Learning to Find Pre-Images

Gokhan H. Bakir, Jason Weston and Bernhard Scblkopf
Max Planck Institute for Biological Cybernetics
Spemannstralle 38, 72078bingen, Germany

{gb, west on, bs }@tuebingen.mpg.de

Abstract

We consider the problem of reconstructing patterns fronatufe map.
Learning algorithms using kernels to operate in a reproguéiernel
Hilbert space (RKHS) express their solutions in terms ofutnpoints
mapped into the RKHS. We introduce a technique based onlk@inei-
pal component analysis and regression to reconstructspmneling pat-
terns in the input space (aka pre-images) and review itopaénce in
several applications requiring the construction of preges. The intro-
duced technique avoids difficult and/or unstable numedpémization,
is easy to implement and, unlike previous methods, permé@sompu-
tation of pre-images in discrete input spaces.

1 Introduction

We denote byH;, the RKHS associated with the kernielx,y) = ¢(x) ¢(y), where
¢(x) : X — Hy, is a possible nonlinear mapping from input spac¢dassumed to be a
nonempty set) to the possible infinite dimensional sggdge The pre-image problem is
defined as follows: given a poir in Hy, find a corresponding pattesn € X such that

¥ = ¢(x). SinceHy, is usually a far larger space thaf this is often not possible (see Fig.
?7?). In these cases, the (approximate) pre-imagechosen such that the squared distance
of ¥ and¢(z) is minimized,

z = arg min||¥ — ¢(z)]|>. Q)

This has a significant range of applications in kernel methddr reduced set methods
[1], for denoising and compression using kernel principahponents analysis (KPCA),
and for kernel dependency estimation (KDE), where one findspping between paired
sets of objects. The techniques used so far to solve thisneamloptimization problem
often employ gradient descent [1] or nonlinear iteratiorthrods [2]. Unfortunately, this
suffers from (i) being a difficult nonlinear optimizationgilem with local minima requir-
ing restarts and other numerical issues, (ii) being contimutally inefficient, given that
the problem is solved individually for each testing exam§ii® not being the optimal
approach (e.g., we may be interested in minimizing a classi€in error rather then a dis-
tance in feature space); and (iv) not being applicable feriprages which are objects with
discrete variables.

In this paper we propose a method which can resolve all fdficdliies: the simple idea is
to estimate the function (1) by learning the mBp- z from exampleg¢(z), z). Depend-
ing on the learning technique used this can mean, afteriggieach use of the function

(each pre-image found) can be computed very efficiently,thace are no longer issues
with complex optimization code. Note that this problem isisual in that it is possible to
produce an infinite amount of training data (and thus expeget good performance) by
generating points ift{;, and labeling them using (1). However, often we have knowdedg
about the distribution over the pre-images, e.g., whenidenpdigits with KPCA, one ex-
pects as a pre-image something that looks like a digit, arestmate of this distribution is
actually given by the original data. Taking this distrilmutiinto account, it is conceivable
that a learning method could outperform the naive methad,dhequation (1), by produc-
ing pre-images that are subjectively preferable to the mizers of (1). Finally, learning
to find pre-images can also be applied to objects with disaratiables, such as for string
outputs as in part-of-speech tagging or protein secondargtare prediction.

The remainder of the paper is organized as follows: in Se@iwe review kernel methods
requiring the use of pre-images: kPCA and KDE. Then, in $ac8 we describe our
approach for learning pre-images. In Section 4 we verifyroathod experimentally in the
above applications, and in Section 5 we conclude with a disou.

2 Methods Requiring Pre-Images
2.1 Kernel PCA Denoising and Compression

Given data pointgx;}*, € X, kPCA constructs an orthogonal set of feature extractors
in the RKHS. The constructed orthogonal system= {vy,...,v,} lies in the span of
the data points, i.eP = (X0, afd(x;),..., > im, alg(x;)). Itis obtained by solv-
ing the eigenvalue problemmAa’ = Ka' for 1 < i < r where K;; = k(x;,%;)

is the kernel matrix and < m is the number of nonzero eigenvaldesOnce built,

the orthogonal systen® can be used for nonlinear feature extraction. ketlenote

a test point, then the nonlinear principal components camxteacted viaP¢(x) =
(X7 alk(x,x), ..., >0 alk(x;,x)) wherek(x;,x) is substituted foks(x;) " ¢(x).

