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Abstract. In this paper we present a learning-based approach for the
modeling of complex movement sequences. Based on the method of
Spatio-Temporal Morphable Models (STMMs) [12] we derive a hierar-
chical algorithm that, in a first step, identifies automatically movement
elements in movement sequences based on a coarse spatio-temporal de-
scription, and in a second step models these movement primitives by ap-
proximation through linear combinations of learned example movement
trajectories. We describe the different steps of the algorithm and show
how it can be applied for modeling and synthesis of complex sequences of
human movements that contain movement elements with variable style.
The proposed method is demonstrated on different applications of move-
ment representation relevant for imitation learning of movement styles
in humanoid robotics.

1 Introduction

The development of efficient representations of complex movements is an impor-
tant problem in many technical disciplines, such as computer vision, computer
graphics, robotics, sports, and medical diagnosis. For several applications it is
crucial to learn such representations based on small amounts of training data.
This requires learning techniques, that approximate whole classes of movement
sequences with a small set of example sequences. One method that fulfills this
requirement and seems which is suitable for both, the synthesis and analysis
of movements with different spatio-temporal characteristics is the linear combi-
nation of movements. Such linear combinations can be defined on the basis of
spatio-temporal correspondence. The technique of Spatio-Temporal Morphable
Models (STMMs) defines linear combinations by weighted summation of spa-
tial and temporal displacement fields that morph the combined prototypical
movement into a reference pattern [12]. Interpolation based on spatio-temporal
correspondence has been successfully applied for motion morphing in computer
graphics [36,6,38] , and for the recognition and synthesis of periodic gait pat-
terns in computer vision [12]. Most existing interpolation approaches (see also



[13,28]) are restricted to individual short movements (e.g. one gait cycle, or a
single arm movement), and require previous segmentation of the action stream.
It seems desirable to define linear combinations for much more complex trajec-
tories in order to model e.g. sequences of movements in sports, or an action
sequence of a humanoid robot with different styles.

In this paper we present a hierarchical algorithm that makes STMM appli-
cable to complex motion sequences by introducing a second hierarchy level that
represents motion primitives. Each movement primitive is modeled by a STMM.
In this way a generative model of complex sequences of acyclic movements with
variable styles can be learned from few example trajectories. This representa-
tion is suitable for analysis and synthesis, and can thus be applied for imitation
learning o complex movement sequences.

In the following we first describe the algorithm that consists of three steps:
1) the automatic identification of movement primitives, and 2) their approxima-
tion by STMM, and (3) the automatic concatenation of the modeled movement
elements into a smooth trajectory. We then show three applications of this al-
gorithm. In the first example we show the capability of the method to synthe-
size a parameterized spectrum of human walking styles based on a few recorded
movement prototypes. Second, we describe the automatic synthesis of movement
sequences with complex spatio-temporal structure modeling technique sequences
(katas) from martial arts. Finally, we demonstrate the application of the method
in the context of imitation learning in robotics: the imitation of different styles
of human writing movements on a 7-DOF robot arm.

2 Hierarchical Spatio-Temporal Morphable Models
(HSTMM)

The three steps of the algorithm for establishing spatio-temporal correspondence
between complex movement sequences are illustrated in figure 1. More details
are given in the following sections.

2.1 Representation of Key Features for Movement Primitives

The decomposition of complex movement sequences into movement primitives
has been discussed as a basic principle of perception and action in a number of
different fields, including neuroscience [24], [32], [8], [30], rehabilitation [27] and
imitation learning in robotics [2],[21],[31].

For the selection of adequate movement primitives in technical applications
it is important to consider the perception as well as the generation of move-
ments. For perception the most important criterion is the robust identification of
these primitives. For the generation of movement sequences movement primitives
should define generic building blocks that encode a range of similar stereotypical
movements. For our method a movement primitive is defined by the property
that the style of the movement stays constant within the primitive.
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Fig. 1. Schematic description of the algorithm for analyzing and synthesis of com-
plex movement sequences. In the first step the sequence is decomposed into movement
primitives. These movement primitives can be analyzed and changed in style by ap-
proximating them by linear combinations of prototypes with different linear weight
combinations. Afterward, the individual movement primitives are concatenated again
into one movement sequence. The result is a new motion sequence comprising move-
ment elements with different styles.

