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Perfusion Quantification Using Gaussian Process

Deconvolution

I.K. Andersen,?* A. Szymkowiak,1 C.E. Rasmussen,® L.G. Hanson,? J.R. Marstrand,?

H.B.W. Larsson,* and L.K. Hansen'

The quantification of perfusion using dynamic susceptibility
contrast MRI (DSC-MRI) requires deconvolution to obtain the
residual impulse response function (IRF). In this work, a method
using the Gaussian process for deconvolution (GPD) is pro-
posed. The fact that the IRF is smooth is incorporated as a
constraint in the method. The GPD method, which automatically
estimates the noise level in each voxel, has the advantage that
model parameters are optimized automatically. The GPD is
compared to singular value decomposition (SVD) using a com-
mon threshold for the singular values, and to SVD using a
threshold optimized according to the noise level in each voxel.
The comparison is carried out using artificial data as well as
data from healthy volunteers. It is shown that GPD is compa-
rable to SVD with a variable optimized threshold when deter-
mining the maximum of the IRF, which is directly related to the
perfusion. GPD provides a better estimate of the entire IRF. As
the signal-to-noise ratio (SNR) increases or the time resolution
of the measurements increases, GPD is shown to be superior to
SVD. This is also found for large distribution volumes. Magn
Reson Med 48:351-361, 2002. © 2002 Wiley-Liss, Inc.
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Perfusion, the capillary blood flow, may be measured us-
ing dynamic susceptibility contrast MR imaging (DSC-
MRI) (1,2). The first perfusion measurements using DSC-
MRI were performed by Villringer et al. (3) and Boxerman
etal. (4). Until recently, many studies used only semiquan-
titative approaches (5,6), but intersubject comparisons and
patient follow-up require quantitative approaches. To that
end, the tissue concentration of contrast agent should be
deconvolved with the concentration in the supplying ves-
sels in order to obtain the response to an ideal input. This
response is termed the residual impulse response function
(IRF), the maximum of which is directly related to the
perfusion. Quantification using deconvolution by means
of gamma-variate functions was proposed by Rempp et al.
(7). The IRF may also be modeled by an exponential (8),
but in cases in which the exponential assumption is not
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valid, the IRF may be better estimated by deconvolution
using a method where no specific shape of the IRF is
assumed, such as singular value decomposition (SVD), as
shown by Ostergaard et al. (9). This method involves a
choice of a threshold for signal variance. A low threshold
leads to a noisy estimation of the IRF, whereas a high
threshold introduces systematic errors to the perfusion
estimate. Ustergaard et al. (9) developed software for SVD
deconvolution, which has also been used by other groups
(10—12). This approach uses a common threshold in all
voxels set at an optimized value, found by Monte Carlo
simulations (9), of 20% of the maximum singular value
(13). However, Liu et al. (14) showed that the optimal
threshold depends on the signal-to-noise ratio (SNR). They
suggested a voxel-wise threshold determined by the con-
trast SNR, which leads to significant improvements in the
perfusion determination. The threshold was calculated
from artificial data using exponential IRFs and a mean
transit time (MTT) of blood through tissue of 3 s. If the IRF
is not an exponential, or the MTT changes, the optimal
threshold may change. Vonken et al. (15) estimated the IRF
in a voxel-wise manner by optimizing the likelihood of the
data using an expectation maximization algorithm. The
voxel-wise optimization clearly improved perfusion esti-
mation; however, difficulties in determining the optimal
number of iterations were reported.

The Gaussian process for deconvolution (GPD) presented
here estimates the IRF as the mean value of an optimized
joint Gaussian distribution. The method is also likelihood
based, but is extended to include the smoothness of the IRF,
which is incorporated as a priori information. This is
achieved by initializing the joint Gaussian distribution by a
special distribution called a Gaussian process (GP), which is
a joint Gaussian distribution with an infinite input space
(16). The correlation length of the IRF is a parameter of the
joint Gaussian distribution and is constructed initially from
the delay between the sampling times only. In this way, the
smoothness of the IRF is incorporated as a regularizing term.
This is necessary for improving the IRF estimation when
the SNR is limited. The GPD automatically estimates the
noise level as well as all other parameters of the joint
Gaussian distribution. Furthermore, the method supplies
the standard deviation (SD) of the estimated IRF in each
voxel. While GP for regression has been used in geostatis-
tics, where it is known as Kriging (17), the statistical
framework has only been developed recently (16). In this
work, GP is used for deconvolution.

