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Tangential neurons in the fly brain are sensitive to the typical optic flow patterns
generated during egomotion. In this study, we examine whether a simplified lin-
ear model based on the organization principles in tangential neurons can be used
to estimate egomotion from the optic flow. We present a theory for the construc-
tion of an estimator consisting of a linear combination of optic flow vectors that
incorporates prior knowledge both about the distance distribution of the environ-
ment, and about the noise and egomotion statistics of the sensor. The estimator
is tested on a gantry carrying an omnidirectional vision sensor. The experiments
show that the proposed approach leads to accurate and robust estimates of ro-
tation rates, whereas translation estimates are of reasonable quality, albeit less
reliable.

1 Introduction

A moving visual system generates a characteristic pattern of image motion on its sen-
sors. The resulting optic flow field is an important source of information about the
egomotion of the visual system (Gibson, 1950). In the fly brain, part of this infor-
mation is analyzed by a group of wide-field, motion-sensitive neurons, the tangential
neurons in the lobula plate (Hausen, 1993; Egelhaaf, Kern, Krapp, Kretzberg, Kurtz,
& Warzecha, 2002). A detailed mapping of their local preferred directions and mo-
tion sensitivities (Krapp & Hengstenberg, 1996) reveals a striking similarity to certain
egomotion-induced optic flow fields (cf. Fig. 1). This suggests that each tangential neu-
ron extracts a specific egomotion component from the optic flow which may be useful
for gaze stabilization and flight steering.

A recent study (Franz & Krapp, 2000) has shown that a simplified computational
model of the tangential neurons as a weighted sum of flow measurements was able to
explain certain properties of the observed response fields. The weights were chosen
according to an optimality principle which minimizes the output variance of the model
caused by noise and distance variability between different scenes. In that study, how-
ever, we mainly focussed on a comparison between the sensitivity distribution in tan-
gential neurons and the weight distribution of such optic flow processing units. Here
we present a classical linear estimation approach that extends the previous model to
the complete egomotion problem. We again use linear combinations of local flow mea-
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Figure 1: Mercator map of the response field of the neuron VVS10. The orientation of each arrow
gives the local preferred direction, and its length denotes the relative local motion sensitivity. The
results suggest that VS10 responds maximally to rotation around an axis at an azimuth of about
50° and an elevation of about 0° (after Krapp et al., 1998).

surements, but - instead of prescribing a fixed motion axis and minimizing the output
variance - we minimize the quadratic error in the estimated egomotion parameters. The
derived weight sets for the single model neurons are identical to those obtained from
one of the model variants discussed in Franz and Krapp (2000). Of primary interest
for this article is, however, that the new approach yields a novel, extremely simple
estimator for egomotion that consists of a linear combination of model neurons. Our
experiments indicate that this insect-inspired estimator shows - in spite of its simplicity
- an astonishing performance that often comes close to the more elaborate approaches
of classical computer vision.

This article is structured as follows: in Sect. 2, we describe the derivation of the
egomation estimator from a least squares principle. In Sect. 3, we subject the obtained
model to a rigorous real-world test on a gantry carrying an omnidirectional vision sen-
sor. The evidence and the properties of such a neural representation of egomotion are
discussed in Sect. 4. A preliminary account of our work has appeared in Franz and

Chahl (2003).

2 Optimal linear estimatorsfor egomotion

2.1 Egomotion sensor and neural model

In order to simplify the mathematical treatment, we assume that the NV motion detectors
of our egomotion sensor are arranged on the unit sphere. The viewing direction of the
inputs to a particular motion detector with index ¢ is denoted by the radial unit vector
d;. At each viewing direction, we define a local two-dimensional coordinate system on
the sphere consisting of two orthogonal tangential unit vectors u; and v; (Fig. 24)*.
We assume that we measure the local flow component along both unit vectors subject