1=1"1

See ([3],[4] chapter 14) for details.

Beside serving as a feature extractor, KPCA has been pro@ssa denoising and com-
pression procedure, both of which require the calculatfonput patternsx from feature
space pointP¢(x).

Denoising. Denoising is a technique used to reconstruct patterns mieauby noise.
Given data pointgx;}™; and the orthogonal systef = (vy,...,v,,...,v,) obtained
by kPCA. Assume that the orthogonal system is sorted by detrg variance, we write
#(x) = Pp(x) = P,o(x) + P;-é(x), where P, denotes the projection on the span of
(v1,...,V4). The hope is thaP, ¢(x) retains the main structure &f while P;-¢(x) con-
tains noise. If this is the case, then we should be able tawans denoised input pattern
as the pre-image aP,¢(x). This denoisedpatternz can be obtained as solution to the
problem

z = argmin | P (x) — ¢(2)||”.)

For an application of kPCA denoising see [2].

Compression. Consider a sender receiver-scenario, where the sendertS tearansmit
information to the receiver R. If S and R have the same prigjechatrix P serving as a
vocabulary, then S could ugd®, to encodex and sendP, ¢(x) € R® instead ofx € R™.

This corresponds to a lossy compression, and is useful< n. R would obtain the

We assume that thé(x;) are centered in feature space. This can be achieved by centering the

kernel matrixK® = (I — L117)K (I — 2117), wherel € R™ is the vector with every entry
equal 1. Test patterns must be centered with the same center obtaimethé training stage.

corresponding pattera by minimizing (2) again. Therefore kPCA would serve as ercod
and the pre-image technique as decoder.

2.2 Kernel Dependency Estimation

Kernel Dependency Estimation (KDE) is a novel algorithmyfiich is able to learn gen-
eral mappings between an input gétand output sed, give definitions of kernelé and

[(with feature map®, and®;) which serve as similarity measures &nhand), respec-
tively. To learn the mapping from dafx;, y;}, € X x Y, KDE performs two steps.

1) Decomposition of outputs.First a kPCA is performed ift{; associated with kernél
This results in- principal axesvy, ..., v, in H;. Obtaining the principal axes, one is able
to obtain principal components;(y) " vi, ..., ¢;(y) " v,.) of any objecty.

2) Learning the map. Next, we learn the map fromy, (x) to (¢;(y) Tvi, ..., é1(y) Tv,.).
To this end, for each principal axis; we solve the problem

argﬁrjmn Z::l(@(yi)TVj — g(xi, 7)) + 115717, @)

wherey||37]|? acts as a regularization term (with> 0), g(x;, 37) = Yoo, Blk(xs, %),
and3 € R™*", LetP € R™ " with P;; = ¢y(yi)'v;,j = 1...r andK € R™*™ the
kernel matrix with entried(; = k(xs,x:), With s, = 1...m. Problem (3) can then be
minimized, for example via kernel ridge regression, yietdi

B =(K'K++I) 'KP. (4)

3) Testing Phase.Using the learned map from input patterns to principal conembs,
predicting an outpuy’ for a new patterrx’ requires solving the pre-image problem

y/ = argmin”(d)l(y)—rvlw"7¢l(y)Tvr) - (k(Xl,XI),.,.,]{Z(Xm,X/))ﬂ”z. (5)
Yy
Thusy’ is the approximate pre-image of the estimated po{gt) in H;.

3 Learning Pre-Images

We shall now argue that by mainly being concerned with (19,rttrethods that have been
used for this task in the past disregard an important piegg@fmation. Let us summarize
the state of the art (for details, see [4]).

Exact pre-images One can show that if an exact pre-image exists, and if the ker
nel can be written ag(x,x’) = fx((x'x’)) with an invertible functionf; (e.g.,
k(x,x") = (x"x’)? with odd d), then one can compute the pre-image analytically as
z=N ft (Z’Jﬁ:l ajk(xj,ei)) e;, where{ey, ..., ey} is any orthonormal basis of
input space. However, if one tries to apply this method ircfica, it usually works less

well than the approximate pre-image methods describedwbdlbis is due to the fact that
it usually is not the case that exact pre-images exist.