THEORY

The MR signal intensity, S(f), during passage of a bolus of
contrast agent is related to the tissue concentration of the
contrast agent, C(t), as:
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S(t) = Sy exp(—kC(t)Tg) + () [1]

where S, is the prebolus signal; k is a constant; TE is the
echo time; and e is noise.

The tissue concentration as a function of time, C(t),
depends on the concentration of contrast agent in the
feeding vessels, C,(f), the regional cerebral blood volume,
rCBV, and the perfusion, f. The relationship can be ex-

pressed as
J’ Cy7) dr
0

rCBV =————— [2]
f C,(7) dr

where, under the usual assumption of negligible inter-
voxel diffusion of contrast agent,

Ci(t) = «fC,(t) ® h(?) (3]

where ® denotes convolution, k is the ratio of 1-hematocrit
in capillaries to 1-hematocrit in arteries (taken to be 1.2 in
correspondence with Ref. 9), and h is the IRF. Since the
MR signal reflects the residual amount of contrast agent,
the tissue is characterized by a residual IRF that describes
the distribution of particles following different paths
through the tissue. The IRF is smooth, since the contrast
agent mixes with blood. If the mixing is instantaneous for
the whole blood compartment, then the IRF is an expo-
nential function. Even if the mixing is less instantaneous,
the contrast agent is subject to bulk motion, and conse-
quently the IRF resembles a Fermi function.” The IRF
equals the tissue signal when the input curve is a delta
function and is by definition scaled to a maximum of one
at time zero. The function h(f) = f- A(#) is the kernel of the
convolution. The maximum of the kernel is the perfusion.
The area under the kernel gives the rCBV as seen by
combining Egs. [2] and [3]:

rCBV = fxf- k(z) dr = f-MTT [4]

where MTT is the mean transit time through the tissue.

If the subject has a deficient blood brain barrier, the
above equations are still valid except that the distribution
volume of the contrast agent, described by the variable
rCBYV, is no longer restricted to the cerebral vascular vol-
ume. In this situation, the IRF is no longer monoexponen-
tial, but may be biexponential or even more complex.
However, it is still a smooth function with a maximum
value of unity, and hence the maximum of the kernel is
still the perfusion.

For computational convenience, Eq. [3] can be rewritten
as a matrix product

TFermi function: [1 + exp(—ab))/(1 + explaix — b))

Andersen et al.

¢, =Ch + € (5]

where ¢, is the vector of sampled tissue concentrations
[C{™M), ..., C("™)]7, and h is given by [h(0), . . ., h(ta)]%,
where N is the number of points on the curves and T
denotes the transposed vector. C, is the matrix given as

C,(t"V) 0 o 0

c,(t® c,@tv) ... 0

C. = (6]

GY) G ) C(t")
If some rows of C, are close to being linear combinations of
each other, the matrix is nearly singular and inversion
hereof may not be performed directly. Two methods for
deconvolution to recover h from Eq. [5] are presented
below.

SVD

One way to recover h is to minimize the squared error
E(h) = 12(c, — C,h)T (¢, — C,h). This leads to

h = (C,CT)'Clc.. [7]

If the product C,C7 is close to singular, the problem has
more solutions. The optimal solution giving the least-
squared error is found using the SVD method (18). SVD
decomposes C, into two orthogonal matrices, U and V7,
and a diagonal matrix, W, with singular values ordered
descending in the diagonal, C, = U W V7. The solution is
then given as:

h=VW'!U [8]

where W™ is the inverse of W, with some elements of W™ *
set to zero if the singular value is below a certain thresh-
old. The threshold is set depending on the data and the
noise levels (19). This approach may appear to lead to a
less accurate solution, but the discarded equations are
corrupted by numerical instabilities and should be re-
moved in order to obtain a robust solution. Choosing a
threshold that excludes more than the nearly singular
components will lead to regularization of the solution
such that components with high frequencies are excluded
because they are thought to originate from biological and
instrumental noise.

GPD

This approach assumes that each measured value of the
kernel is distributed normally around the true value, as
indicated in Fig. 1. Since there is some correlation be-
tween points on the curve, the data points belong to one
joint Gaussian distribution. When the underlying kernel is
expected to be smooth, GPD may be used to calculate a
predictive distribution for any point in time. The estimate
of the kernel at the time point is the mean of the predictive
distribution.

