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Roadmap (1)

Y - Introduction

e Part I: Binary Classification

* : Basic bounds

* : VC theory

* . Capacity measures
* : Advanced topics
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Roadmap (2)

e Part IlI: Real-Valued Classification

* : Margin and loss functions
* : Regularization
* : SVM
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Lecture 1

The Learning Problem

e (Context
e Formalization
e Approximation/Estimation trade-off

e Algorithms and Bounds
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Learning and Inference

The inductive inference process:

1. Observe a phenomenon
2. Construct a model of the phenomenon

3. Make predictions

= This is more or less the definition of natural sciences !
= The goal of Machine Learning is to automate this process

= The goal of Learning Theory is to formalize it.
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Pattern recognition

We consider here the supervised learning framework for pattern
recognition:

e Data consists of pairs (instance, label)
e Labelis +1 or —1
e Algorithm constructs a function (instance — label)

e Goal: make few mistakes on future unseen instances
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Approximation/Interpolation

It is always possible to build a function that fits exactly the data.
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But is it reasonable ?
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Occam’s Razor

|dea: look for regularities in the observed phenomenon
These can ge generalized from the observed past to the future

— choose the simplest consistent model

How to measure simplicity ?

e Physics: number of constants
e Description length
e Number of parameters
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No Free Lunch

® No Free Lunch

* if there is no assumption on how the past is related to the future,
prediction is impossible

* if there is no restriction on the possible phenomena, generalization
Is impossible

We need to make assumptions

°
e Simplicity is not absolute

e Data will never replace knowledge
°

Generalization = data + knowledge
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Assumptions

Two types of assumptions

e Future observations related to past ones
— Stationarity of the phenomenon

e C(Constraints on the phenomenon
— Notion of simplicity
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Goals

— How can we make predictions from the past 7 what are the
assumptions ?

e Give a formal definition of learning, generalization, overfitting
e Characterize the performance of learning algorithms

e Design better algorithms

O. Bousquet — Statistical Learning Theory — Lecture 1
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Probabilistic Model

Relationship between past and future observations

= Sampled independently from the same distribution

e Independence: each new observation yields maximum information

e lIdentical distribution: the observations give information about the
underlying phenomenon (here a probability distribution)
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Probabilistic Model

We consider an input space X and output space V.
Here: classification case Y = {—1, 1}.

Assumption: The pairs (X,Y) € X X Y are distributed
according to P (unknown).

Data: We observe a sequence of n i.i.d. pairs (X;, Y;) sampled
according to P.

Goal: construct a function g : X — ) which predicts Y from X.

O. Bousquet — Statistical Learning Theory — Lecture 1
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Probabilistic Model

Criterion to choose our function:

Low probability of error P(g(X) # Y).
Risk
R(g) = P(g(X) #Y) =E [1jgx)2v]]
e P is unknown so that we cannot directly measure the risk
e (Can only measure the agreement on the data

e Empirical Risk

1 n
Ru(9) = — 2 Hoxp#vi
1=1

O. Bousquet — Statistical Learning Theory — Lecture 1
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Target function

e P can be decomposed as Px X P(Y|X)

e N(x) =E[Y|X =2] =2P[Y = 1| X = x] — 1 is the regression
function

o t(x) = sgnmn(x) is the target function
e in the deterministiccase Y = t(X) (P[Y = 1|X] € {0,1})

e ingeneral, n(z) = min(P[Y =1|X =], 1-P[Y = 1|X = z]) =
(1 — n(x))/2 is the noise level
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Assumptions about P

Need assumptions about P.

Indeed, if t(x) is totally chaotic, there is no possible generalization
from finite data.

Assumptions can be

e Preference (e.g. a priori probability distribution on possible functions)

e Restriction (set of possible functions)
Treating lack of knowledge

e Bayesian approach: uniform distribution

e Learning Theory approach: worst case analysis
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Approximation/Interpolation (again)

How to trade-off knowledge and data ?

O. Bousquet — Statistical Learning Theory — Lecture 1
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Overfitting /Underfitting

The data can mislead you.

e Underfitting
model too small to fit the data

e Overfitting
artificially good agreement with the data

No way to detect them from the data | Need extra validation data.

O. Bousquet — Statistical Learning Theory — Lecture 1
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Empirical Risk Minimization
e Choose a model G (set of possible functions)

e Minimize the empirical risk in the model

n R,
min (9)

What if the Bayes classifier is not in the model 7

O. Bousquet — Statistical Learning Theory — Lecture 1
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Approximation/Estimation

e Bayes risk
R" = inf R(g) .
g

Best risk a deterministic function can have (risk of the target function,
or Bayes classifier).

e Decomposition: R(g*) = inf,cg R(g)

R(gn) = R'=R(g) — R + Rlgn) — R(g')

Approximation Estimation

e Only the estimation error is random (i.e. depends on the data).
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Structural Risk Minimization

e Choose a collection of models {G;:d=1,2,...}
e Minimize the empirical risk in each model

e Minimize the penalized empirical risk

0 min B, a
min min (g9) + pen(d, n)

pen(d, n) gives preference to models where estimation error is small

pen(d, n) measures the size or capacity of the model

O. Bousquet — Statistical Learning Theory — Lecture 1
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Regularization

e Choose a large model G (possibly dense)
e Choose a regularizer ||g||

e Minimize the regularized empirical risk

in R, Allall?
min (g) + Xlgll

e Choose an optimal trade-off A (regularization parameter).

