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1. INTRODUCTION

T he increasing amount of complex multivariate data

which are produced in many modern scientific areas

(e.g., bioinformatics or biomedical research) makes the

development of sensible models that help to interpret the

data and allow to predict new data instances an important

problem. Realistic models usually need to be flexible to

adapt to complex data, and they can be highly nonlinear

and should also allow to incorporate the effects of noise and

other uncertainties. Adaptive probabilistic data models pro-

vide a conceptually simple but highly flexible framework for

explaining observed data by a set of hidden, unobserved

causes that are modeled as random variables. The following

are examples of such models: Bayes belief networks [1]

(used e.g., as trainable expert systems), independent com-

ponent analysis [2,3] (abbreviated ICA, which detects inde-

pendent sources in nonlinear signal processing), and Gauss-

ian process models [4] (modeling hidden spatial structures

by random fields). On the basis of the joint distribution of all

variables, one can assign plausible numerical values to the

hidden causes from suitable conditional averages over the

hidden variables.

Unfortunately, the flexibility of these models comes with

a serious drawback. Except for a few simple cases (when the

graph of dependencies between random variables has the

structure of a tree, or, when the joint distribution is Gauss-

ian) exact inference with probabilistic models becomes in-

tractable in realistic cases when the number of variables is

large. Hence, finding fast but reliable techniques for approx-

imate inference with probabilistic models is an important

and nontrivial task.

In recent years, a variety of approximation techniques

have been imported from the field of statistical physics. One

of the simplest methods is the well-known mean field (MF)

approximation, which approximates the joint distribution

of variables by a factorizing one. To take the neglected
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correlations at least partly into account, corrections to the

MF method, such as the Bethe/Kikuchi approximation [5]

and the TAP approach (see e.g., [4,6 –11] and references in

[12]), have become popular.

The TAP method was introduced by Thouless et al. [13]

to treat disordered materials with infinite ranged random

interactions. We can view data models as disordered sys-

tems because the observed random data are parameters in

the conditional distributions for the hidden variables. Un-

fortunately, the TAP method requires the exact knowledge

of the distribution of the disorder, which for statistical phys-

ics models is usually assumed to be known, but for real data

typically not. In order to make the method a general tool for

practical applications, we have recently developed a version

of the TAP approach [14,15], which no longer requires the

knowledge of the underlying distribution but adapts to the

concrete observations. In this article we present a simple

derivation of our adaptive TAP (ADATAP) method and dem-

onstrate its applications to a model for classification and an

ICA model.

2. PROBABILISTIC MODELS: TWO EXAMPLES

2.1. Gaussian Process Models for Classification
Gaussian process (GP) models provide nonparametric ap-

proaches for supervised learning 4,16,17]. Take, e.g., a bi-

nary classification problem, where we would like to classify

input features x � RD (which might be the vectors of pixel

values for digitized handwritten characters) into two classes

y � �1 (say, the handwritten digit “4” against all other

digits). A probabilistic model could assume that the ob-

served class labels are generated as y � sign[f(x) � �] with an

unknown function f, and where � is a zero mean noise

process. The statistics of the noise can be encoded in the

likelihood P(y�f(x)) of observing a label y, based on knowing

the function value f(x). In a Bayesian probabilistic model

also the unknown function f becomes a random variable.

We will encode a vague prior knowledge about the variabil-

ity of functions f with their arguments x by modeling them

as realizations of a Gaussian random field. For such Gauss-

ian processes (with zero mean) the entire distribution P0[f]

over function space is determined by its correlation func-

tion (or kernel) K(x; x�), which has to be supplied by the user

of the algorithm. When a dataset of N correctly classified

input/label pairs D � (x1; y1),…,(xN, yN) is available for

training, one can use Bayes’ theorem of probability to con-

vert the prior distribution P0 together with the likelihood

into a posterior distribution over functions

P�f � D� �
1
Z

P0�f� � �
i�1

N

P�yi � fi�, (1)

where fi 	 f(xi) and Z acts as a normalizer. With an increas-
ing number of training data, one expects that the posterior
distribution (1) becomes more and more concentrated
around the function f, which optimally classifies the data.
Good predictions on novel test inputs x could then be based
naturally on the average 
f(x)� over the distribution (1),
which could be used to classify the new inputs x as y �

sign[
f (x)�]. One can show [4] that the computation of 
f(x)�
can be reduced to averages with respect to the joint distri-
bution of function values at the training inputs xi, which is

p�f1, . . . , fN � D� � exp�

1
2 �

i,j

fi�K

1�ijfj� � �

i�1

N

P�yi � fi�

(2)

and the matrix K is defined through the kernel via Kij �

K(xi, xj).
This probabilistic, nonparametric approach has the ad-

vantage over parametric techniques (e.g., neural networks)
that the effective complexity of the model is not fixed be-
forehand but will effectively adapt to the dataset. Also the
applicability of kernel machines to various nontrivial prob-
lems has been increased by the development of new types
of kernels that are especially designed for classifying com-
plex types of objects such as texts or protein strings [18]. The
disadvantage comes from the fact that the necessary math-
ematical operations cannot be performed exactly in an ef-
ficient way. Besides the problem of analytically intractable
distributions (2), the high dimensionality of correlation ma-
trices Kij make computations inefficient, when the size N of
the training data sets becomes large.