In the perfusion experiment, S(f), is the measured signal,
from which the tissue curve c, is calculated (Eq. [1]). The
signal noise associated with S(t) (with SD = o) is approx-
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FIG. 1. The kernel (dashed line) is measured at times t1, t2, t3, and
t4. Each measured value belongs to a distribution. GPD estimates a
new distribution at time ft, from the measured points and prior
knowledge of smoothness. The estimate h(t,) is the mean of this
distribution.

imately Gaussian, and since the noise level is small com-
pared to the signal, so is the noise on ¢, (with SD = ¢,). The
measured kernel, h,, may be calculated from the contrast
concentrations (Eq. [7]), and belongs to the joint Gaussian
data distribution (see appendix A)

h, € N(h, A) [9]

where h is the vector of means of the joint normal distri-
bution, and A is the covariance matrix that describes the
covariance or correlation between points on the kernel. It
is given as A = ¢Z(CIC,)~".

The mean vector and covariance matrix that optimize
the likelihood (Eq. [9]) is the least-squares solution. In
perfusion imaging, each data point is only measured once,
and with noisy data this estimate is poor. With GPD, the
expected smoothness of the IRF is used to regularize the
solution through a prior distribution.

Nothing is assumed about the values of h prior to mea-
surements; however, nearby points on the h(f) curve are
expected to correlate. The joint distribution prior to mea-
surements may thus be described by a GP that is a joint
distribution with an infinite input space, in this case time
(16). The distribution may be constructed so that the co-
variance matrix is a function of the sampling times only:

hprior € N(O; B) [10]

where the covariance matrix, as in Ref. 20, is chosen to be:

L o) _ a2
B(p.g = vexp| — 5 w(t? — 17) [11]

where #”) and #9 are sampling times, and wand v are scale
parameters. If p = q then B, ) = v, which is the variance.
As the distance between the sampling points increases, the
covariance or correlation, By, of the points decreases. In
this way, nearby points have a larger influence on an
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estimate than more distant points. The scale parameters, v,
w, are also called hyperparameters, since they control B,
and hence the prior distribution; v is the bias or off-set
parameter that determines the influence of the prior dis-
tribution, and w controls the correlation length.

A new joint distribution of the data may be found by
multiplying the distribution of data, Eq. [9], and the prior
distribution, Eq. [10], and integrate the product over h (see
appendix A). This leads to h, € N(0, D), where D = A + B.
This distribution is the likelihood for the parameters of D
(i.e., v, w, and o2) given the measured kernel h,. The
parameters are estimated by optimizing this likelihood
(see Methods). The influence of the prior distribution is
determined by the distance between the sampling times
tP and #9, whereas the influence of the data distribution
is dependent on the noise level through o?2.

From the likelihood, the predictive distribution at any
point, t,, may be calculated. The mean of this distribution
is the estimate of h,, and the variance of the estimate is the
diagonal elements of the covariance matrix. The distribu-
tion is derived in appendix B:

h, € N(@D 'hy, b —a'D"a) [12]
where a is the covariance between the new input and the
old points, a = B(t™M..£™, tp), and b is the variance of the
new input, b = D[tp, tp). The mean and variance of the
distribution are calculated by simple matrix multiplica-
tions. Note that the predictive value may be found for any
input t,, but that D only has to be inverted once.

In summary, a regularized expression for h is obtained
by only assuming that h is distributed normally with a
correlation between points. The introduced hyperparam-
eters are optimized automatically for each voxel (see Meth-
ods). This means that no threshold has to be set using GPD.
Moreover, a covariance matrix of the estimate is an inher-
ent result of the method (see Eq. [12]), where the diagonal
elements are the variance of the estimated kernel in each
point.

METHODS
MR Experiments

DSC-MRI data were obtained from nine healthy volunteers
using a 1.5 T Siemens Vision scanner and a gradient-echo
sequence with echo planar imaging (EPI) (TR/TE =
1000/66 ms, flip angle = 60°, field of view (FOV) =
250 mm, matrix = 128Xx128, slice thickness = 5 mm, and
128 acquisitions). Gd-DTPA (0.1 mmol/kg body weight;
Magnevist, Schering) was injected in an antecubital vein
with an MR-compatible double syringe power injector
(Spectris™ MR Injector. Medrad Inc., starting at the 15th
measurement with an injection rate of 3 ml/s, followed by
20 ml saline at 3 ml/s. The study was approved by the
Central Scientific Ethics Committee of Denmark (c-199-
08;KF 01-357/98), and informed consent was obtained
from the volunteers.