The identification of movement primitives within movement sequences must
be based on characteristic features that are suitable for a robust and fast segmen-
tation. Different elementary spatio-temporal and kinematic features have been
discussed in the literature, like angular velocity [10][23] [25], or curvature and
torsion of the 3D trajectories [7]. The key features of our algorithm are zeros of
the velocity in a few ”characteristic coordinates” of the trajectory {(¢). These
features provide a coarse description of the spatio-temporal characteristics of
trajectory segments. To localize movement primitives in sequences these charac-
teristics are matched to previously stored templates of prototypical movement
primitives. This matching is accomplished by dynamic programming (section
2.2). Each feature corresponds to a discrete event. Let m be the number of
the motion primitive and r the number of characteristic coordinates of the tra-
jectory. Let k(t) be the ”"reduced trajectory” including only the characteristic
coordinates that has the values k™ at the velocity zeros'. The movement prim-
itive is then characterized by the vector differences Ak[* = K]* — K" ; between
subsequent velocity zeros (figure 2).

2.2 Identification of Movement Primitives

A robust identification of movement primitives in noisy data, allowing for ad-
ditional or missing zero-velocity points f, can be accomplished by dynamic
programming. The result is an optimal sequence alignment between the key fea-
tures of the prototypical movement primitive 7" ... &7 and the key features of
the search window § ...k (see figure 2b). Dynamic programming is used to
minimize a cost function that is given by the sum of ||Ax] — AxT*[| over all

matched key features. Robustness against additional and missing key features is

! Zero-velocity is defined by a zero of the velocity in at least one coordinate of the
reduced trajectory.
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Fig. 2. The method for the automatic identification of movement primitives: (a) In
a first step all key features ki are determined. (b) Sequences of key features from
the sequences (s) are matched with sequences of key features from the prototypical
movement primitives (m) using dynamic programming. A search window is moved over
the sequence. The window contains two times the number of key features of the learned
motor primitive. The best matching trajectory segment is defined by the sequence of
feature vectors that minimizes ). || Ax] — AxJ"|| over all matched key features. The

method establishes a spatio-temporal correspondence at a coarse level.

achieved by appropriately constraining the set of admissible transitions for the

dynamic programming as follows:
For the match of two successive key features i and &7}, it is possible to

skip up to two key features xf,; and ki, in the sequence. In this case, i.e. the
match k] = &7 and ki, 5 — 7}, would be realized. Furthermore, it is possible
to skip one key feature x7* in the movement primitive. This implies that the
match k] — KTy and K7, ; — K74 18 valid. The cost function that is minimized
in order to find an optimal match between «§...x7 and kg'... k] under the
given constraints can be written recursively:
D(i,j) = min(D(i — 1,5 — 1) + ||Ax] — Ax]"],

D(i—2,j — 1) + || Akfi—1,y — Akj']],

D(i—3,j — 1) + || Akf;_2,y — Akj']],

D(i —1,j — 2) + [|1Ak; — Arpj_1 4]l
D(i—2,j = 2) + || Arfi—1,7 — Akgi—1 5]l

D(i — 3,5 —2) + || Ak 2,57 — Akfi 1 51)
where ¢ and j denote the indexes for the key feature xj respectively x7*. The
starting value D(1,1) is given by

D(1,1) = ||Ari — Ar7"|] (2)

where Akj is the first difference vector of the sequence window and Axf* is
the first difference vector of the movement primitive m. If one or more key



features are skipped for the match, the difference vector Ax} between successive
key features must be adapted. An example is described in eq. (3) for the case
that two key features k{_, and x] ; are skipped. The resulting difference vector
between the two successive key features k7_5 and & is determined by

Ak a5 = Aki_y + Ari_1 + Ak] (3)

Let be p the number of key features in window w, and ¢ the number of key

features in moment primitive m. To determine the best match between movement

primitive m and the sequence window w one has to find the key feature nfi,

0 < k < p, for which the cost function for matching the sequences is minima
The minimum cost é of movement primitive m for window w is given by

d(me) = min(D(k, 9))- (4)

A concrete example of the application of the segmentation algorithm is dis-
cussed in section 4.