1For mathematical convenience, we do not take into account the hexagonal arrange-
ment of the optical axes of the photoreceptors within the fly compound eye.
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Figure 2: A. Sensor model: At each viewing direction d;, there are two measurements z; and
y; of the optic flow p; along two directions u; and v; on the unit sphere. B. Simplified model
of a tangential neuron: The optic flow and the local noise signal are projected onto a unit vector
field of local preferred directions (LPDs). The projections are weighted (local motion sensitiv-
ities, LMSs) and linearly integrated. The model assumes that the integrated output encodes a
egomotion component defined by either a translation or a rotation axis.

to additive noise. Formally, this means that we obtain at each viewing direction two
measurements x; and y; along u; and v;, respectively, given by

T =Pi-W+ng; and Yy =p;i-vi+ny, 1)

where n, ; and n, ; denote additive noise components with a given covariance C,
and p; the local optic flow vector. When the spherical sensor translates with T while
rotating with R. about an axis through the origin, the egomotion-induced image flow
p; at d; is

pPi = —,ui(T— (sz)dz) — R x dz (2)

i is the inverse distance between the origin and the object seen in direction d;, the
so-called “nearness” (Koenderink & van Doorn, 1987). The entire collection of flow
measurements x; and y; comprises the input to a simplified neural model which con-
sists of a weighted sum of all local measurements (Fig. 2B)

N N
0= weimi+ Y wyui ®)

i i
with local weights w, ; and wy ;. In this model, the local motion sensitivity is de-
fined as w; = ||(wg,i,wy,:) " ||, the local preferred direction is parallel to the vector

w%(ww,,-, wy,;) . The resulting local motion sensitivities and local preferred directions
can be compared to measurements on real tangential neurons (Franz & Krapp, 2000).

As our basic hypothesis, we assume that the output of such neural models is used
to estimate a egomotion component of the sensor. Since the output is a scalar, we
need in the simplest case an ensemble of six neural models to encode all six rotational
and translational degrees of freedom. To keep the mathematical treatment simple, we
assume that the motion axes of interest are aligned with the global coordinate system.
In principle, any set of linearly independent axes could be used.

The local weights of each unit are chosen to yield an optimal linear estimator for the
respective egomotion component. In addition, we allow the neural models to interact
linearly, such that the whole ensemble output is a linear combination of the individual
neural outputs. This last step is necessary since the neural models do not react specifi-
cally to their own egomotion component due to the broad tuning of the motion detector



model (cf. Eq. (1)). The response of the neural model can be made more specific by
using the output of the other neurons to suppress the signal caused by other egomotion
components (Krapp, Hengstenberg, & Egelhaaf, 2001; Haag & Borst, 2003).

2.2 Prior knowledge

An estimator for egomotion consisting of a linear combination of flow measurements
necessarily has to neglect the dependence of the optic flow on object distances. As a
consequence, the estimator output will be different from scene to scene, depending on
the current distance and noise characteristics. The best the estimator can do is to add up
as many flow measurements as possible hoping that the individual distance deviations
of the current scene from the average over all scenes will cancel each other. Clearly,
viewing directions with low distance variability and small noise content should receive
a higher weight in this process. In this way, prior knowledge about the distance and
noise statistics of the sensor and its environment can improve the reliability of the
estimate.

If the current nearness at viewing direction d; differs from the average nearness ji;
over all scenes by Ap;, the measurement x; (or y;, respectively) can be written as (see
Eqgns. (1) and (2))

zi = —(piu] , (u; x d;) ") ( lTi ) + ng,i — Apiw;'T, (4)

where the last two terms vary from scene to scene, even when the sensor undergoes
exactly the same egomation.

To simplify the notation, we stack all 2N measurements over the entire motion
detector array in the vector x = (x1,y1,%2,%2,...,ZN,yn) . Similarly, the egomo-
tion components along the z-, y- and z-directions of the global coordinate sytem are
combined in the vector § = (T, Ty, T, Ry, Ry, R,) T, the scene-dependent terms of
Eq. (4) inthe 2N-vectorn = (ngy 1 — Apguy T, ny 1 — Apyvi T, ....) T and the scene-
independent terms in the 6xN-matrix F' = ((—fiyu{ , —(u; xdy) "), (= vy —(v1 x

d;)T),...)T . The entire ensemble of measurements over the sensor becomes thus

x = Ff0 +n. (5)

Assuming that T, n,;, n,,; and p; are uncorrelated, the covariance matrix C' of the
scene-dependent measurement component n is given by

Cij = Cnyij + Cuiju] Cruy (6)

with C,, being the covariance of n, C,, of u and C'r of T. These three covariance
matrices, together with the average nearness fi;, constitute the prior knowledge required
for deriving the optimal estimator.