Concentration curves were calculated using Eq. [1]. In
healthy subjects, the concentration in the supplying ves-
sels, C,(t), is well represented by the artery concentration.
Thus, C,(t) was chosen in the slice from the voxel with the
earliest and largest signal peak in the insular area to min-
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imize the transport delay from the input voxel to the tissue
voxel.

Simulations

Artificial kernels and data were created to investigate the
performance of the deconvolution methods. Four kernels
were chosen: an exponential function, a gamma-variate
function, a box, and a triangle. The exponential kernel
corresponds to instantaneous mixing of the contrast agent
in the blood volume. The gamma function results if the
transit of the input function from the input voxel to the
tissue voxel is non-negligible (21,22). The box and triangle
functions were constructed as in Ref. 9 in order to test the
ability of the methods to extract non-exponential features.

All kernels were constructed with maxima from f =
0.002 to 0.01 ml/g/s, where f = 0.003 ml/g/s corresponds
to the white matter (WM) level in healthy adults, and f =
0.01 ml/g/s corresponds to the gray matter (GM) level. The
area under the curves (Eq. [4]) was set to rCBV = 3%, 5%,
8%, and 60% corresponding to typical values for WM,
GM, slightly elevated capillary blood volume, and a defi-
cient blood brain barrier. The arterial input function, C,(t),
was calculated from the measured arterial signal (Eq. [1])
with the constant, k, selected to ensure a signal drop of the
artificial tissue curves similar to the observed mean signal
drop in GM (14).

The input concentration curve was convolved with the
artificial kernels to generate tissue output curves, c,. The
signal curves were generated from Eq. [1], with TE and S,
equal to those of an MR experiment, so that kernels with
f=0.01 ml/g/s were given the mean S, value of GM (S, =
480 MR signal units (MRu)), and kernels with f = 0.003
ml/g/s were given the mean S, value of WM (S, =
440 MRu). The S, for other perfusion values were calcu-
lated by linear inter- or extrapolation of these values.

The SD of the signal due to noise before contrast agent
administration was also measured and o, = 15, 22, and
30 MRu were found to be lower range, middle range, and
high noise levels, respectively. Gaussian noise with these
SDs was added to the constructed signal curves. To test the
performance of the methods close to ideal conditions,
noise was also added, with o, = 4 MRu. The noisy tissue-
concentration curves were then constructed using Eq. [1].
The measured input curve and the noisy output curves
were deconvolved using each method to create estimates
of the kernels.

SVvD

Two different thresholds were used with the SVD: In the
A-SVD method, singular values above 20% of the maxi-
mum were kept (13). In the B-SVD method, the threshold
was calculated from the signal-to-noise contrast ratio,
SNR_, as proposed by Liu et al. (14). The SNR, is given by

Smin 1 ( SO
i SU . Smin
where S,

min 1S the minimum value of the tissue curve and
SNR; = Sy/o. Liu et al. (14) performed Monte Carlo simu-
lations, using exponential kernels with MTT = 3 s, SNR;
between 10 and 100, and f from zero to five times the GM

SNR, = SNR [13]

Andersen et al.

value, to estimate the optimal threshold corresponding to
each SNR.. This provided a set of empiric equations de-
scribing the relationship between SNR. and the optimal
threshold. These equations were used in the comparison.

GPD

In the GP, the hyperparameters v, w, and o2 of Eq. [11]
were optimized by minimizing the logarithm of the likeli-
hood function, £ given by Eq. [A4]. This was achieved
using the conjugate gradient method with the Polak-Ri-
biere minimization direction (18). The gradient of the log-
likelihood is

0 log(¥) 1 Dt oD
8= g,  zuace\D g

1hTD*1 i D 'h, [14]
270 90, 0

where dD/06; is the partial derivative of the covariance
function with respect to each of the parameters: 6 = [v, w,
o?]. Before using the conjugate gradient algorithm, the
hyperparameters were initialized: w was set to 0.1; v was
set to the variance of h,; and o2 was set to the variance of
the tissue curve, c,, before the bolus. The algorithm was
then used iteratively until a relative precision of 10~° was
achieved. The same minimum of the cost function was
found regardless of the initialization for large SNR, but for
very noisy data, local minima in the cost function oc-
curred.

Determination of the gradient requires a calculation of
h,, which again demands an inversion of the matrix prod-
uct, CIC,. To ensure that CIC, is positive definite, the
number of columns of C, is reduced by the number of
singular values.