2.3 Morphable Models as Movement Primitives

The technique of Spatio- Temporal Morphable Models [11,12] is based on linearly
combining prototypical movement trajectories. Linear combinations of move-
ment patterns are defined on the basis of spatio-temporal correspondences that
are computed by dynamic time warping using dynamic programming [6]. Com-
plex movement patterns can be characterized by trajectories of feature points.
The trajectories of the prototypical movement pattern p can be characterized by
the time-dependent vector ¢, (t). The correspondence field between two trajec-

tories ¢; and (, is defined by the spatial shifts £(¢) and the temporal shifts 7(t)
that transform the first trajectory into the second. This warping transformation
is specified mathematically by the equation:

Cat) = Gt +7(1)) + £(F) (5)

By linear combination of spatial and temporal shifts it is possible to to inter-
polate smoothly between classes of motion patterns with significantly different
spatial structure, but also between patterns that differ with respect to their
timing.

The correspondence algorithm determines the temporal and spatial shifts
by minimizing the weighted sum of the quadratic spatial and temporal displace-
ments over the whole movement sequence. In the time-continuous case, this error
is given by the integral:

El&.7] = [ [€OF +2r(v?] de ©

The error has to be minimized under the additional constraint that the map-
ping between the time variable ¢ and the modified time t' = ¢ + 7(t) for the
trajectory ¢, (t') must be continuous, one-to-one, and monotonically increasing,
in order to define unique temporal warping of the sequence (3. Our correspon-
dence algorithm consists of two steps. The first step solves a discrete optimization
problem on the temporally sub-sampled trajectory by dynamic programming. In



the second step, the obtained solution is refined by solving a continuous opti-
mization problem that is derived by linear interpolation between the sampling
points, resulting in a set of quasi-continuous spatial and temporal shifts. For
further details we refer to [11][12].

Signifying the spatial and temporal shifts between prototype p and a reference
trajectory® (o(t') by &,(t) and 7,(t), linearly combined spatial and temporal
shifts can be defined by the two equations:

)= wp&,(t) ()= wymp(t) (7

The weights w, define the contributions of the individual prototypes to the
linear combination. We always assume convex combinations with 0 < w, <1
and Zp wp = 1. After linearly combining the spatial and temporal shifts the
trajectories of the morphed pattern can be recovered by morphing the reference
trajectory (op(t') in space-time using the spatial and temporal shifts £(¢) and 7(¢).
The space-time morph is defined by equation (5) where ¢; has to be identified
with the reference trajectory and ¢, with the resulting space-time morph.
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Fig. 3. Illustration of the established spatio-temporal correspondence between a pro-
totypical trajectory and a reference sequence with the correspondence vector fields 7(t)
and £(t).

2.4 Linear Combination of Movement Trajectories with Multiple
Movement Elements

The method presented in this paper allows to model movement sequences that
consist of multiple movement elements with different styles. Figure 4 shows an
example with 10 movement elements. The solid lines show one coordinate of two
prototypical trajectories. The dashed lines illustrate two different linear combi-
nations. One linear combination (LC 1) is obtained by combining the movement
elements of the two prototypes using the same linear weights 0.5 for all movement
elements. The second linear combination (LC 2) combines movement elements

2 The reference trajectory is typically the average of the time-normalized training
trajectories.
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Fig. 4. Prototypical trajectories and linear Fig. 5. Normalized linearly combined tra-
combination. jectory.

with different styles. The first 5 movement elements follow the style of the second
prototype, corresponding to a weight vector w = [0,1]. The second 5 elements
follow the first prototype with weight vector w = [1,0].