General approximation methods. These methods are based on the minimization of (1).
Whilst there are certain cases where the minimizer of (1) egfiolnd by solving an eigen-
value problem (fok(x, x’) = (xx’)2), people in general resort to methods of nonlinear
optimization. For instance, if the kernel is differenti@bbne can multiply out (1) to ex-
press it in terms of the kernel, and then perform gradientef@s[1]. The drawback of
these methods is that the optimization procedure is expeasid will in general only find

a local optimum. Alternatively one can select the k best irgmints from some training
set and use them in combination to minimize the distanceséb) [6] for details.

Iteration schemes for particular kernels. For particular types of kernels, such as radial
basis functions, one can devise fixed point iteration scisemtgch allow faster minimiza-
tion of (1). Again, there is no guarantee that this leads ttwbaj optimum.

One aspect shared by all these methods is that they do natidyphake use of the fact
that we havdabeled examplesf the unknown pre-image map: specifically, if we consider
any pointinx € X', we know that the pre-image #(x) is simplyx.? Below, we describe a
method which makes heavy use of this information. Specificak use kernel regression
to estimate the pre-image map from data. As a data set, wadeoribe training data
{x;}, that we are given in our original learning problem (KkPCA, K[2c.).

3.1 Estimation of the Pre-Image Map

We seek to estimate a functidn : H; — X with the property that, at least approxi-

mately, '(®(x;)) = x; fori = 1,...,m. If we were to use regression using the ker-
nel k£ corresponding td<;, then we would simply look for weight vectors; € Hj,
j=1,...,dim X such thaf;(¥) = w] ¥, and use the kernel trick to evaludte How-

ever, in general we may want to use akenalhich is different fromk, and thus we cannot
perform our computations implicitly by the use of a kernéehislooks like a problem, but
there is a way to handle it. It is based on the well-known olzgen that although the
data inH;, may live in an infinite-dimensional space, any finite datasgeins a subspace
of finite dimension. A convenient way of working in that sulee is to choose a basis and
to work in coordinates, e.g., using a kPCA basis. Bgtl = Z?Zl(\IlTvi)vi denote the
projection that maps a point into its coordinates in the P@gisv4, ..., v,, i.e., into the
subspace where the training set has nonzero variance. \Wdettien the pre-image map
I'; : R™ — X by solving the learning problem

r, = argrminzzll(xi,I‘(Pngb(xi)))+)\Q(F). (6)

Here,Q is a regularizer, and > 0. If X is the vector spac®”, we can consider the
problem (6) as a standard regression problem forrth&aining pointsx; and use ker-
nel ridge regression with a kerngl This yields a pre-image mappifg;(P,¢(x)) =
Yo BI(Pré(x), Pad(x,)), j =1,..., N, which can be solved like (3).

Note that the general learning setup of (6) allows to use p&aitable loss function, incor-
porating invariances and a-priori knowledge. For examipbae pre-images are (natural)
images, a psychophysically motivated loss function cogldiged, which would allow the
algorithm to ignore differences that cannot be perceived.

3.2 Pre-Images for Complex Objects

In methods such as KDE one is interested in finding pre-imémgegeneral sets of objects,
e.g. one may wish to find a string which is the pre-image of aasgntation using a string
kernel [7, 8]. Using gradient descent techniques this ispossible as the objects have
discrete variables (elements of the string). However,gi&inction estimation techniques,
as long as it is possible to learn to find pre-images even fon sbjects, the problem can
be approached by decomposition into several learning skitar his should be possible
whenever there is structure in the object one is trying tdlioteIn the case of strings one
can predict each character of the string independentlyngive estimate;(y’). This is
made particularly tractable in fixed-length string preidictproblems such as for part-of-
speech tagging or protein secondary structure predictoalse the length is known (it is
the same length as the input). Otherwise the task is moreultffout still one could also

2t may not be the only pre-image, but this does not matter as long as it in#srthe value of

Q).

predict the length of the output string before predictingre@lement of it. As an example,
we now describe in depth a method for finding pre-images fomknlength strings.