Comparisons

The abilities of the GPD and SVD methods to reproduce
the kernel maximum (perfusion) for the noise levels, per-
fusion values, and blood volumes described previously
were compared. For each setting, the estimation of the
kernel was repeated 50 times with different random noise
to give the average perfusion or root mean square error
(RMSE) and the 95% confidence interval, Cl,5; = mean *
SER, where SER = 1.96 - SD is called the standard error in
the following. The shapes of the curves were investigated,
both by visual inspection of individual curves, and by
comparison of the RMSE between estimated kernels and
the original kernel. The influence of an increased sampling
rate was also investigated. This required a higher temporal
resolution of the input concentration curve. It was thus
modeled by the sum of five gamma variate functions.
Gaussian noise at the level of a typical measured input
function was added.

RESULTS
Simulations

Examples of deconvolved exponential kernels with
rCBV = 5% and f = 0.01 ml/g/s are shown in Fig. 2 for the
low, middle, and high noise levels found in the MR data.
The true kernel is plotted with the thick black line. GPD
(thin line) performed increasingly well as noise was re-
duced, and produced no artificial undulations. The A-SVD
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FIG. 2. The true kernel and deconvolved exponential kernels with
GM values of rCBV = 5% and f = 0.01 ml/g/s. B-SVD (a and b)
retained too much noise or (c) smoothed too much. The A-SVD
method low-pass filtered the kernel at this perfusion. The GPD
method performed increasingly well as the noise level was reduced,
and produced no artificial undulations.

estimate (dark gray) was independent of the noise level.
The fixed threshold resulted in a severe underestimation
of the maximum regardless of the noise level. B-SVD (light
gray) reproduced the maximum well for the low noise
level; however, the curve shape was poorly determined.
When more noise was added, the estimated curve shape
became smoother but the maximum was underestimated.

Figure 2 indicates the performance of the methods in
one voxel, i.e., without averaging, whereas the mean of the
maxima from 50 deconvolved kernels is shown as a func-
tion of the true maximum in Fig. 3 for each of the four
kernel types. In all situations, rCBV was at the GM level
(5%). Figure 3a shows that GPD performed better at the
low noise level (o4 = 15 MRu) than at the high noise level
(0, = 30 MRu; Fig. 3b). For the exponential kernel and the
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triangle, GPD underestimated high perfusion. It performed
very well when the kernel was a gamma function, or gen-
erally when perfusion was low. Figure 3¢ and d show that
A-SVD estimated the same perfusion value regardless of
the noise level. A-SVD also performed better for the
gamma function than for the exponential and triangle ker-
nels. Figure 3e and f shows that B-SVD performed well for
the exponential kernel at the low noise level, but overes-
timated the perfusion at this rCBV for the other kernels. At
low perfusion, the method overestimated perfusion. B-
SVD was the method with the largest variations of the
estimate at the low noise level.

The kernels estimated by all methods had the correct
areas under the curves, and the same variations of them
(results not shown).

The RMSEs of the estimated kernels are shown in Fig. 4
as a function of the true maximum. The RMSEs for GPD
were very small at low perfusion. When perfusion or noise
increased, so did the RMSEs. When noise was increased,
A-SVD provided higher RMSEs. The RMSE seemed to
increase with perfusion, but there was an off-set RMSE
even at very low perfusion. The B-SVD RMSEs were large
and varied considerably.

The results described above were for rCBV set at the GM
level. The results of varying rCBV are shown in Fig. 5. At
the average noise level, o, = 22 MRu, the estimated max-
imum (mean of 20 repetitions) as a function of the true
maximum is shown for the gamma kernel at four different
rCBV values (3%, 5%, 8%, and 60%). The figure reveals
that as rCBV increased, the estimate performed by GPD
improved, whereas the estimate of the other methods in-
creased above the true value.

The results of increasing the sampling rate (resol) from
1 to 5 Hz are shown in Table 1 for the exponential kernel
at o, = 22 MRu, rCBV = 5%, and f = 0.01 ml/g/s. Under
these conditions, B-SVD reproduced the maximum of the
kernel well when resol = 1 Hz, while GPD performed
rather poorly for the exponential kernel. However, Table
1 shows that GPD performed increasingly well as resolu-
tion was increased. A-SVD was unaffected by the resolu-
tion increase, but the performance of B-SVD clearly wors-
ened as resolution increased.