2.2. Probabilistic Independent Component Analysis
Independent component analysis (ICA) is a widely applica-
ble approach [2,3,19] in nonlinear signal processing and
data analysis that aims at decomposing signals obtained
from different sensors into a set of statistically independent
sources. This finds a variety of applications for images,
sound, text, and telecommunication problems [2,3] and also
in the analysis of biomedical data, where one tries to sepa-
rate an “interesting” part of the signal from other statisti-
cally independent contributions. In the simplest probabilis-
tic formulation of ICA (for other approaches, see [2,3]), one
assumes that the vector Xt of signals at time t is an instan-
taneous linear mixing of sources St corrupted by additive
Gaussian noise �ij. We can write

Xt � ASt � �t, (3)

where A is an unknown (but time independent) mixing
matrix and the noise vector is assumed to be without tem-
poral correlations having a time-independent covariance
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matrix �. The total probability of the temporal signal is
assumed to be factorizing in time, i.e., P(X�A, �, S) � �t

P(Xt�A, �, St). The aim of independent component analysis
is to recover the unknown quantities which are the mixing
matrix A, the noise covariance �, and the unknown sources
S from the observed data. The crucial assumption is that of
statistical independence of the sources (the hidden vari-
ables) at each time t, i.e., P(St) � �i P(Sit). A suitable func-
tional form (which has to be non-Gaussian) for the source
distribution P(S), which incorporates, e.g., known con-
straints (such as positivity or sub-Gaussian tails) must be
chosen for each individual application. Alternatively, the
source distribution can also adapt to the data, see e.g.,
Ref. [20].

Again, we can get plausible values for the unobserved
sources by averaging the random values Sit over the poste-
rior distribution computed from the prior distribution P(St)
and the likelihood of the observations derived from Equa-
tion (3). Although the prior distribution assumed indepen-
dent sources, the posterior will obviously have correlations
between different sources, which again makes computa-
tions of averages nontrivial. In addition, we must also learn
the mixing matrix A and the noise covariance � in parallel.
These can be estimated from the training data by the
method of maximum likelihood (ML) [19], i.e., by maximiz-
ing the total probability of the observations:

P�X � A, �� �� dSP�X � A, �, S�P�S� (4)

under the statistical assumptions.

3. A CANONICAL MODEL
It is not hard to show that the two previous examples of
probabilistic models (and, in fact, many others) require the
computation of averages over posterior distributions of hid-
den variables, which are of the type

P�S� �
��S�

Z
exp�1

2 �
i,j

SiJijSj�. (5)

The set of couplings Jij’s encodes pairwise dependencies
between the hidden random variables S � (S1,…SN). The
factorizing term �(S) � �j�j(Sj) (called likelihood in the fol-
lowing) usually contains local observations at sites j, but can
also incorporate additional local prior information about
the variables Si, e.g., by proper choices of the �j’s we can
include both discrete and continuous random variables in
the same model (5). The normalizing partition function Z is
often (within a constant) equal to the probability that the
model gives to the observed variables, which can be used as
a yardstick for comparing different models or optimizing

their hyperparameters. In the rest of the article we will
describe a simple and computationally efficient method for
approximating marginal moments and correlation func-
tions for the distribution (5), which enables us to deal with
a variety of probabilistic models on real data.

4. THE GIBBS FREE ENERGY
Our approximation scheme is based on a Gibbs Free Energy
G. It is an entropic quantity that allows us to compute
moments of the distribution P, [Eq. (5)] as well as the log of
the normalization, 
lnZ within the same approach. G is
defined by a constrained minimization of a relative entropy
measure D(QPP) 	 � dS Q(S) ln [Q(S)/[P(S)] between a
distribution Q and the posterior distribution P, where a set
of relevant marginal moments are fixed. To be precise, we
define

G�m, M� � min
Q

�D�Q � P� � 
S�Q � m, 
S2�Q � M� � ln Z,

(6)

where the brackets denote expectations with respect to the
variational distribution Q. 
S2�Q is shorthand for a vector
with elements 
Si

2�Q. Minimizing G with respect to all argu-
ments obviously leads to minm,M G(m, M) � 
ln Z, where
the total the minimizer is just Q � P. Hence, the moments
of the distribution P are obtained as 
S�, 
S2� � argminm,M