Most methods can be thought of as regularization methods.

O. Bousquet — Statistical Learning Theory — Lecture 1
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Bounds (1)

A learning algorithm

e Takes as input the data (X1, Y1), ..., (X, Yn)

e Produces a function g,

Can we estimate the risk of g,, 7
= random quantity (depends on the data).

— need probabilistic bounds

O. Bousquet — Statistical Learning Theory — Lecture 1

22



Bounds (2)

e Error bounds

R(gn) < Rn(gn) + B
— Estimation from an empirical quantity

e Relative error bounds
* Best in a class
R(gn) < R(9") + B
* Bayes risk
R(g,) < R"+ B
= Theoretical guarantees

O. Bousquet — Statistical Learning Theory — Lecture 1
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Lecture 2

Basic Bounds

e Probability tools

e Relationship with empirical processes
e Law of large numbers

e Union bound

o Relative error bounds

O. Bousquet — Statistical Learning Theory — Lecture 2
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Probability Tools (1)

Basic facts

e Union: P[A or B] < P[A] 4+ P[B]
e Inclusion: If A = B, then P[A] < P[B].

e Inversion: If P[X > t] < F'(t) then with probability at least 1 — 9,
X < F71(9).

e Expectation: If X > 0, E[X] = [,;"P[X > t]dt.
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Probability Tools (2)

Basic inequalities

e Jensen: for f convex, f(E[X]) < E[f(X)]
o Markov: If X > 0 then forall t > 0, P[X > ¢] < 51X

o Chebyshev: for t >0, P[|X — E[X]| > ¢] < ©15

e Chernoff: forallt € R, P[X > t] < infysoE [€A<X—t>}
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Error bounds

Recall that we want to bound R(g,) = E |11, (x).y]] where g, has
been constructed from (X1, Y1), ..., (X, Yn).

e Cannot be observed (P is unknown)
e Random (depends on the data)

= we want to bound

P [R(gn) - Rn(gn) > 5]

O. Bousquet — Statistical Learning Theory — Lecture 2
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Loss class

For convenience, let Z; = (X,;,Y;) and Z = (X, Y ). Given G define
the loss class

F={f:(=@y) = lguzy 9 € G}
Denote Pf = E[f(X,Y)] and P.f = 127 (X, Y)
Quantity of interest:
Pf - Pnf

We will go back and forth between F and G (bijection)
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Empirical process

Empirical process:
{Pf—Puf}rer

e Process = collection of random variables (here indexed by functions
in F)
e Empirical = distribution of each random variable

= Many techniques exist to control the supremum

sup Pf — P, f
fer
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The Law of Large Numbers

R(9) — Rul9) = ELF(2)] = 3 (2

— difference between the expectation and the empirical average of the

rv. f(2)

Law of large numbers
1
P|lim —»  f(Z)—E[f(Z)]=0| =1.

=> can we quantify it ?
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Hoeffding’s Inequality

Quantitative version of law of large numbers.
Assumes bounded random variables

Theorem 1. Let Zy, ..., Z, ben iid. random variables. If f(Z) €

la, b]. Then for all € > 0, we have
>el <2 2ne”
S exp| ——— | .

P ”%Z f(z) - E[f(2)]

= Let's rewrite it to better understand
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Hoeffding’s Inequality

2ne?
5 p— 2€Xp —m

Write

Then

p log%
Puf = Pl > (b—a)y| o2 <0

or [Inversion] with probability at least 1 — 9§,

log 2 5

|Pnf — Pf|<(b—a)\/

O. Bousquet — Statistical Learning Theory — Lecture 2
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Hoeffding’s inequality

Let's apply to f(Z) = Lizx)2y]-
For any g, and any 6 > 0, with probability at least 1 — ¢

R(9) < Ru(g) + \/ k;i . (1)

Notice that one has to consider a fixed function f and the probability is
with respect to the sampling of the data.

If the function depends on the data this does not apply !
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Limitations

e For each fixed function f € F, there is a set S of samples for which

log %

Pf—Pnfs\/gn (P[S] >1—0)

e They may be different for different functions
e The function chosen by the algorithm depends on the sample

— For the observed sample, only some of the functions in F will satisfy
this inequality !

O. Bousquet — Statistical Learning Theory — Lecture 2 34



Limitations
What we need to bound is

where f,, is the function chosen by the algorithm based on the data.
For any fixed sample, there exists a function f such that

Pf—P.f=1

Take the function which is f(X;) = Y; on the data and f(X) = —Y
everywhere else.
This does not contradict Hoeffding but shows it is not enough
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Limitations

Risk

emp

f fo b Function class

Hoeffding's inequality quantifies differences for a fixed function
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Uniform Deviations

Before seeing the data, we do not know which function the algorithm
will choose.