The task is to predict a string given a stringx and a set of paired examplés;,y;) €

o1 ()P x UpZ (3,)P. Note thatlx; | = [y;| for all 4, i.e., the length of any paired input
and output strings are the same. This is the setting of gesp@ech tagging, wheie, are
words andX, are parts of speech, and also secondary structure predietleereX, are
amino acids of a protein sequence ahglare classes of structure that the sequence folds
into, e.g. helix, sheet or coil.

It is possible to use KDE (Section 2.2) to solve this taskaiye One has to define an
appropriate similarity function for both sets of objectangsa kernel function, giving two
implicit maps¢x(x) and¢;(y) using string kernels. KDE then learns a map between the
two feature spaces, and for a new test ststngne must find the pre-image of the estimate
¢1(y’) as in equation (5). One can find this pre-image by predictagheharacter of the
string independently given the estimaigy’) as it has known length given the inpxit

One can thus learn a functidp, = f(¢i(y'), o) Whereb, is the p'* element of the
output anda, = (a(p—n/2)A(p—n/2+41) - - - G(p+ny2)) IS @ Window of lengthn + 1 with
center at positiorp in the input string. One computes the entire output stringh wi
B = (flay),an)... f(d1(y), a1x)); window elements outside of the string can be en-
coded with a special terminal character. The functfaan be trained with any multi-class
classification algorithm to predict one of the elements ef éfphabet, the approach can
thus be seen as a generalization of the traditional appraaath is learning a function
f given only a window on the input (the second parameter). @praach first estimates
the output using global information from the input and wiglspect to the loss function of
interest on the outputs—it only decodes this global prealiciin the final step. Note that
problems such as secondary structure prediction oftenlbasdunctions dependent on the
complete outputs, not individual elements of the outpumgt9].

4 Experiments

In the following we demonstrate the pre-image learning niégpe on the applications we
have introduced.

i
bt gégg : é ié g
i

Géuss'ién .-r10|s - PCA kPCA+grad.desc. kPCA+learn-pre.

Figure 1: Denoising USPS digits: linear PCA fails on thiktdsarning to find pre-images
for KPCA performs at least as well as finding pre-images bgigrd descent.

KPCA Denoising. We performed a similar experiment to the one in [2] for denti@ti®n
purposes: we denoised USPS digits using linear and kPCA ddiedaGaussian noise with
variance 0.5 and selected 100 randomly chosen non-noigtg étg training and a further
100 noisy digits for testing, 10 from each class. As in [2] wese a nonlinear map
via a Gaussian kernel with = 8. We selected 80 principal components for kPCA. We
found pre-images using the Matlab function fminsearch, esmipared this to our pre-

image-learning method (RBF kern&l(x,z’') = exp(—||z — 2'||?/202) with ¢ = 1, and
regularization parametex = 1). Figure 1 shows the results: our approach appears to
perform better than the gradient descent approach. As jiifiglar PCA visually fails for

this problem: we show its best results, using 32 compon&tate the mean squared error
performance of the algorithms is not precisely in accordamith the loss of interest to the
user. This can be seen as PCA has an MSE (13.4) versus gradient descent (3t57)

and learnt pre-images (29:2.8). PCA has the lowest MSE but as can be seen in Figure 1
it doesn't give satisfactorys visual results in terms ofalsimg.

Note that some of the digits shown are actually denoisedriactly as the wrong class.
This is of course possible as choosing the correct digit isoalpm which is harder than
a standard digit classification problem because the imagesaisy. Moreover, kPCA is
not a classifier per se and could not be expected to clasgjitg @dis well as Support Vector
Machines. In this experiment, we also took a rather smallbemof training examples,
because otherwise the fminsearch code for the gradienedes@s very slow, and this
allowed us to compare our results more easily.

KPCA Compression. For the compression experiment we use a video sequencetonsi
ing of 1000 graylevel images, where every frame hda®@x 100 pixel resolution. The
video sequence shows a famous science fiction figure turningdad 180 degrees. For
training we used every 20th frame resulting in a video secgerfi 50 frames with 3.6 de-
gree orientation difference per image. The motivation isttwe only these 50 frames and
to reconstruct all frames in between.