Volunteer Studies

The maximum of the kernel in each voxel estimated from
one in vivo experiment is shown in Fig. 6a for the GPD
method. In this perfusion image, GM, WM, basal ganglia,
and CSF are distinguished easily. Figure 6b shows the
mean of the standard error of the kernel for each voxel. As
expected, the errors were high in CSF and in voxels along
the edge of the brain.

In general, DSC-MRI perfusion measurements provide
values that are too high. This is due to partial volume
effects, different relaxivity values in tissue and vessels,
and under-sampling of the input function. While various
solutions have been suggested to overcome some of these
problems, they were not used in this study because they
are not yet well established and are not necessary for the
comparison of deconvolution methods.

The maxima found in vivo by A-SVD, B-SVD, and GPD
were almost identical. However, the average GM and WM
perfusion values were calculated for the nine subjects
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FIG. 3. The estimated perfusion vs. the true perfusion for different kernels. The dashed line is identity. Plots a and b show that GPD
performed best for low perfusion and low noise. For the gamma function, perfusion was reproduced, but for the exponential it was
underestimated at high perfusion. Plots ¢ and d show that A-SVD underestimated high perfusion and overestimated low perfusion,
regardless of the noise level. Plots e and f show that B-SVD performed well for the exponential at the low noise level but overestimated for

other kernels. Low perfusion values were overestimated.

using all methods. The values estimated with A-SVD and
B-SVD are plotted against the GPD estimates in Fig. 7. It is
evident that B-SVD always gives a larger estimate than
GPD. For high perfusion values, GPD gives larger estimates
than A-SVD, whereas A-SVD gives larger estimates of low
perfusion.

The areas under the estimated kernels were identical
(images not shown).

DISCUSSION

The GPD performs excellently for the artificial kernels
with very low noise (data not shown). So does B-SVD, but
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FIG. 4. The RMSE vs. the estimated perfusion for various kernels using three methods (rows) and two noise levels (columns). Plots a and
b show that GPD estimated the curves well at low perfusion and low noise level. Plots ¢ and d show that A-SVD had a certain off-set at
low flows. Plots e and f show that B-SVD had the largest RMSE and the largest errors in this case of rCBV = 5%.

A-SVD gives the same (wrong) estimate regardless of the
noise level. The kernel steepness increases with perfusion
for fixed rCBV, leading A-SVD to be more likely to under-
estimate high perfusion than low perfusion, due to the

low-pass filtering. It overestimates low perfusion if the
kernel is smooth at the maximum like the gamma function.
This effect is seen in the MR data, in which A-SVD pro-
vides lower estimates than GPD in GM, where perfusion is
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FIG. 5. The estimated perfusion vs. the true perfusion at rCBV =
3%, 5%, 8%, and 60% for the gamma kernel at the medium noise
level. The larger the marker the larger the rCBV. a: GPD. b: A-SVD.
c: B-SVD. The dashed line is identity. As rCBV increased, the
estimate performed by GPD improved, whereas the estimates of the
other methods increased above the true values.

high, but slightly higher estimates than GPD in WM, where
perfusion is low.

The B-SVD threshold was initially optimized (14) from
exponential kernels with constant MTT, meaning that ker-
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Table 1

The Average Maximum of Exponential Kernels (10 Repetitions)
and Standard Errors for Three Different Temporal Resolutions for
Each of the Three Methods

resol = 1 Hz

resol = 2 Hz resol = 5 Hz

GPD 0.008 = 0.001 0.009 *= 0.001 0.010 = 0.001
A-SVD 0.008 = 0.001 0.0074 + 0.0008 0.0074 + 0.0007
B-SVD 0.010 = 0.002 0.009 = 0.002 0.006 = 0.004

The performance of GPD was increasingly improved, while that of
A-SVD was unaffected by the resolution. The performance of B-SVD
decreased markedly as resolution increased.

nels with high rCBV had high f (Eq. [4]). Under these
conditions B-SVD is significantly better than A-SVD in
determining the maximum. However, due to severe fluc-
tuations of the estimated kernel the whole curve is often
better estimated using A-SVD (the RMSE is smaller). The
maximum of kernels that are more flat than the exponen-
tial is overestimated by B-SVD because the kernel esti-
mates are fluctuating. Overestimation also occurs if rCBV
increases for constant perfusion, since this also leads to
more flat kernels. This, together with the tendency for
B-SVD to overestimate low perfusion, leads B-SVD to give
higher estimates of the perfusion than GPD, as observed in
in vivo experiments.