The trick is to consider uniform deviations

We need a bound which holds simultaneously for all functions in a class
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Union Bound

Consider two functions f1, fo and define

Ci={(z1,91), .- -, (@n,yn) : Pfi — Ppfi > €}
From Hoeffding's inequality, for each 4
PlCi] <9
We want to bound the probability of being 'bad’ for : = 1 or 2 = 2

P[CyUCs] < P[Ch] + P[Cs]

O. Bousquet — Statistical Learning Theory — Lecture 2
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Finite Case

More generally

P[CiU...UCN] <> P[C]]

1=1

We have

PEfe{fi,-..,fn}: Pf—Pof > €l

N
< Y P[Pfi— Pufi > ¢
=1

< Nexp (—2n52>

O. Bousquet — Statistical Learning Theory — Lecture 2
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Finite Case
We obtain, for G = {g1,...,gn}, forall § > 0

with probability at least 1 — 9,

log N + log%

Vg € G, R(g) < Run(g) + \/ -

This is a generalization bound !

Coding interpretation
log N is the number of bits to specify a function in F

O. Bousquet — Statistical Learning Theory — Lecture 2
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Approximation/Estimation

Let
g* = arg min R(g
ggeg ()

If g,, minimizes the empirical risk in G,

Rn(g*) — Ru(gn) 20

Thus
R(gn) = R(gn) —R(9") + R(9")
< Ru(9") — Ru(gn) + R(gn) — R(g") + R(g")
< 2 sup |[R(g9) — Ru(9)| + R(g")

ge

O. Bousquet — Statistical Learning Theory — Lecture 2
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Approximation/Estimation

We obtain with probability at least 1 — ¢

log N + log%

2m

R(gn) < R(g") + 2\/

The first term decreases if IN increases
The second term increases

The size of G controls the trade-off

O. Bousquet — Statistical Learning Theory — Lecture 2

42



Summary (1)

e Inference requires assumptions

Data sampled i.i.d. from P

Restrict the possible functions to G

Choose a sequence of models G,, to have more flexibility /control

O. Bousquet — Statistical Learning Theory — Lecture 2
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Summary (2)

e Bounds are valid w.r.t. repeated sampling

For a fixed function g, for most of the samples

R(g9) — Ru(g9) = 1/v/n

For most of the samples if |G| = N

sug R(g) — Rn(g9) = \/log N/n

ge

= Extra variability because the chosen g,, changes with the data

O. Bousquet — Statistical Learning Theory — Lecture 2
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Improvements

We obtained

log N + log 2
sup R(g) — Ru(g) < \/ 2

g€eg 2n

To be improved

e Hoeffding only uses boundedness, not the variance
e Union bound as bad as if independent

e Supremum is not what the algorithm chooses.

Next we improve the union bound and extend it to the infinite case

O. Bousquet — Statistical Learning Theory — Lecture 2 45



Refined union bound (1)

For each f € F,

P

log <A
Pf—P,f > \/ 2;”)] < 5(f)

logﬁ
P|3f € F: Pf—Puf >\ =" <D 6(f)

Choose §(f) = dp(f) with > ,c-p(f) =1
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Refined union bound (2)

With probability at least 1 — 4,

logﬁ + log%

VfeF, PfSPanr\/
2n
e Applies to countably infinite F

e Can put knowledge about the algorithm into p(f)

e But p chosen before seeing the data

O. Bousquet — Statistical Learning Theory — Lecture 2
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Refined union bound (3)

e Good p means good bound. The bound can be improved if you know
ahead of time the chosen function (knowledge improves the bound)

e In the infinite case, how to choose the p (since it implies an ordering)

e The trick is to look at F through the data
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Lecture 3

Infinite Case: Vapnik-Chervonenkis Theory

e Growth function

e Vapnik-Chervonenkis dimension
e Proof of the VC bound

e VC entropy

e SRM

O. Bousquet — Statistical Learning Theory — Lecture 3
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Infinite Case

Measure of the size of an infinite class ?

e Consider

Forrren = 1f(21)s ..., f(20)) : [ € F}

The size of this set is the number of possible ways in which the data
(21, ..., 2n) can be classified.

e Growth function

Sr(n) = sup |Fq,..zn

(Zl,...,Zn)

e Note that Sr(n) = Sg(n)
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Infinite Case

e Result (Vapnik-Chervonenkis)
With probability at least 1 — §

log Sg(2n) + log 5

Vg € G, R(g) < Rn(g) + \/ ™

e Always better than IV in the finite case
e How to compute Sg(n) in general ?

= use VC dimension

O. Bousquet — Statistical Learning Theory — Lecture 3
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VC Dimension

Notice that since g € {—1,1}, Sg(n) < 2"

If Sg(n) = 2", the class of functions can generate any classification on
n points (shattering)

Definition 2. The VC-dimension of G is the largest n such that

Sg(n) = 2"

O. Bousquet — Statistical Learning Theory — Lecture 3 52



VC Dimension

Hyperplanes
In R?, V' C (hyperplanes) = d + 1

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

O. Bousquet — Statistical Learning Theory — Lecture 3
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VC Dimension

Number of Parameters
Is VC dimension equal to number of parameters ?