We applied a KPCA to all 50 frames with a Gaussian kernel wimé&l parametes .
The 50 feature vectors,, . .., vso € R0 are used then to learn the interpolation between
the timeline of the 50 principal componentg where i is the time index, j the principal
component number j ant < 4, < 50. A kernel ridge regression with Gaussian kernel
and kernel parameter, and ridger; was used for this task. Finally the pre-image nhap
was learned from projections ontq to frames using kernel ridge regression with kernel
parameterrs and ridgers. All parameterss, o9, 03,71, 72 Were selected in a loop such
that new synthesized frames looked subjectively best. [€Hi® the values; = 2.5,05 =
1,03 = 0.15 and for the ridge parameters = 10~'3,7, = 10~". Figure 2 shows the
original and reconstructed video sequence.

Note that the pre-image mechanism could possibly be adaptmdte into account invari-
ances and a-priori knowledge like geometries of standaad$io reduce blending effects,
making it more powerful than gradient descent or plain lineterpolation of frames. For
an application of classical pre-image methods to face ntiadekee [10].

String Prediction with Kernel Dependency Estimation. In the following we expose a
simple string mapping problem to show the potential of theraach outlined in Section
3.2. We construct an artificial problem witli,| = 3 and|X,| = 2. Output strings are
generated by the following algorithm: start in a randomestator 2) corresponding to one
of the output symbols. The next symbol is either the same ith, ;wobability%, the state
switches (this tends to make neighboring characters the sgmbol). The length of the
string is randomly chosen between 10 and 20 symbols. Eacth $tiing is generated with
equal probability from one of two models, starting randoinlgtate a, b or ¢ and using the
following transition matrices, depending on the currertpoustate:

Model 1 Model 2
Output 1 Output 2 Output 1 Output 2
a b c a b ¢ a b c a b c
al0 0 1flaf1l/2 1/2 O all/2 1/2 0 |[al1l 0 O
b0 O 1(b|1/2 1/2 O b|1/2 1/2 0 b|0o 1 O
c|1l 0 Ofc| O 1 0 c| 0 1/2 1/2|lc|0 1 O

Subsequence of original video sequence. Subsequencetbésized video sequence.
First and last frame are used in training set.

Figure 2: Kernel PCA compression used to learn intermediaages. The pre-images are
in 2100 x 100 dimensional space making gradient-descent based desgardticable.

As the model of the string can be better predicted from thepteta string, a global method
could be better in principle than a window-based method. ¥¢eaustring kernel called the
spectrum kernel[11] to define strings for inputs. This mdthoilds a representation which
is a frequency count of all possible contiguous subsequeoickengthp. This produces a
mapping with featuregy (x) = <ZL§1_I)+1[(X1‘, o X(i4p—1)) = 0] : a € (,)P) where
[x = y]is 1if x =y, and O otherwise. To define a feature space for outputs wet coun
the number of contiguous subsequences of lepgth theinputthat, if starting in position

q, have the same element of the alphabet at positien(p — 1)/2 in the output for odd
values ofp. Thatis,¢i(x,y) = (X7 (xiy -, X(ip-1) = Wit po1yy2 = b] :

a € (X,)P,b € X,). We can then learn pre-images using a window also of gias
described in Section 3.2, e.g. usihgNN as the learner. Note that the output kernel is
defined on both the inputs and outputs: such an approachasuaési in [12] and called
“joint kernels”, and in their approach the calculation oépmages is also required, so they
only consider specific kernels for computational reasondadt, our approach could also
be a benefit if used in their algorithm.

We normalized the input and output kernel matrices suchdhagtrix.S is normalized
with S «+ D~1SD~! whereD is a diagonal matrix such th#d;i = > Sii- We also used
a nonlinear map for KDE, via an RBF kernel, i.& (z,z') = exp(—d(x,2’)) where the
distanced is induced by the input string kernel defined above, and wa setl.

We give the results on this toy problem using the classificadéirror (fraction of symbols
misclassified) in the table below, with 50 strings using &@tross validation, we compare
to k-nearest neighbor using a window size of 3, in our method veel ps= 3 to generate
string kernels, an@-NN to learn the pre-image, therefore we quote differerior both
methods. Results for larger window sizes only made the tewudrse.