2.3 Optimized linear estimator

Using the notation of Eq. (5), we write the output of the whole ensemble as a linear
estimator .
0 =Wx. @)

W denotes a Mx2N weight matrix where each of the M rows consists of a linear
combination of the weight sets of the neural models (see Eqg. (3)). The optimal weight



matrix is chosen to minimize the mean square error e of the estimator given by
e=E(6-06|?) = tr[wCWT] (8)

where E denotes the expectation. We additionally impose the constraint that the esti-
mator should be unbiased for n = 0, i.e., § = 8. From Eqns. (5) and (7) we obtain the
constraint equation

WEF = 1pxm- 9)

The solution minimizing the associated Euler-Lagrange functional (A is a MxM-
matrix of Lagrange multipliers)

J=tr[WOW ]+ tr[AT (1 psxps — WF)] (10)

can be found analytically and is given by
W= %AFTC*l (11)

with A = 2(FTC~1F)~!. The rows of FTC~! correspond to the neural model of
Eq. (3)2, A acts as a correction matrix that supresses the part of the neural signal caused
by the egomotion components to which the neuron is not tuned to.

When computed for the typical inter-scene covariances of a flying animal, the re-
sulting weight sets are able to explain many of the receptive field characteristics of the
tangential neurons (Franz & Krapp, 2000). However, the question remains whether the
output of such an ensemble of neural models can be used for some real-world task.
This is by no means evident given the fact that - in contrast to most approaches in com-
puter vision - the distance distribution of the current scene is completely ignored by the
linear estimator.

3 Experiments

3.1 Linear estimator for an office robot

As our test scenario, we consider the situation of a mobile robot in an office environ-
ment. This scenario allows for measuring the typical motion patterns and the associated
distance statistics which otherwise would be difficult to obtain for a flying agent.

The distance statistics were recorded using a rotating laser scanner. The 26 mea-
surement points were chosen along typical trajectories of a mobile robot while wan-
dering around and avoiding obstacles in an office environment. The recorded distance
statistics therefore reflect properties both of the environment and of the specific move-
ment patterns of the robot. From these measurements, the average nearness j; and
its covariance C), were computed (cf. Fig. 3, we used distance instead of nearness for
easier interpretation).

The distance statistics show a pronounced anisotropy which can be attributed to
three main factors: (1) Since the robot tries to turn away from the obstacles, the distance
in front and behind the robot tends to be larger than on its sides (Fig. 34). (2) The
camera on the robot usually moves at a fixed height above ground (here: 0.62 m) on
a flat surface. As a consequence, distance variation is particularly small at very low

2The resulting local motion sensitivities correspond exactly to those obtained from
the linear range model in (Franz & Krapp, 2000) if one assumes a diagonal C.
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Figure 3: Distance statistics of an indoor robot (0 azimuth corresponds to forward direction;
the distances on the contour lines are given in m): A. Average distances from the origin in the
visual field (IV = 26). Darker areas represent larger distances. B. Distance standard deviation
in the visual field (IV = 26). Darker areas represent stronger deviations.

elevations (Fig. 3B). (3) The office environment also contains corridors. When the
robot follows the corridor while avoiding obstacles, distance variations in the frontal
region of the visual field are very large (Fig. 3B).

The estimation of the translation covariance C7 is straightforward since our robot
can only translate in forward direction, i.e. along the z-axis. C is therefore O ev-
erywhere except the lower right diagonal entry which corresponds the square of the
average forward speed of the robot (here: 0.3 m/s). The motion detector noise was
assumed to be zero-mean, uncorrelated and uniform over the image, which results in
a diagonal C,, with identical entries. The noise standard deviation of 0.34 deg./s was
determined by presenting a series of articially translated images of the laboratory (mov-
ing at 1.1 deg./s) to the flow algorithm used in the implementation of the estimator (see
Sect. 3.2). i, Cy, Cr and C', constitute the prior knowledge necessary for computing
the estimator (Eqgns. (6) and (11)).