In order to synthesize such complex motion sequences automatically the
movement elements, modeled by STMM, must be concatenated into continu-
ous longer sequences, avoiding discontinuities and artifacts at the boundaries
between the elements. We have developed an algorithm that accomplishes this
goal with the following four steps:

1. Decomposition of the trajectories in movement elements: The result
of the segmentation step (section 2.2) are L starting points 7, and end
points T, of the individual movement elements with 1 </ < L.

2. Normalization of the movement elements: After separation into tra-
jectory segments ¢, ,;(t) with boundaries that are given by the start and end
times 7, each segment is re-sampled with a fixed number of time steps in an
interval [0, Tseg)- In addition, a linear function in time is subtracted from the
original trajectory segments resulting in a modified trajectory that is always
zero at the transition points between subsequent movement elements. This
makes it possible to concatenate the segments with different styles without
inducing discontinuities in the trajectories. With the start and endpoints
Cpi = €pu(Tyy) and ¢ = €, (T ;) the normalized trajectory segments can
be written after re-sampling:

&p,l (t) = Cp,l(t) - C;,l - (t/Tseg)(C;,l - C:,l) (8)

3. Linear combination of the elements: For each trajectory segment the
movements are linearly combined separately. The normalized trajectory seg-
ments ¢ . (t) are combined using STMMs in the way described in section 2.3
using the linear weights wy, ;. The result are the linearly combined normalized
trajectory segments Z’l (t). The start and end points are also linearly com-
bined, as well as the total durations of the individual trajectory segments,

o 1 — e s .
which are given by Dy, =17, =T} :

P P
o= Z“’p C;ﬁ Dy = pr Dy, 9)
p=1 p=1



4. Re-warping and concatenation of the movement elements: The
linearly combined trajectories él(t) of the movement elements are un-
normalized and concatenated to obtain the final composite sequence. Un-
normalization is achieved by applying equation (8) in order to obtain the
trajectory segments ¢;(t). If the linear weight vectors of subsequent trajec-
tory segments are different the condition ¢ = ¢j,, that ensures the con-
tinuity of the trajectories after concatenation might be violated. To ensure
continuity, start and endpoint pairs that violate these conditions are replaced
by the average (7 + ¢j;1)/2 before un-normalization. Figure 5 illustrates
the normalized linearly combined trajectory segments. Ten coordinates of
the normalized trajectory after concatenation of the movement elements are
shown. The black vertical lines illustrate the boundaries between the move-
ment elements.

In the following, we discuss three applications of our algorithm with different
focus. In the first example we show the capability of the method to synthesize
different action styles based on a few recorded movement prototypes. Second,
we describe the synthesis of complex movements with highly complex spatio-
temporal characteristics by modeling sequences of techniques from martial arts.
The last example shows an application of the method for imitation learning
of writing movements for a robot arm. In this section we also discuss how the
synthesized trajectories can be transferred to a robotics hardware that introduces
additional kinematic and dynamic constraints.

3 Synthesis of Walking and Gesture Movements with
Different Styles

The first application of our algorithm is the synthesis of a sequence of walking and
gesture movements with different emotional affects. Using a commercial motion
capture system (VICON 612) with 6 cameras we recorded subjects executing
a movement sequence with different emotional affects. The movement sequence
comprises several steps of straight walking, waving, turning around 180°, and
straight walking again.

The motion sequences were recorded with 41 markers distributed over the
whole body. Figure 6 (top level) shows six snapshots illustrating the marker po-
sitions connected by lines taken from the graphical user interface of the motion
capture system. For modeling the movement sequences they were automatically
decomposed into the movement primitives (straight walking, waving, turning and
straight walking). Figure 6 (row 2-6) show the recorded movements (with the
affects sad, neutral, and happy), and morphs between these emotional expres-
sions®. The morphed sequences illustrate that our method is capable of synthe-
sizing sequences of acyclic movements with different emotional affects that look

3 Movies of these animations and the robot arm described in section 5 can be retrieved
from the web site: http://www.uni-tuebingen.de/uni/knv/arl/index.html



quite natural. The linear weights define a metric Euclidean space of emotional
affects that is spanned using a small number of training trajectories?.