N4

{sgn(sin(tx)) : t € R}

e Infinite VC dimension !

e One parameter

O. Bousquet — Statistical Learning Theory — Lecture 3
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VC Dimension

e We want to know Sg(n) but we only know
Sg(n) =2"forn < h

What happens for n > h ?

log(S(m))

O. Bousquet — Statistical Learning Theory — Lecture 3 55



Vapnik-Chervonenkis-Sauer-Shelah Lemma

Lemma 3. Let G be a class of functions with finite VVC-dimension h.

Then for all n € N,
h
n
Sg(n) <> (Z)
i=0

Sg(n) < (%) h

and for all n > h,

—> phase transition
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VC Bound

Let G be a class with VC dimension h.

With probability at least 1 — §

hlog%”’—i—log%

Vg € G, R(g) < Ru(g) + \/ <

\/hlogn
n

O. Bousquet — Statistical Learning Theory — Lecture 3
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Interpretation

VC dimension: measure of effective dimension

e Depends on geometry of the class

e Gives a natural definition of simplicity (by quantifying the potential

overfitting)
e Not related to the number of parameters

e Finiteness guarantees learnability under any distribution

O. Bousquet — Statistical Learning Theory — Lecture 3
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Symmetrization (lemma)
Key ingredient in VC bounds: Symmetrization

Let Z|, ..., Z  an independent (ghost) sample and P/ the
corresponding empirical measure.

Lemma 4. Foranyt > 0, such that nt? > 2,

< 2P |sup(P, — P,)f >t/2

fer

P |sup(P — P,)f >t
fer

O. Bousquet — Statistical Learning Theory — Lecture 3 59



Symmetrization (proof — 1)

fn the function achieving the supremum (depends on Z1, ..., Z,)

Y PPy pa>tlip—ph) fr<trzl = LP—pPp) >t a (P=Ph) fr<t/2)
S Lph—po) a2

Taking expectations with respect to the second sample gives

Lip—pyy st [(P— P fn < t/2] <P (P, — P,)fn > t/2]
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Symmetrization (proof — 2)

e By Chebyshev inequality,

/ / 4Var [fn] 1
P'[(P—P,)fn > t/2] STSE

e Hence

1
Lp—Pp)fn>t (1 — @) <P [(P,— P))fa>t/2]

Take expectation with respect to first sample.

O. Bousquet — Statistical Learning Theory — Lecture 3
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Proof of VC bound (1)

e Symmetrization allows to replace expectation by average on ghost
sample

e Function class projected on the double sample

]:Zl,---,Zn,Z{,...,Zél

e Union boundon F, o

14 n

e Variant of Hoeffding's inequality

P[P.f— PLf >t] <2e "/
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Proof of VC bound (2)

P [supfej_—(P — P,)f > t]
< 2P [supsexr(P, — Po)f > t/2]

2P |supser

Z{L(Pé_Pn)fzt/Z

.....

ZSF_(Zn)IP (P, — P, f >t/2]

IA

2
< 4Sp(2n)e ™/8

O. Bousquet — Statistical Learning Theory — Lecture 3
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VC Entropy (1)

e VC dimension is distribution independent
— The same bound holds for any distribution
= It is loose for most distributions

e A similar proof can give a distribution-dependent result

O. Bousquet — Statistical Learning Theory — Lecture 3
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VC Entropy (2)

e Denote the size of the projection N (F, 21 ..., 2zn) := #F,

e The VC entropy is defined as

Hr(n) = logE[N (F, Z1,...,Z,)],

e VC entropy bound: with probability at least 1 — §

Hg(2n) + log 2
3n

Vg € G, R(g) < Ru(g) + \/

O. Bousquet — Statistical Learning Theory — Lecture 3 65



VC Entropy (proof)

Introduce o; € {—1, 1} (probability 1/2), Rademacher variables

op [supfefz L(PL—P)f > t/2}

< 2K [Pa [supfefzjz, > aif(2) — 1(2) 2 1/

1=1

1 n
< 92E[N Z.ZV1P|Z > t/2
< 2E[N(F,z,2Z)] [n;a_t/

2E [N (F, 2,2")] e /8

IA

O. Bousquet — Statistical Learning Theory — Lecture 3
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From Bounds to Algorithms

e For any distribution, Hg(n)/n — 0 ensures consistency of empirical
risk minimizer (i.e. convergence to best in the class)

e Does it means we can learn anything ?
e No because of the approximation of the class

e Need to trade-off approximation and estimation error (assessed by
the bound)

—=> Use the bound to control the trade-off
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Structural risk minimization

e Structural risk minimization (SRM) (Vapnik, 1979): minimize the
right hand side of

R(g) < R.(g) + B(h,n).

e To this end, introduce a structure on G.

e Learning machine = a set of functions and an induction principle

O. Bousquet — Statistical Learning Theory — Lecture 3 68



SRM: The Picture

error
bound on test error

capacity term

training error

h

Structure
‘e C C oo

O. Bousquet — Statistical Learning Theory — Lecture 3
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Lecture 4

Capacity Measures

e Covering numbers

e Rademacher averages

e Relationships

O. Bousquet — Statistical Learning Theory — Lecture 4
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Covering numbers

e Define a (random) distance d between functions, e.g.