The optimal weight sets for the neural models for the six degrees of freedom (each
of which corresponds to a row of F'TC~1) are shown in Fig. 4. All neural models
have in common that image regions near the rotation or translation axis receive less
weight. In these regions, the egomotion components to be estimated generate only
small flow vectors which are easily corrupted by noise. Equation (11) predicts that the
estimator will preferably sample in image regions with smaller distance variations. In
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Figure 4: Neural models computed as part of the linear estimator. Notation is identical to Fig. 1.
The depicted region of the visual field extends from —15° to 180° azimuth and from —75° to
75° elevation. The model neurons are tuned to A. forward translation, B. translations to the
right, C. downward translation, D. roll rotation, E. pitch rotation, and F'. yaw rotation.

our measurements, this is mainly the case at the ground around the robot (Fig. 3). The
rotation-selective neural models assign higher weights to distant image regions, since
distance variations at large distances have a smaller effect. In our example, distances
are largest in front and behind the robot so that the neural model for yaw assigns the
highest weights to these regions (Fig. 4F). This effect is less pronounced in the other
rotational neural models because the translational flow is almost orthogonal to their
local directions and thus interferes to a much lesser degree.

Although the small weights near the motion axes and the overall distribution of
local directions are similar to those found in tangential neurons, our neural models
show specific adaptations to the indoor robot scenario: the highly weighted ground
regions are exactly the opposite to our model predictions for a flying animal where
the ground region shows a stronger distance variability than regions near and above
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Figure 5: Gantry experiments: Results are given in arbitrary units, true rotation values are de-
noted by a dashed line, translation by a dash-dot line. Grey bars denote translation estimates,
white bars rotation estimates A. Estimated vs. real egomotion; B. Estimates of the same ego-
motion at different locations; C. Estimates for constant rotation and varying translation; D.
Estimates for constant translation and varying rotation.

the horizon (Franz & Krapp, 2000). The predicted dorsoventral asymmetry with small
weights in the ground region is indeed observed in the tangential neurons (see Fig. 1
and Krapp, Hengstenberg, & Hengstenberg, 1998). The strong weighting of the frontal
region in the yaw neural model (Fig. 4F) is also corridor-specific, so it is not surprising
that this feature is not present in an animal that evolved in an open outdoor environment.

3.2 Gantry experiments

The egomotion estimates from the ensemble of neural models were tested on a gantry
with three translational and one rotational (yaw) degree of freedom. Since the gantry
had a position accuracy below 1mm, the programmed position values were taken as
ground truth for evaluating the estimator’s accuracy.

As vision sensor, we used a camera mounted above a mirror with a circularly sym-
metric hyperbolic profile. This setup allowed for a 360° horizontal field of view ex-
tending from 90° below to 45° above the horizon. Such a large field of view consider-
ably improves the estimator’s performance since the individual distance deviations in
the scene are more likely to be averaged out. More details about the omnidirectional
camera can be found in Chahl and Srinivasan (1997). In each experiment, the camera
was moved to 10 different start positions in the lab at the same height above ground



(0.62 m) as the robot camera?, but with largely varying distance distributions near and
above the horizon. After recording an image of the scene at the start position, the
gantry translated and rotated at various speeds and directions and took a second image.
After the recorded image pairs (10 for each type of movement) were unwarped, we
computed the optic flow input for the neural models using a standard gradient-based
scheme (Srinivasan, 1994).