4 Synthesis of Complex Movements from Martial Arts

The second application of our method demonstrates that it can be applied for
modeling highly complex human body movements. STMM were used to model
sequences of techniques (called ”katas”) from karate. We have shown elsewhere
[16] that the same algorithms can also be applied for an automatic estimation of
the skill levels of karate fighters from the recorded movements. Here we focus on
the synthesis of different karate styles and of technique sequences with different
skill levels.

In a first experiment we have captured several movement sequences from a
kata from two actors (figure 7). The first actor was a third degree black belt
in Jujitsu, and the second actor had the 1. Kyu degree in karate (Shotokan).
Both actors executed the same movement sequence, but due to differences of the
techniques between different schools of martial arts with different styles. Three
sequences of actor 1 have been segmented manually resulting in six movement
primitives, which served as prototypes to define the morphable models of the
first actor (see figure 9). Based on the 6 morphable models prototypical repre-
sentations with key features for the automatic identification of the movement
primitives were generated in the way described in section 2.3. The ”reduced tra-
jectories” k(t) consist of the coordinates of the markers on both hands®. Figure 8
shows the results from the automatic segmentation from sequence of actor 2. The
automatic segmentation was successful for all 16 sequences recorded from both
actors. Figure 9 shows a morph that was created based on these automatically
identified primitives.

Morphing between different actors Based on the movement primitives iden-
tified by automatic segmentation morphs between the movements of two different
actors were realized. The individual movement primitives were morphed and af-
terward concatenated into a longer sequence. Figure 9 shows snapshots from
a morphed motion sequence, which corresponds to the ”average” of the two
original sequences (w; = w2 = 0.5 in eq. 7). This sequence looks natural and
shows no artifacts at the margins between the individual movement primitives.
In cases, where the styles of both actors are different, the morph generates a re-
alistic movement that interpolates between the styles of the two actors original
movements.

* In previous work [20] emotional expressions of real humanoid robots have been mod-
eled by carefully designing the features of individual emotions by manipulation of
selected joint trajectories

® The hand trajectories are computed relative to the shoulder markers. All marker
trajectories were filtered using a Savitzky-Golay polynomial least-squares filter
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Fig. 6. Animations of synthesized movements with different emotional expressions. The

top row shows snapshots of the marker positions obtained with the motion capture sys-
tem. Rows 2, 4 and 6 show original captured trajectories with the affects sad, neutral
and happy used for animating a computer graphics model of a humanoid robot. Rows
3 and 5 show the averages obtained with our method between sad and neutral, and
between happy and neutral. Features that vary between the different emotional expres-
sions are e.g. head posture, arm swing, step width, velocity and the body posture in
turning motion.



Fig. 7. Recording movements from the karate kata ”"Heian Shodan” using a VICON
motion capture system.
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Fig. 8. Results of the automatic segmentation of one movement sequence of actor 2
based on the prototypical movement primitives of actor 1. As an example, the identi-
fication of the primitives 1 and 6 is shown. The diagrams show the distance measure §
(eq. 4) for different positions of the matching window of the corresponding movement
primitive over the whole sequence. The circles mark the times of the matched key fea-
tures k;° of the sequence. Each match of a whole movement primitive is illustrated by
a row of circles with the same §. The number of circles corresponds to the number of
key features of the movement primitive. The optimum match is given by the circles
with minimal value of § (indicated by the horizontal lines).

Morphing between different skill levels In a second larger experiment we
captured the movements of 7 actors performing the karate kata ”Heian Shodan”.
The actors had different belt levels (Kyu degrees) in karate (Shotokan). The kata
was decomposed into 20 movement primitives (karate techniques). The total du-
ration of the whole sequences was between 25 and 35 s. In this experiment we lin-
early combined the movements of karatekas with different skill levels in order to
synthesize natural looking artificial karatekas with different belt levels. Further-
more it was possible to generate movement sequences that combine techniques
with different skill levels within the same sequence. For example, the artificial
karateka can start at beginner level and improve his performance gradually with
each movement primitive®.