A F) = () # F(Z) ri=1,. . m)

Normalized Hamming distance of the 'projections’ on the sample
o Aset fi,..., fn covers F at radius € if

F C U B(fi,e)

e Covering number N(F,e,n) is the minimum size of a cover of
radius €

Note that N(F,e,n) = N(G, e, n).
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Bound with covering numbers

e \When the covering numbers are finite, one can approximate the class
G by a finite set of functions

e Result

P[dg € G: R(g) — R.(g9) > t] < 8E[N(G,t,n)] o ni?/128
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Covering numbers and VC dimension

e Notice that for all t, N(G,t,n) < #Gz = N(G, Z)
e Hence N(G,t,n) < hlog<*

e Haussler 1
h
N(G.t,n) < Ch(4e)"—

e Independent of n

O. Bousquet — Statistical Learning Theory — Lecture 4
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Refinement

e VC entropy corresponds to log covering numbers at minimal scale

e Covering number bound is a generalization where the scale is adapted
to the error

e Is this the right scale ?

e It turns out that results can be improved by considering all scales (—
chaining)
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Rademacher averages

e Rademacher variables: o1,..., 0, independent random variables
with

e Notation (randomized empirical measure) R, f = = > 0:f(Z;)
e Rademacher average: R(F) = E [sup;cz Ry f]

e Conditional Rademacher average R, (F) = E, [Supfe}‘ Rnf]
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Result

e Distribution dependent

1
Ogg

VfEf,PfSPanrZR(]‘")Jr\/l

e Data dependent

log %

VieF,Pf < Pnf+273n(7:)+\/2

O. Bousquet — Statistical Learning Theory — Lecture 4
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Concentration

e Hoeffding's inequality is a concentration inequality

e When n increases, the average is concentrated around the expectation

e Generalization to functions that depend on i.i.d. random variables
exist
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McDiarmid’s Inequality

Assume for all 7 =1, ..., n,

sup
zl,...,zn,zé

\F (21, 0oy Ziy ooy 2n) — F(2z1, ..., 2, ...

7”?

then for all € > 0O,

2¢e”
P|[FF—E[F]| >e] <2exp| ——
nc

O. Bousquet — Statistical Learning Theory — Lecture 4

|

,Zn)l <c

78



Proof of Rademacher average bounds

e Use concentration to relate sup;.r Pf — P, f to its expectation

e Use symmetrization to relate expectation to Rademacher average

e Use concentration again to relate Rademacher average to conditional
one
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Application (1)

sup A(f) + B(f) < sup A(f) + sup B(/f)

fer fer fer
Hence
| sup C(f) — sup A(f)] < Sup(C(f) A(f))
fer fer fer
this gives

| sup(Pf — P,f) — Sup(Pf P f)| < Sup(P f—Pnf)
feF feF feF
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Application (2)
f € {0,1} hence,
PLf— Puf = (f(Z) ~ §(2)) < -

thus
1

sup(Pf — P.f) — sup(Pf — PLf)| < —
fer fer n

McDiarmid's inequality can be applied with ¢ = 1/n

O. Bousquet — Statistical Learning Theory — Lecture 4
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Symmetrization (1)

e Upper bound

E|supPf — P,f| <2E |supR,f
feF feF
e Lower bound
E \Pf — P.f|| > 1E Rnf -
sup — P, > —E |sup R, - —
feF 2 | ferF 24/n
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Symmetrization (2)

]E[SUpr—Pnf]

feF
= E[supE [P, f] — P.f]
fer
< Eg,lsup P, f — P.f]
feF

1 ,
= E,zz |sup— )Y oi(f(Z]) — f(Z))| < 2E][

O. Bousquet — Statistical Learning Theory — Lecture 4

sup R,, f]
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Loss class and initial class

S
R(F) = E Ségg;;ffil[mxi)ﬂi]]
]E_ 1§nj L1 = vig(x))
- sup— » oi-(1 — Yig(X;
| geg n 5 2
1 1 <& 1
= —E |sup— 0:Yig(X;)| = =R(G
(2 e 3 o) = 4R0o)
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Computing Rademacher averages (1)

1 - 1 — o0,9(X;
— §—|—E sup — Z— 7i9( )]

gegn 2
1 [ 1N 1 — oy9(X;
= R 7i9(Xs)
2 geEG N — 2
1

— Z _E|inf Ry(g,
ing e )

O. Bousquet — Statistical Learning Theory — Lecture 4
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Computing Rademacher averages (2)

e Not harder than computing empirical risk minimizer

e Pick o; randomly and minimize error with respect to labels o;
e Intuition: measure how much the class can fit random noise

1

o lLarge class = R(G) = 5

O. Bousquet — Statistical Learning Theory — Lecture 4
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Concentration again

o Let
F =E,

sup Ry, f
fer

Expectation with respect to o; only, with (X, Y;) fixed.

e [’ satisfies McDiarmid's assumptions with ¢ = %

= E[F] = R(F) can be estimated by F' = R,,(F)

O. Bousquet — Statistical Learning Theory — Lecture 4
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Relationship with VC dimension

e Fora finiteset F = {f1,..., fn}
R(F) < 2y/log N/n

e Consequence for VC class F with dimension h

hlog <&
R(F) < 2\/ i
n
= Recovers VC bound with a concentration proof

O. Bousquet — Statistical Learning Theory — Lecture 4
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Chaining

e Using covering numbers at all scales, the geometry of the class is
better captured

e Dudley

Rn(F) < %/OOO V1og N(F, t,n) dt

e Consequence

R(F) < C\/%

e Removes the unnecessary log n factor !
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Lecture 5