1-NN 3-NN 5-NN 7-NN 9-NN
KDE 0.182+0.03 0.16%0.03 0.1620.03 0.164-0.03 0.1630.03
k-NN 0.251H0.03 0.2430.03 0.2420.03 0.25@0.03 0.248-0.03

5 Conclusion

We introduced a method to learn the pre-image of a vector RKHS. Compared to clas-
sical approaches, the new method has the advantage thaottnsimerically unstable, it is
much faster to evaluate, and better suited for high-dinogrgiinput spaces. It is demon-

strated that it is applicable when the input space is dis@et! gradients do not exist. How-
ever, as a learning approach, it requires that the pattesed during training reasonably
well represent the points for which we subsequently wantoimpute pre-images. Oth-
erwise, it can fail, an example being a reduced set (see ppjcation, where one needs
pre-images of linear combinations of mapped pointg{inwhich can be far away from

training points, making generalization of the estimatezliptage map impossible. Indeed
preliminary experiments (not described in this paper) sbthat whilst the method can
be used to compute reduced sets, it seems inferior to céssathods in that domain.

Finally, the learning of the pre-image can probably be auget with mechanisms for
incorporating a-priori knowledge to enhance performarfgere-image learning, making
it more flexible than just a pure optimization approach. Feitesearch directions include
the inference of pre-images in structures like graphs acakrporating a-priori knowledge
in the pre-image learning stage.

Acknowledgement. The authors would like to thank Kwang In Kim for fruitful diss-
sions, and the anonymous reviewers for their comments.

References

[1] C. J. C. Burges. Simplified support vector decision rules. In litt&aeditor,Proceedings of
the 13th International Conference on Machine Learnipgges 71-77, San Mateo, CA, 1996.
Morgan Kaufmann.

[2] S. Mika, B. Scldlkopf, A. J. Smola, K.-R. Niller, M. Scholz, and G. Rsch. Kernel PCA and
de-noising in feature spaces. In M. S. Kearns, S. A. Solla, and DoAnCeditorsAdvances in
Neural Information Processing Systems ftdges 536-542, Cambridge, MA, 1999. MIT Press.

[3] B. Schvlkopf, A. J. Smola, and K.-R. Mler. Nonlinear component analysis as a kernel eigen-
value problemNeural Computation10:1299-1319, 1998.

[4] B. Scholkopf and A. J. SmolaLearning with KernelsMIT Press, Cambridge, MA, 2002.

[5] Jason Weston, Olivier Chapelle, Andre Elisseeff, Bernhardkolpf, and Vladimir Vapnik.
Kernel dependency estimation. In S. Becker, S. Thrun, and K.r@dnger, editorsAdvances in
Neural Information Processing Systems Cambridge, MA, 2002. MIT Press.

[6] J.T. Kwok and I.W. Tsang. Finding the pre images in kernel prialcgmmponent analysis. In
NIPS’2002 Workshop on Kernel Machin@902.

[7]1 D. Haussler. Convolutional kernels on discrete structures. TeahReport UCSC-CRL-99-10,
Computer Science Department, University of California at Santa CA89.1

[8] H. Lodhi, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text sifisation using string ker-
nels. Technical Report 2000-79, NeuroCOLT, 2000. Published.iK: Teen, T. G. Dietterich
and V. Tresp (eds.Advances in Neural Information Processing System3vil¥ Press, 2001,
as well as in IMLR2:419-444, 2002.

[9] S.Huaand Z. Sun. A novel method of protein secondary struptamiction with high segment
overlap measure: Svm approadournal of Molecular Biology308:397-407, 2001.

[10] S. Romdhani, S. Gong, and A. Psarrou. A multiview nonlineavachape model using kernel
PCA. InProceedings of BMV(pages 483—-492, Nottingham, UK, 1999.

[11] C. Leslie, E. Eskin, and W. S. Noble. The spectrum kernel: A stkergel for SVM protein
classification.Proceedings of the Pacific Symposium on Biocompu02.

[12] Y. Altun, I. Tsochantaridis, and T. Hofmann. Hidden markovug vector machines. IB0th
International Conference on Machine Learning (ICMRPO3.