Increasing the sampling rate reduced the performance of
B-SVD markedly. The reasons are twofold: The S,;,, esti-
mate decreases with improved resolution, leading to a
decrease in SNR, (Eq. [13]), which results in a higher
threshold and therefore an increased low-pass filtering.

Moreover, an increased sampling rate allows for higher
frequencies to be measured. This increases the number of

FIG. 6. (a) The maxima of the kernels, and (b) the standard error
estimated voxel-wise by GPD. The perfusion was higher in GM than
in WM, as expected. Also the basal ganglia are seen. The standard
error was high in CSF and in edge voxels, indicating an expected
poor estimate.
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FIG. 7. The GM and WM perfusion values obtained from nine sub-
jects. The SVD estimates are plotted against the GPD estimates.
The dashed line is identity. B-SVD always provided a higher esti-
mate than GPD. A-SVD gave a higher estimate for low perfusion,
whereas GPD gave the higher estimate at high perfusion. These
findings are in accord with the results obtain by simulations. The
slopes of the regression lines are significantly different.

singular values, but reduces the values representing higher
frequencies. The same percentage threshold thus includes
fewer singular values, which results in increased low-pass
filtering. The A-SVD method is not affected by this, since
the low frequencies represented by the singular values
with a threshold above 20% are measured accurately at a
sampling rate of 1 Hz. To increase the performance of
B-SVD at high sampling rates, new equations for the
threshold have to be computed.

The B-SVD method involves an estimation of the opti-
mal SVD threshold, but it is not evident that a threshold
that separates noise from the kernel exists. Setting a
threshold removes high-frequency variations that are
thought to originate from biological and instrumental
noise. However, the bolus peak also has high-frequency
components and is truncated. Moreover, the SNR values
used to determine the optimal threshold depends on the
patient morphology and movement; factors that should not
influence the perfusion estimate systematically.

GPD performs increasingly well as the noise level is
reduced and the influence of the prior distribution is re-
duced. This is not necessarily the case for the other meth-
ods. In noisy data, when the prior distribution is required,
the performance depends on the smoothness of the kernel.
The smoothness increases with increased rCBV for fixed
perfusion, which leads to improved performance of the
GPD method. In patients with enlarged distribution vol-
ume, of the presented methods only GPD can provide a
valid estimate.

The steepness of the kernel increases with perfusion for
fixed rCBV, leading to reduced performance at high perfu-
sion. This is one reason why GPD gave a lower estimate of
maximum than did B-SVD in the in vivo experiments.
However, the data shows that at high perfusion the whole
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kernel is better determined with GPD (the RMSE is small-
er). The derivative of the kernel is the distribution of
transit times. It can be used to obtain metabolic informa-
tion (23), which makes precise estimation of the whole
kernel very important. At low perfusion, the GPD estimate
was very good.

The smoothness of all kernels is improved with in-
creased sampling rate. For data acquired with increased
SNR or time resolution, for example data acquired at
higher field strength (>1.5T), GPD provides more accurate
estimates at the IRF, than the presented SVD methods.

GPD performed better for the gamma function than for
the steeper exponential function. The constructed gamma
kernel would result from the convolution of an exponen-
tial IRF and a transport function (21,22). Even though the
desired IRF is not measured directly, the deconvolution
should be done accurately to facilitate subsequent correc-
tions for the transport.

The GPD method provides an estimate of the uncertainty
of the calculated IRF per voxel automatically. An uncer-
tainty estimate is not supplied by SVD.

It should be noted that GPD is computationally demand-
ing. The computation time for one brain slice (~
4000 voxels) was 2 s with A-SVD, 39 s with B-SVD, and
46 min with GPD (on an 800-MHz Pentium III computer,
512 Mb RAM, with Matlab for Linux). The computational
time for GPD can be reduced significantly using parallel
computing. Calculations in limited regions could be uti-
lized to minimize computation time in acute stroke pa-
tients. More measurements before contrast administration
could provide an accurate estimate of the noise level, so
that o2 could be fixed during optimization, halving the
computation time.