G(m). Unfortunately, an exact calculation of (6) is as com-
plicated as computing averages with respect to the distri-
bution (5). To approximate the Gibbs free energy, we split G
into two terms: G � G0 � �G, where G0 is the Gibbs free
energy for the distribution (5), but where all couplings Jij

between the random variables are set to zero. The compu-
tation of the corresponding Gibbs free energy G0 for such a
“free” model is easy. Previous versions of the TAP approxi-
mation have been obtained by truncating a power series
expansion of �G with respect to the interactions Jij at sec-
ond order [10, 21]. In contrast, our ADATAP approximation
(motivated by the treatment of Parisi and Potters [22] of an
Ising model with random orthogonal coupling matrix) will
include terms of arbitrary order in the interactions. It will be
defined in such a way that �G becomes exact when (5) is a
Gaussian distribution. It can be shown for the Gaussian case
that the interaction part �Gg [and the optimizing Gaussian
distributions in (6)] comes out independent of the actual
Gaussian likelihood chosen to compute G. It is only a func-
tion of the moments m and M and equals

�Gg�m, M� � max
�
�1

2
ln det�� � J� �

1
2

mTJm �
1
2 �

i

�i�ii	
�

1
2 �

i

ln �ii �
N
2

, (7)
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where � is a diagonal matrix with entries �i and �ii 	 Mi 


mi
2. The universal form (7) will provide an approximation to

G for arbitrary likelihoods via

G 
 G0 � �Gg. (8)

Hence, the problem of computing certain averages with the
distribution (5) has been reduced to an optimization prob-
lem. We have developed a message passing algorithm for

finding local minima (based on an earlier idea of T. Minka
[23]), which is found to perform efficiently in practice.

5. APPLICATIONS

5.1. Sparse Approximation for Gaussian Process
Classifiers
A straightforward application of the ADATAP approximation
for computing predictions with the GP classifier model (2)
[4] becomes impractical for datasets of several thousand
training examples. Hence, a further approximation intro-
ducing sparsity is necessary. The idea is to replace the
distribution P (more precisely, a Gaussian approximation
Q*, which is implicitly computed with �Gg) by another one
having a likelihood which depends only on a smaller subset
of variables called “basis vectors” (BV) of size n� N [24]. In
order to minimize the loss of information caused by spar-
sity, the new distribution Q̂ with a sparse likelihood is op-
timized by minimizing the relative entropy D(Q̂ � Q*), which
can be done in closed form. We have applied the sparse
ADATAP algorithm on the USPS dataset of grayscale hand-
written digit images of size 16 � 16. We used an RBF kernel
K(x, x�) � aK exp(
Px 
 x�P2/(m�K

2)), m being the dimen-
sion of the input vectors (256 in this case), and aK and �K are
parameters.

The task was to classify the digits into fours and non-
fours. Figure 1 shows the percentage of errors of the classi-
fier on 2007 test patterns for different sizes n of the BV set
(with N � 7000 training examples). The result shows a
saturation of errors with increasing BV set, suggesting that
the sparse approximation extracts sufficient information
from the data. Multiple sweeps of the algorithm through the

FIGURE 1

Test errors for classification with different BV sizes (x-axis) and
multiple sweeps through the data.

FIGURE 2

Feature extraction for hand-written digits. The left plot shows the first 25 principal components ordered according to eigenvalues. The right plot shows the
25 mean images (sources) for ICA with positive mixing matrix A and exponential (positive) source prior.
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dataset (averaged over different permutations of examples
in the sequence) diminish the fluctuations caused by differ-
ent orders of presentations.

5.2. Independent Component Analysis
We will present an application of ICA to feature extraction in
handwritten digits [19]. We assume positive components of
A (enforced by Lagrange multipliers) and a positive expo-
nential prior on the sources P(Sit) � �(Sit) exp (
Sit). As in
[19] we used 500 handwritten 3s, which are assumed to be
generated by 25 hidden images. Enforcing positivity (i.e.,
the images are generated by positive additions) will force
the solution to become sparse, i.e., with many zeros in A
and 
S�. We obtained the statistically independent stroke
styles of Figure 2. This can be compared to the 25 compo-
nents with largest eigenvalues obtained from a standard
PCA (available from http://www.kernel-machines.org/
data/), which exhibit the typical “shadow effects” that occur
when both negative and positive values are possible. The
basis set found by the ICA algorithm can be seen as a
statistically more reasonable representation of the compo-
nents of images than the one found by PCA, because it
models more closely the true generative process of hand-

writing. Projection on this basis can be a powerful prepro-
cessing step for handwritten digit classifiers.

6. CONCLUSION AND OUTLOOK
We have demonstrated how approximation techniques
from statistical physics can help to solve problems in data
modeling. We expect that our ADATAP approximation will
become a practical tool for inference with a variety of prob-
abilistic data models. In fact, we are presently developing
program packages both for ICA, Gaussian processes,
and general model of the type (5) that will be made avail-
able online (available from http://isp.imm.dtu.dk/staff/
winther/).

An important future direction of research will be the
development of systematic improvements of the approxi-
mation. This will not only be of interest from a theoretical
point of view but could also provide a user of the method
with a measure of how well the final result can be trusted.
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24. Csató L.; Opper, M. Sparse gaussian processes. Neural Computation 2002, 14, 641–668.

68 C O M P L E X I T Y © 2003 Wiley Periodicals, Inc.