The average error of the rotation rate estimates over all trials (N=450) was 0.7°/s
(5.7% rel. error, Fig. 5A), the error in the estimated translation speeds (N=420) was 8.5
mm/s (7.5% rel. error). The estimated rotation axis had an average error of magnitude
1.7°, the estimated translation direction 4.5°. The larger error of the translation esti-
mates is mainly caused by the direct dependence of the translational flow on distance
(see Eq. (2)) whereas the rotation estimates are only indirectly affected by distance
errors via the current translational flow component which is largely filtered out by
the local direction template. The larger sensitivity of the translation estimates to dis-
tance variations can be seen by moving the sensor at the same translation and rotation
speeds in various locations. The rotation estimates remain consistent over all locations
whereas the translation estimates show a higher variance and also a location-dependent
bias, e.g., very close to laboratory walls (Fig. 5B). A second problem for transla-
tion estimation comes from the different properties of rotational and translational flow
fields: Due to its distance dependence, the translational flow field shows a much wider
range of local image velocities than a rotational flow field. The smaller translational
flow vectors are often swamped by simultaneous rotation or noise, and the larger ones
tend to be in the upper saturation range of the used optic flow algorithm. This can be
demonstrated by simultaneously translating and rotating the sensor. Again, rotation
estimates remain consistent at different translation speeds while translation estimates
are strongly affected by rotation (Fig. 5C and D).

4 Discussion

Egomotion estimation. Our experiments show that it is possible to obtain useful
egomotion estimates from an ensemble of linear neural models in a real-world task.
Although a linear approach necessarily has to ignore the distances of the currently
perceived scene, an appropriate choice of local weights and a large field of view are
capable of reducing the influence of noise and distance variability on the estimates.
In particular, rotation estimates were highly accurate and consistent across different
scenes and different simultaneous translations. Translation estimates were not as ac-
curate and less robust against changing scenes and simultaneous rotation. The perfor-
mance difference was to be expected because of the direct distance dependence of the
translational optic flow which leads to a larger variance of the estimator output. This
problem can only be resolved by also estimating the distances in the current scene (e.g.,
in the iterative schemes in Koenderink & van Doorn, 1987; Heeger & Jepson, 1992).
This, however, requires significantly more complex computations. Another reason is
the limited dynamic range of the flow algorithm used in the experiments, as discussed
in the previous section. One way to overcome this problem would be using an op-
tic flow algorithm that estimates image mation on different temporal or spatial scales
which is, again, computationally more expensive.

3The translational neurons in Fig. 4 for the mobile robot case assign a high weight to
the ground region. As a consequence, the translation estimates strongly depend on the
correct height above ground, whereas rotational neurons are only indirectly affected.
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Figure 6: Hypothetical neurons constructed for A. roll and B. pitch rotation.

Our results show that the linear estimator accurately estimates rotation under gen-
eral egomotion conditions and without any knowledge of the object distances of the
current scene. The estimator may be used in technical applications such as image sta-
bilization of a moving camera, or the removal of the rotational component from the
currently measured optic flow. Both measures considerably simplify the estimation of
distances from the remaining optic flow and the detection of independently moving
objects. In addition, the simple architecture of the estimator allows for an efficient im-
plementation at low computational costs, which are several orders of magnitude smaller
than the costs of computing the entire optic flow input.

The components of the estimator are simplified neural models which - when com-
puted for a flying animal - are able to reproduce characteristics of the tangential neuron
receptive field organization, i.e. the distribution of local motion sensitivities and local
preferred directions (Franz & Krapp, 2000). Our study suggests that tangential neurons
may be used for self-motion estimation by linearly combining their outputs at the level
of the lobula plate (e.g. Krapp et al., 2001) or at later integration stages. Evidence for
the latter possibility comes from recent electrophysiological studies on motor neurons,
which innervate the fly neck motor system and mediate gaze stabilization behaviour
(Huston & Krapp, 2003). The possible behavioural role of such egomotion estimates,
however, will critically depend on the dynamic properties of the whole sensorimotor
loop, as well as on specific tuning of the motion processing stage providing the input.
An example of using integrated optic flow for controlling a robotic system is described
in Reiser and Dickinson (2003).

Neural computation of egomotion. The description of any egomotion requires
at most six degrees of freedom. Therefore an ensemble of six neurons, as in our gantry
experiments, would be sufficient to encode the entire egomotion of the fly. There are,
however, at least 13 tangential neurons (3 HS and 10 VS neurons) in either side of the
fly lobula plate which not even cover all degrees of freedom, e.g., none of the currently
known receptive fields represent lift translation (reviews in Hausen, 1984, 1993; Krapp,
2000). A plausible explanation might be that the axes covered by tangential neurons -
thus constituting the sensory coordinate system - are aligned with the axes used by the
motor coordinate system. Recent studies on gaze stabilization in Calliphora suggest
that in some cases the output of individual tangential neurons is connected to individual
motor neurons driving certain head movements (Huston & Krapp, 2003).