The parameter related to the correlation length, w, was
optimized to one distinct value in each voxel. However,
the correlation length is expected to vary along the kernel.
Including this effect may lead to improvements of the GPD
method, since the estimate will become less rigid at the
kernel maximum. This is a better approach than smooth-
ing the measured signals, since the IRF is known to be
smooth for physiological reasons. Low-pass filtering of the
measured signals will also decrease the sensitivity to IRF
variations. Other warranted constraints, such as the IRF
being a decreasing function of time, may also be incorpo-
rated in the prior distribution. The suggested improve-
ments of the GPD prior distribution may result in further
improvement, but even with the prior distribution and the
time resolution used in the present study, the method
provided more accurate results.

CONCLUSIONS

GPD is a statistically sound way of estimating the residual
IRF in each voxel. Since DRC-MRI is SNR-limited, it is
crucial to make use of a priori knowledge when it is
available. GPD has the smoothness of the IRF incorporated
as a constraint. The GPD method estimated the maximum
of the IRF, the perfusion, as accurately as the SVD meth-
ods. The GPD method provided a more accurate estimate
of the complete IRF, which is highly important in studies
of metabolism. When rCBV increased, only GPD managed
to provide a valid perfusion estimate. Furthermore, GPD
gives an estimate of the noise level of data, and GPD
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automatically provides a measure of the uncertainty on the
IRF estimate. Using high-performance scanners, the SNR
and/or the time resolution is improved and GPD automat-
ically benefits from these improvements. Therefore, GPD
has important advantages over the optimized SVD as a
method for deconvolution of the residual impulse-re-
sponse curve in dynamic susceptibility contrast perfusion
measurements.

APPENDIX A

The tissue concentrations, ¢, are distributed normally
with the likelihood function (18):

plcic,, h, o?)
1 \V 1
~\Vzmoz) OP| 2027

where o2 is the noise variance, and N is the length of c,.
Multiplying the parentheses (¢, — C,;h)” (¢, — C,h) = ¢/, —

2¢fC,h + h"CIC,h and defining the matrix A by A™* =
1/02C C,, and the vector h, by hTA™* = 1/6%¢]C, leads to

C.h)" (c, - Cah]:| [A1]

2 1 N 1 TA-1
plede,, h, o))= ﬁ exp| —5 {hoA™"hy

1
— 2h’A'h + hTA™'h + = c'c — thth)]

where the term h’A™"h, is added and subtracted. The first
three terms are recognized as a Gaussian quadratic form in
h, and the last two terms are independent of h and form the
constant K:

1
plele, h, 0f) = KBXP[*E (hy —h)" A™" (b, — h)]

Transformation of variables to a distribution of h,, leads to

1 1
_ —(h. — T A (h —
plh, ) = JlzmA] GXP{ 5 (ho —h)" A (hy h]]
[A2]
where h, = (CIC,) *'C’c, is the observed data, A~* = 1/0?

CIC, is the covariance matrix, and h is the mean vector.
The equation for the Gaussian process prior distribution,
with B given by Eq. [11], is

p(h/B) = exp(—f h'B~ 1h) [A3]

NE

The joint Gaussian likelihood is calculated from the

data distribution, Eq. [A2], and the prior distribution,

Eq. [A3], by marginalization of h, i.e., p(hy|A, B)
(hy|A, B) = S =, p(hyo/h, A)p(h|B)dh. This leads to
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* 1 1
ho|A, B)= J Jz=Al Jj2=B|
Xex _ lhT -1 -1 _ TA-1 _1 TA-1
p| - (;B7(A + B-)h — hJA"h) — | hIA™h, | dh.

To proceed, the relation: »%x’Qx — ¢"x = %(x —
Q '9"Q(x — Q *q) — .q"Q 'qisused, whereQ=A"" +
B~', g = A 'h,, and x = h. This leads to

(ho/A, B) =
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1
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The last two terms are independent of h. Integration of the
Gaussian distribution gives
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using matrix rules and defining D as D = A + B leads to the
likelihood function:

1
h,D - hTD 'h, . A4

APPENDIX B
Inserting the distributions into Eq. [12] in the text leads to
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then the expression within the inner parentheses becomes
h (D — D "h, + 2h{a"h, + h,bh,. This corresponds to
the Gaussian form with covariance X and mean p if 37" =
b, —2n">"* = 2h!a", and p"3 ' = hI(D — D Yh,. The
matrix inversion lemma immediately gives the covariance
matrix, since

[A5]

Using the lemma a few times more leads to hID -
D Yh, = hI(D *a> *a™D ')h, = n’> 'u from which p
is derived:

p = a’D 'h,. [A6]

The values of Egs. [A5] and [A6] also fulfill the third
equality: —2pn”3 " = 2hJa".
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