Advanced Topics

e Relative error bounds
e Noise conditions

e Localized Rademacher averages

e PAC-Bayesian bounds

O. Bousquet — Statistical Learning Theory — Lecture 5
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Binomial tails

e P,f ~ B(p,n) binomial distribution p = P f
o P[Pf— P.f>t]= "t (1pFa -
e (Can be upper bounded

n(l—p—t) n(p+t)
* Exponential (%) <ﬁ)

P ((1—t/p)log(1—t/p)+t/p)

2
. nt
% Bernstein e 2pr(1—p)+2t/3

—2nt2

x Bennett e 195 —p

* Hoeffding e

O. Bousquet — Statistical Learning Theory — Lecture 5
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Tail behavior

e For small deviations, Gaussian behavior ~ exp(—nt*/2p(1 — p))
= Gaussian with variance p(1 — p)

e For large deviations, Poisson behavior &~ exp(—3nt/2)
=> Tails heavier than Gaussian

e Can upper bound with a Gaussian with large (maximum) variance
exp(—2nt?)
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lllustration (1)

Maximum variance (p = 0.5)

1

0.9

0.8

0.7

Deviation bound
o o o o o
n w = [6)] o

o

T
— BinoCDF
— Bernstein
—— Bennett
—— Binomial Tail
—— Best Gausian
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lllustration (2)

Small variance (p = 0.1)

11—

O — BinoCDF
— Sub-Gaussian
0.9 — Bernstein H
—— Bennett
—— Binomial Tail
0.8 Best Gausian |4

0.7

Deviation bound
° ° °
S o o

o
@

0.2

0.1

0.3 0.35
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Deviation bound

0.07

0.04

o
Q
@

0.02

0.01

T
— BinoCDF
— Bernstein
— Bennett

—— Binomial Tail ||
—— Best Gausian
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Taking the variance into account (1)

e Each function f € F has a different variance Pf(1 — Pf) < Pf.

e For each f € F, by Bernstein's inequality

2Pflog% n QIOg%

n 3n

PfSPnf+\/

e The Gaussian part dominates (for P f not too small, or n large
enough), it depends on P f
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Taking the variance into account (2)

@ Central Limit Theorem

Pf_Pnf

n — N(0,1
VPf(l—Pf) (01

—> |dea is to consider the ratio

Pf_Pn,f
vPf

O. Bousquet — Statistical Learning Theory — Lecture 5
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Normalization

e Here (f € {0,1}), Var[f] < Pf* = Pf
e lLarge variance = large risk.

e After normalization, fluctuations are more " uniform”

s Pf_Pnf
u
feJIg VPf

not necessarily attained at functions with large variance.

e Focus of learning: functions with small error Pf (hence small
variance).

= The normalized supremum takes this into account.
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Relative deviations

Vapnik-Chervonenkis 1974
For 6 > O with probability at least 1 — 9,

Pf—Puf _, |logSr(2n) + logs

Vf e F, N -

and

P.f — Pf log Sr(2n) + log 3
< 2
vEP.f T n

Vf e F,
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Proof sketch

1. Symmetrization

P|s Pf_P”f>t < 9P
u
feg VPf - -

2. Randomization

u
reb J(Puf T PLI)/2 ©

- = 2K

L3 oil(f(Z) — f(Zy)) > ¢

P, lsup

3. Tail bound

O. Bousquet — Statistical Learning Theory — Lecture 5

feF VvV (Pof + PLf)/2

:
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Consequences

From the fact
A<B+CVA= A< B+C*++VBC

we get

log Sr(2n) + log 5

n

vVieF, Pf < Pnf‘|‘2\/Pnf

4log Sr(2n) + log 3

n
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Zero noise
|deal situation
® g, empirical risk minimizer
o tc (g

e R* =0 (no noise, n(X) =0 as.)
In that case

e R,(gn) =0

= R(gn) = O(%en),

O. Bousquet — Statistical Learning Theory — Lecture 5
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Interpolating between rates ?

e Rates are not correctly estimated by this inequality

e Consequence of relative error bounds

log Sr(2n) + log 5

n

Pf, < Pf° +2\/Pf*

+4log Sr(2n) + log 3

n

e The quantity which is small is not Pf* but Pf,, — Pf"

e But relative error bounds do not apply to differences
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Definitions

e P =Py x P(Y|X)

e regression function 1(z) = E[V|X = ]

e target function t(x) = sgnn(x)

o noise level n(X) = (1 — |n(x)])/2

e Bayes risk R* = E [n(X)]

e R(9) =E[(1—-n(X))/2] +E [n(X)ly<q]
 R(g) — R" =E [|n(X)|1yy<q]
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Intermediate noise

Instead of assuming that |n(x)| = 1 (i.e. n(x) = 0), the
deterministic case, one can assume that n is well-behaved.
Two kinds of assumptions

e 7 not too close to 1/2

e 7 not often too close to 1/2
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Massart Condition

e For some ¢ > 0, assume

1
In(X)| > — almost surely
c

e There is no region where the decision is completely random

e Noise bounded away from 1/2
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Tsybakov Condition