Another hint comes from an interesting property of our linear model: The linearly
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combined output of two model neurons corresponds to the linear combination of their
respective weight sets. For the tangential neurons, this would mean that the summed
output of several neurons may be treated as a superposition of their individual local
response properties. The receptive fields of many tangential neurons often cover only a
smaller part of the visual field, perhaps due to anatomical or developmental constraints.
By summing the output of several neurons, one could build estimators with extended
receptive fields covering more than one visual hemisphere. This is demonstrated in
Fig. 6, where we construct a hypothetical pitch neuron from the inverted output of
VS1-3 added to the output of VS8-10. Also shown in Fig. 6 is the response field of
VS6 which was shown to be ideally suited to sense roll-rotations (Franz & Krapp,
2000).

Linearity. Finally, we have to point out a basic difference of between the pro-
posed theory and optic flow processing in the fly: It assumes that the motion detector
signals the tangential neurons integrate depend linearly on velocity (see Eq. (1)) (Re-
ichardt, 1987). The output of fly motion detectors, however, is linear only within a
limited velocity range. The motion detector output also depends on the spatial pattern
properties of the visual surroundings (Borst & Egelhaaf, 1993). These properties are
reflected by the tangential neurons’ response properties. Beyond a certain image veloc-
ities, for instance, their response stays at a plateau when the velocity is increased. Even
higher velocities result in a decrease of the neuron’s response (Hausen, 1982). Within
the plateau range, tangential neurons can only indicate the presence and the sign of a
particular egomotion, but not the actual velocity. A detailed comparison between lin-
ear model neurons and tangential neurons shows characteristic differences. Under the
conditions of the neurophysiological experiments reported in (Franz & Krapp, 2000),
tangential neurons seem to operate in the plateau range rather than in the linear range.
Under such response regimes a linear combination of tangential neuron outputs would
not indicate the true egomotion.

Physiological mechanisms have been described, however, which may help to over-
come these limitations to a certain degree. A non-linear integration of local motion
detector signals, known as dendritc gain control (Borst, Egelhaaf, & Haag, 1995), pre-
vents the output of the tangential neurons from saturating when its entire receptive field
is stimulated. This mechanism results in a size invariant response, which still depends
on velocity. Harris, O’Carroll, and Laughlin (2000) show that contrast gain control is
of similar significance. It contributes to the neuron’s adaptation to visual mation, i.e.
it prevents the tangential neurons from saturating at high visual contrasts and image
velocities.

Even though these mechanisms may not establish a linear dependence over the
entire velocity range they may considerably extend it. Evidence supporting this idea
comes from a study by Lewen, Bialek, and de Ruyter van Steveninck (2001). The
authors performed electrophysiological experiments on the H1 tangential neuron in a
natural outdoor environment and at bright daylight. They show that the linear dynamic
range of H1 under these conditions is significantly extended compared to stimulation
with a periodic grating within the same range of velocities but applied in the laboratory.

Despite these results it is still not entirely clear whether an extended linear dynamic
range of the tangential neurons is sufficient to cover all needs in gaze stabilization and
flight steering. Within the linear range, however, the fly might take advantage of all
the beneficial properties the linear model offers. For instance, it may combine the out-
puts of several tangential neurons to form matched filters for particular egomotions. In
case of the intrinsic tangential neuron VCH, thought to be involved in figure ground
discrimination (Warzecha, Borst, & Egelhaaf, 1992), this seems to hold true. VCH re-
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ceives input from several other tangential neurons the response fields of which are well
characterized. By combining the response fields of the inputting tangential neurons
the VCH response field is readily explained (Krapp et al., 2001). This suggests that
linear combination of tangential neuron response fields may well be an option for the
fly visual system to estimate egomotion.
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