5 See [16] for further details as well as
hitp://www.uni-tuebingen.de/uni/knv/arl/index.html for animations.



Actor 2

Fig. 9. Snapshots from a sequence of karate movements executed by two actors and a
motion morph. The pictures show the initial posture at the beginning and the end pos-
tures of the movement primitives 1-5. The end posture is similar to the initial posture.
The morphed sequence looks natural and contains no artifacts at the transitions be-
tween the 6 movement primitives. Especially interesting is the comparison between the
different karate styles of the actors, i.e. for the third movement primitive (4th column).
Actor 1 is doing a small side step with the left foot for turning. Instead of this, actor
2 turns without sidestep. The morph executes a realistic movement that interpolates
between the two actors.

5 Imitation Learning of Writing Movements

The goal of imitation learning is to teach robots by observation of movement
sequences’ . Imitation learning has to address two fundamental problems. (1) The
movement characteristics of observed movements have to be transferred from the
perceptual level to the level of generated actions [31] [21]. (2) Continuous spaces
of movements with variable styles have to be approximated based on a limited
number of learned example sequences. This implies that the robot should be able
to synthesize new movements based on the learned examples.

The proposed method was applied for synthesis and imitation of human writ-
ing movements. An overview of the overall algorithm is shown in figure 10. The

7 In this paper we focus on the imitation of movement styles (see also [18], [25]). Our
focus is not the imitation of event sequences, which are important for example in
manipulation tasks like pick and place tasks.



steps of the method are briefly described in the following, focusing in particular
on the transfer of the movements onto the robot arm.
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Fig. 10. Schematic description of the algorithm for synthesizing and imitation of writ-
ing movements. For modeling of the movement trajectories we used the proposed
method. Movement primitives correspond to individual letters. The style of the in-
dividual primitives can be modified by choosing different linear weight combinations.
The mapping of the movement sequences onto the robot arm is accomplished in three
steps: mapping of coordinates, posture initialization, and task execution.

5.1 Synthesis of Writing Movements

We recorded writing movements of two human actors who wrote the word
“ICAR” (figure 11). We used 10 markers that included the shoulders, 2 front
and one rear torso, upper arm, elbow, front arm, hand and index finger of the
writing arm.

Individual letters are defined as movement primitives. The automatic seg-
mentation of the movement primitives was based on the index finger trajectories.
The segmentation algorithm was trained with one example for each movement
primitive that was obtained by manual segmentation of the trajectory of one of
the actors (see [14] for details).

Continuous movement spaces for individual movement primitives are defined
by the linear combinations of the prototypical movement primitives. The syn-
thesized primitives are then automatically concatenated into longer sequences
that can include multiple movement styles. Figure 12 shows the synthesized pen
trajectories of the writing movements. The method allows to morph continuously
between the writing sequences of the two actors (left panel). In addition, we can
synthesize caricatures of the specific writing styles of each actor (right panel,
EX A and EX B). The individual movement primitives can be reassembled in a
different sequential order, e.g. in order to write the word ”’TACR” (middle row).
All these movement sequences were synthesized based on only two prototypical
example trajectories.
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Fig. 11. Left panel: Motion capturing of writing movements on a board. White dots
indicate the positions of the recorded markers. Right panel: Illustration of the marker
set and the trace of the finger marker during the writing of the word "ICAR”.
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Fig. 12. Left panel: Recorded pen trajectories and morphs between the original writ-
ing movements. The morphs interpolate continuously in space-time between the proto-
types. Right panel: Original pen trajectories and exaggerations of the writing styles of
the two actors. The middle row shows synthesis of a new word "TACR” by reassembling
the movement primitives in a different sequential order.