Let o € [0, 1], equivalent conditions

(1) 3Jec >0, Vg e {—1,1}",
Plg(X)n(X) <0] < c(R(g) — R)"

(2) Je>0, VA C X, /AdP(:c) < c(/A In(2)|dP ()

(3) 3IB>0, Vt >0, P[n(X)| < t] < BtT-a
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Equivalence
e (1) & (2) Recall R(g) — R* = E [|n(X)|1yy<0]. For each
function g, there exists a set A such that 1;4 = 1j4,<q
e (2)= (3) Let A= {x:|n(x)| <t}
Pllnl <t = [ dP@) < o[ [n@)dP()”
< et'([ dP@)"
A

1 o
= P[ln| <t] < cT-atl-a
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e (3) = (1)

R(g) — R" =E [|n(X)] 1igy<0]
> tE [1[9n§0]1[\77|>t]]
tP[In| > t] — tE [1jgy50)1]ni>4]
> (1 — BtT-a) — tP[gn > 0] = t(P [gn < 0] — BtT-a)

_ [ (=)P[gn<0]
Take t = ( =

) (1-a)/a

11—«

B o
= Pgn < 0] < 1o a)aa(R(g) - R)
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Remarks

e «isin [0, 1] because

R(g) — R"=E [|77(X)|1[977§0ﬂ <E [1[9n§0]}

e o = (0 no condition

e o = 1 gives Massart's condition

O. Bousquet — Statistical Learning Theory — Lecture 5 109



Consequences

e Under Massart's condition

E [(1[9(X)7£Y] — 1[t(X)7£Y])2} < c(R(g) — R")

e Under Tsybakov's condition

2 *\ QY
E [(1[9(X);5Y] — Lp(x)%£v]) } <c(R(g)— R
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Relative loss class

e F is the loss class associated to G

® T he relative loss class is defined as

F={f-1:fer}

e |t satisfies
Pf* < c(Pf)"
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Finite case

e Union bound on F with Bernstein’s inequality would give

8c(Pf, — Pf*)*log %4—4 log &

n 3n

e Consequence when f* € F (but R* > 0)

1

] N\ 2—«a
an—Pf*§C<Og5>

n

always better than n 1% for a > 0
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Local Rademacher average

e Definition

R(F,r)=E

sup  Rnf
fEF:Pf2<r

e Allows to generalize the previous result

e Computes the capacity of a small ball in F (functions with small
variance)

e Under noise conditions, small variance implies small error
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Sub-root functions

Definition
A function 7y : R — R is sub-root if

® 1 is non-decreasing

® 1 is non negative

e (r)/+/7 is non-increasing

O. Bousquet — Statistical Learning Theory — Lecture 5
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A sub-root function

® Is continuous

Sub-root functions

Properties

e has a unique fixed point ¥ (r") = r*

3

25F

Pys

151

1k

05

X
— phix)

O. Bousquet — Statistical Learning Theory — Lecture 5
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Star hull

e Definition
*F ={af: feF, ac|0,1]}

e Properties
Rn(xF,r) is sub-root

e Entropy of xF is not much bigger than entropy of F
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Result

e 1 fixed point of R(xF, r)
e Bounded functions

——  log i+ logl
Pf—PnfSC<\/r*Var[f]+ — Ogn)

e Consequence for variance related to expectation (Var [f] < ¢(Pf)?)

1 logi41
Pf < c<Pnf+<r*)2lﬁ+ 085 1 Oglog”)

n
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Consequences

e For VC classes R(F,r) < C\/% hence r* < C'k

e Rate of convergence of P,f to Pf in O(1/+/n)

e But rate of convergence of Pf, to Pf”" is O(1/n1/(2—a))

Only condition is t € G but can be removed by SRM /Model selection
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Proof sketch (1)

e Talagrand’s inequality

Supr—Pnf S E
JeF

SU.pr T Pnf
fer

+c\/sup Var [ f] /n—f—c//n

ferF

e Peeling of the class

Fr = {f : Var[f] € [z", ")}
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Proof sketch (2)

e Application

sup Pf—PFP,f <E
fefk

sup Pf — P, f
fEfk

—I—C\/a:Var [f] /n—i—c//n

e Symmetrization

Vf € F, Pf—P.f < 2R(F, aVar [f])+cy/ aVar [f] /n+c /n
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Proof sketch (3)

e \We need to 'solve’ this inequality. Things are simple if R behave like
a square root, hence the sub-root property

Pf—P,f < 2\/7°*Var [f] + c\/a:Var [f] /n+c'/n
e Variance-expectation
Var [f] < e(Pf)"

Solve in P f
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Data-dependent version

e As in the global case, one can use data-dependent local Rademcher
averages

R.(F,r)=E, sup R,f
fEF:Pf2<r

e Using concentration one can also get

Pf<C (Pnf § (ryra 4 0B T 108 10g”>

where 7 is the fixed point of a sub-root upper bound of R, (F, r)
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Discussion

e |mproved rates under low noise conditions
e Interpolation in the rates

e (Capacity measure seems 'local’,

e but depends on all the functions,

e after appropriate rescaling: each f € Fis considered at scale 7“/Pf2
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Randomized Classifiers

Given G a class of functions

e Deterministic: picks a function g,, and always use it to predict
e Randomized

* construct a distribution p,, over G
* for each instance to classify, pick g ~ p,

e Error is averaged over p,
R(pn) = pnPf

R.(pn) = pnPnf
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Union Bound (1)

Let 7 be a (fixed) distribution over F.

