: Classification performance of man and machine erirtte and subject dataset
(a) and correlation of behaviour of man with machine for ¢ataled across subjects and
stimuli (b-d).

humans, the classification error on the true dataset israatdly comparing the estimated
class to the true one, whereas the classification error osutbject dataset is the mean over
all subjects of the error the other subjects made on the Btprnesented to each subject.
For machines it is obtained using the dataset with eithetrtieeor the subject’s labels by

a single10-fold cross-validation for RVM and Prot and a doull&fold cross-validation

to determineC for SVMs andK for Kmeans. Since every subject gets a different set of
148 randomly chosen faces from tf280 available, the mean and standard error of the
classification errors of man or machine across the subjdatasets is plotted.

When classifying the dataset with the true labels, the caathin of PCA with Kmean
yields a classification performance comparable to that ofdns. The better classification
performance of Kmean compared to the simple prototypeifiersmay be explained by
the piecewise linear decision function. The prototypesifas, popular in neuroscience,
psychology and philosophy, performs on average worse thamahs. Either humans do
not classify gender using prototypes in the linear PCA spaciaey use prototypes but not
the PCA representation, or, of course, they use neither.

An intriguing fact is that SVMs and RVMs perform better thaamwhich is contrary to
what is reported in [5, 12] where human experts and machirestested on digits from the
postal service database USPS. The context of the studyrpeeleere is different, however.
Our subjects were presented with human faces with somelbighfeatures such as hair,
beards, or glasses removed. However, such features wefg liked by the subjects to
create their representation of gender-space during ftifigimie. Subjects are thus trained
on one type of data and tested on another. The machines othierehand are trained and
tested on the same type of stimuli. This may explain the gligappointing performance
of man in such a biologically-relevant task compared to rraeh



However while humans learn the gender classification dutieq lifetime, it seems that
they solve the problem in a manner not as optimal from a sitatigoint of view as SVMs,
but similarly to RVMs and Kmeans and better than prototyperiers.

The classification on the subject’s labels represents tiigyads the classifier to learn what
we, based on the responses of the subjects, presume to bantaeial representation of
face-space. The machines have more difficulty in learniegdditaset with the subject’s
labels than the one with the true labels. Given our aim ofreating the subjects’ decision
boundaries using artificial classifiers—to compare humaparse patterns to machine
learning concepts—this makes Kmean a mediocre, and thetppetlearner a rather poor
candidate for this enterprise using the PCA representation

4.2 Correlation of Behaviour of Man with Machine

Here we correlate the classification behaviours of man arehima. The results are sum-
marized in plot (b-d) of Fig.4 and in Fig.5 where the pararsetge averaged over the
subjects as before. This type of data analysis simply cteelthe subject’s classification

error, RT, and CR to the mean distanée= (%ﬁ of the face stimuli to the separ-
ating hyperplane (SH) obtained for the four types of hyparplclassifiers (in the case of
Kmean this distance is computed for each pattern with re$peice SH constructed using
its nearest mean of each class.). The hyperplanes are deteronsing cross-validation
(see above) on the dataset with the subject’s labels. Thendis of a patteri to the SH is
then calculated using the hyperplane computed using thertgeset corresponding to the
testing seftt is belonging to. Notice that| reflects the construction rule of the classifica-
tion hyperplane rather than the generalisation abilityhefalgorithm. SVMs maximise the
distance to the nearest point but not the average distaradepoints, which may yield a
small value oflé|. Moreover the number of SVs, hefeSV') = 74 £ 1 out of 148 patterns,
indicates that most patterns are close to the SH since fitasiin is done in a space of
dimensionality200. The number of RVs§(RV) = 9 + 0, is comparatively small, this
sparsity being a well-known feature of RVMs.

Looking at Fig.4 (b-d) across all classifiers, we observst, fihat the error of the subjects is
high for|4| low, suggesting that elements near the SH are more difficelessify. Second
|0] is low for high RT’s: the elements near the SH seem to requoreerprocessing in the
brain resulting in a higher RT. Third, the high CR for high indicates that the subject
is sure when stimuli are far from SH. Thus elements far from3# are classified more
accurately, faster and with higher confidence than thosetog¢he SH.