5.2 Transferring Human-Like Movements to a Robot Arm

The transfer of the trajectories to the robot is performed in three stages: 1) The
HSTMM synthesizes trajectories in the same space as the prototype trajectories.
Therefore, one has to transform synthesized trajectories from the prototype space
into the task space of the robot. Also the trajectory must be scaled appropri-
ately. 2) The second stage initializes the robot posture to a specific recorded (and
appropriately transformed) initial human arm posture. 3) The task execution is
performed by reproducing the exact end-effector trajectory and by approximat-
ing the human arm posture, as far as this is possible without violating kinematic
constraints.

Mapping of the coordinate systems For the investigated task of writing
movements the end effector trajectories are approximately planar. The drawing
area of the synthesized writing movements has to be transformed into a drawing
area in task space. The drawing plane is defined by two vectors u and v, which



define a task orientation frame that is given by the matrix
T;=[uvuxv] (10)

The starting point of the movement is given by the position vector p. Since the
task space is planar, we can use the first two principal components e;, e of the
HSTMM output sequence ((t), to define an orientation frame of the trajectory
as

Ty =[e1 e e1 Xez]. (11)

Note that e;, e; span the whole task space for our application. The trajectory
¢(t) is then first centered

N
(k) = Clt) — - D ¢, (12)
k=1

where we assume that the trajectory is given in a discretized form

C(t1),...,¢(tn) with t; = 0. The centered trajectory ¢(¢;) can be scaled to avoid
violation of task space constraints. The final target trajectory ¢*(¢) is given by

¢t =p+TT;" ({0 -C0). (13)

Initialization of robot posture The kinematic structure of humans and
robots are usually different. Therefore, marker positions can usually not be trans-
ferred to the robot directly. Only if the robot is humanoid and has an equivalent
kinematic structure the marker positions can be used directly [26], mechanisms
to transfer motion capture data can be found for instance in [35]. We propose
a way to transfer more the style of movements than explicit transfer joint an-
gles. For this we to define ”posture specifiers” that are applicable to humans as
well as to robots. Imitation of posture is achieved by transferring these posture
specifiers from the human to the robot.

Fql(t)
Fig. 13. Correspondence of human and robot posture.

Let Ly, Ry, E4 and F; denote the positions of the left shoulder, right shoul-
der, elbow and the finger marker in the transformed prototype space (figure 13).
As posture specifiers we choose orientation normals of two planes. The normal
vector of the first plane is defined as

_ _(La = ¢"(t1)) X (Ba — ¢* (1))
| (Ta = ¢*(t1)) x (Ba — ¢*(E)) I

€q (14)



This plane is spanned by the left shoulder, the elbow and an arbitrary reference
point. In our case we chose the starting point (*(¢1) of the trajectory (*(¢).
Equivalently let

(Ra = ¢*(t1)) X (Fa —¢"(t1))

b= TR = () x (Fu— ()]

(15)

be the normal of the second plane which is spanned by finger, right shoulder
and (*(t1). Let g = [q1, g2] be the joint values of the robot, where q; influences
the elbow position and q2 does not. The corresponding plane normals e,(q1),
f.(q2) of the robot are calculated in an equivalent way (see figure 14). For this
purpose we use the a-priori specified position vector p from 5.2 instead of (*(¢)8.
In addition a virtual left shoulder position has to be specified to determine the
relative orientation of robot arm to the robot basis.

Fig. 14. Illustration of the plane normals e, and f,. A virtual left shoulder L, position
of the robot is defined a-priori.

The initial posture of the robot is adjusted to the initial human posture by
first minimizing
min [leq — e, (qu)]|- (16)

over the joints qi, and subsequently minimizing

min ||f; — £ (q2)|| (17)
q2

over qa. The solution minimizes the angles between e,, e; and f,., f; respectively.

Task Execution Starting from its initial posture, the trajectory of the robot
is planned by solving the following optimization problem that depends on the
discretely sampled joint variables q(t;) :

g(ltln) plat:)) = llea — e |I* + alla(t:) — alti-1)|I” (18)

subject to
P, (q(ti)) — ¢"(t:) =0 (19)

8 The reference point ¢(t1) must ensure that e; # f4Vt. Otherwise another reference
point has to be chosen.



where P,(q(t;)) describes the end-effector position. This problem is solved for

each time step t; of the trajectory separately. The objective function p(q(t;))
measures the euclidean distance between the normals e; and e,.. An additional
regularization term is added to penalize high joint velocities. This term depends
on the difference between the new joint configuration q(¢;) and the previous
configuration q(¢;—1). The scalar a determines the trade-off between smooth-
ness of obtained joint trajectories and the quality of imitation. As a starting
point, we use the joint values obtained by classical inverse kinematics. The joint
trajectories were computed off-line”.

The synthesized movements were executed using a Mitsubishi PA-10 7-DOF
robot arm (figure 15). Optimization has been performed for different values of
a (eq. 18). Figure 16 illustrates that for small values of a a better imitation
(measured by the difference ||eg — e4||) is achieved but discontinuous joint tra-
jectories can arise. These discontinuities disappear for large values of a at the
cost of worse imitation quality. Further analysis of the trajectories generated by
imitation learning referring to robotic optimality measures can be found in [1].

Fig. 15. Left panel: The Mitsubishi PA-10 robot arm used to execute the writing
movements. Right panel: Writing examples of the Originals A and B and the average
morph in between (compare figure 12).

The proposed method for transferring the synthesized trajectories to the
robot combines an exact control of the end effector position with a more ”soft”
control geometric variables that characterize the style of the executed arm move-
ments. Another approach to include kinematic and end point constrains for the
transfer of motion captured data can be found for instance in [29]. The pro-
posed method can be generalized in a straightforward way to other tasks and
movement classes, and is not restricted to the imitation of writing, and robot
arms.

® A computational faster implementation to solve eq. (18) is obtained by using explicit
information about the null space of the manipulator Jacobian (see [33]).
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Fig. 16. Joint velocities (left panel) ||q(t;) — q(t;—1)|| and elbow norm difference (right
panel) |les — e,|| as a function of time for & = 10~ (dots) and o = 1072 (crosses).
One obtains continuous joint trajectories for larger .

6 Discussion

We have presented a method for the representation of complex movements that
is based on linear combination of small sets of prototypical example movement
sequences. The proposed algorithm decomposes long trajectories automatically
into movement primitives, and models these primitives by linear combination of
prototypical trajectories. Various methods for the parameterization of movement
styles have been proposed in computer graphics and computer vision, e.g. based
on Hidden Markov Models [4][37], principal component analysis [39] [3] [5], or
Fourier components [36].

Different studies on imitation learning have investigated methods for describ-
ing the spatio-temporal characteristics of movements using principal component
analysis [9] and spatio-temporal isomaps [18]. In [28] a verb-adverb approach was
proposed that applies a combination of radial basis functions and low-order poly-
nomials for defining parameterized interpolations between example movements.
For this approach specific key times (e.g. the foot contact with the ground) must
be specified by hand. Time Warping is defined by linear interpolation between
these key times. In [19], [34] and [22], this interpolation is realized with splines.

The method of HSTMM has the advantage that it works with very small
sets of training data [12][17][15]. Many popular methods for the representation
of trajectories, e.g. HMMs or unsupervised learning of manifolds [18][4] typically
require substantial amounts of training data. Another advantage of HSTMMs is
the rather intuitive interpretation of the weights of the linear combinations that
specify the style characteristics of the individual prototypes.

The presented application in robotics is a first demonstration of the applica-
tion of HSTMMs in imitation learning. Future work has to apply and to extend
the proposed algorithms for more complex robot systems, and for more complex
tasks that include additional constraints, e.g. obstacle avoidance. The successful
application of HSTMMSs for the synthesis and analysis of complex whole body
movements in computer graphics [12][15] and sports [16] suggests that the same
algorithms might also perform well in imitation learning for humanoid robots.
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