Thus far we only considered data averaged across all faoedst In the following we
assess the relation between the distance of each faceenatatsn to the SH and the mean
across all subjects of one of their responses (classificatior, RT or CR) for that face.
We perform a non-parametric rank correlation analysisgiie tied rank of the subject’s
response and df| across the set &f00 faces. Fig.5 presents the resulting scatter plots for
each classifier and for each type of response. Qualitatitedgems that RVMs show most
and prototype learners least correlation between the stibjesponse and|. In order to
compare these behaviours in a more quantitative mannendieste in fig.5 Spearman’s
rank correlation coefficients(linear correlation between the tied rank of one variabld an
the tied rank of the other) between the parameter of macHis&afce of a face to the SH)
and the responses of man (classification error, RT and CRJetJe null hypothesis of
no correlation between man and machine, the variabte r/N — 1 follows a standard
normal distribution,N- = 200 being the number of points in the scatter plots, and the
significance of the hypothesis test is computedPas: ®(z) where® is the cumulative
normal distribution with zero mean and unit variance. Wefgetll casesP < 5-10~*
which allows us to reject the null hypothesis with a high éegof confidence.

From these results it can be seen that RVMs correlate besteadlubject’s responses with
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Figure 5: Scatter plots relating the subjects’ responsesgiication error, RT and CR)
to the distancéd| to the SH for each face in the database, the pooling being doress
subjects.

the distances of the stimuli to the SH. We can also noticettteaCR is the performance
measure where least correlation between man and machimeemserted. The RT, on the
other hand, seems to be most appropriate for this type of/ stlidough all performance
measures are related as shown in sec.2. The prototypethlgosigain behaves in the
least human-like manner of the four classifiers. The caliceldbetween the classification
behaviour of man and machine indicates for RVMs, and to soteneSVMs and Kmeans,
that heads far from the SH are more easily processed by hutamsy be concluded that
the brain needs to do more processing (higher RT) to classifyuli close to the decision
hyperplane, while stimuli far from it are classified more @etely (low error) and with
higher confidence (high CR).

5 Conclusions

Our study compared classification of faces by man and macHhisychophysically we

noted that a high classification error and a low CR for humsagtompanied by a longer
processing of information by the brain (a longer RT) as shiowiig.2. Moreover, elements
far from the SH are classified more accurately, faster anid liggher confidence than those
near to the SH if we pool data across all our subjects and Bt{fig.4 (b-d)). We also

find three noteworthy results. First, SVMs and RVMs can learclassify faces using the
subjects’ labels but perform much better when using thelatels (Fig.4(a)). Second, cor-



relating the average response of humans (classification &T or CR) with the distance

to the SH on a face-by-face basis using Spearman’s rankatiorecoefficients shows that
RVMs recreate human performance most closely in every oesphird, the mean-of-class

prototype, its popularity in neuroscience notwithstagdia the least human-like classifier
in all cases examined.

Obviously our results rely on a number of crucial assumggtidinst, all measurements were
done in a linear space; second, the conclusions are ontygiaken the PCA representation
(pre-processing). Third, when rejecting the prototyperlenas a plausible candidate for
human classification we assume the representativeness tdasuspace: we assume that
the mean face of our human subjects’ is close to the sampla oferaur database. Clearly,
a larger face database would be welcome, but is not trivialeaseed texture maps and the
corresponding flowfields. Finally, there is the differerdriging regime. Machines were
trained on the dataset proper, whereas humans were assoimacbtextracted the relevant
information during their lifetime, and they were tested ands with some cues removed.
However, the representation we used does allow the geralbesseparated well, as shown
by the SVM classification performance on the true labels. Assa attempt to extend
the neuroscience community’s toolbox with machine leagmrethods we believe to have
shown the fruitfulness of this approach.
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