® Recall the refined union bound

log ﬁ + log %
2n

VfEf,Pf—PnfS\/

e Take expectation with respect to p,

log ﬁ + log %
2n

pnPf T pnPnf S pn\/
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Union Bound (2)

pnPf — puPnf < pn\/(— log 7(f) + log ) /(2n)
< \/(—pn log w(f) + log ) /(2n)
<\ (K(pu,m) + H(pn) + log}) /(2n)

o K(pn,m) = [ pn(f)log 2 df Kullback-Leibler divergence

e H(p,) = [ pu(f)log pu(f) df Entropy
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PAC-Bayesian Refinement

e It is possible to improve the previous bound.

e With probability at least 1 — 9,

K(pn, ™) + logdn + log%
2n — 1

pnpf_pnpnfg\/

e Good if p,, is spread (i.e. large entropy)

e Not interesting if p,, = dy¢,
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Proof (1)

e Variational formulation of entropy: for any T
pT(f) <logme') + K(p, )
o Apply it to N(Pf — P,f)?
Aon(PF = Pof)? < log me T PD" 4 K (p,, )

e Markov's inequality: with probability 1 — 4,

2
Aon(Pf — Pof)? < logE [we“Pf‘P“f) ] + K (pn, ™) + log }

O. Bousquet — Statistical Learning Theory — Lecture 5 128



Proof (2)

e Fubini
2 2
E lweA(PfP”f) ] = 7Kk [e/\(PfP”f) ]

e Modified Chernoff bound

2
E [e(2n—1)(Pf—Pnf) ] < 4n

e Putting together (A = 2n — 1)
2
(2n — 1)pn(Pf — Puf)” < K(pp, 7) + log4n + log

e Jensen (2n — 1) (pp(Pf — Pnf))2 < (2n —1)p,(Pf — Pnf>2
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Lecture 6

Loss Functions

e Properties
e C(Consistency
e Examples

® Losses and noise
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Motivation (1)

e ERM: minimize > ", 1jg(x.)2y; in aset G

Y

Computationally hard

|

Smoothing

* Replace binary by real-valued functions

*x Introduce smooth loss function

O. Bousquet — Statistical Learning Theory — Lecture 6
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Motivation (2)

e Hyperplanes in infinite dimension have

* infinite VC-dimension

* but finite scale-sensitive dimension (to be defined later)
= It is good to have a scale
= This scale can be used to give a confidence (i.e. estimate the density)
e However, losses do not need to be related to densities

e (Can get bounds in terms of margin error instead of empirical error
(smoother — easier to optimize for model selection)
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Margin

e It is convenient to work with (symmetry of +1 and —1)

£(g(z),y) = ¢(yg(x))

e yg(x) is the margin of g at (z, y)

® loss

L(g) = E[6(Yg(X)], Lulo) = — D 6(Vig(Xy)

® Lossclass F = {f : (z,y) — ¢(yg(x)) : g € G}

O. Bousquet — Statistical Learning Theory — Lecture 6 133



Minimizing the loss

e Decomposition of L(g)

%E [E[(1+n(X))e(g(X)) + (1 —n(X))p(—g(X))|X]]
e Minimization for each x
H(n) = inf (1 +n)¢(a)/2 + (1 —n)p(-a)/2)

e L":=inf, L(g) = E[H(n(X))]
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Classification-calibrated

e A minimal requirement is that the minimizer in H (7)) has the correct
sign (that of the target ¢ or that of n).

e Definition
¢ is classification-calibrated if, for any n %= 0

a:ia%fgo(lJrn)cb(a)Jr(l—n)(b(—a) > inf (14n)d(c)+(1-n)d(-a)

e This means the infimum is achieved for an o of the correct sign (and
not for an « of the wrong sign, except possibly for n = 0).
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Consequences (1)

Results due to (Jordan, Bartlett and McAuliffe 2003)

e ¢ is classification-calibrated iff for all sequences g; and every proba-
bility distribution P,

L(g;)) = L" = R(g:)) > R

e When ¢ is convex (convenient for optimization) ¢ is classification-
calibrated iff it is differentiable at 0 and ¢'(0) < 0
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Consequences (2)

o Let H™(n) = infaunso (1 +1)$(a)/2 + (1 — 1)d(—)/2)
e Let v(n) be the largest convex function below H™ (n) — H(n)

e One has
Y(R(g) — R") < L(g) — L~
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Examples (1)

— hinge
—— squared hinge
3.5 —— square M
—— exponential
3r 4
25F q
2 i
151 q
1 /
05 L / .
0 1 1 Il 1
-1 -0.5 0 0.5 1 1.5 2

T
— 01
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Examples (2)

e Hinge loss
¢(xz) = max(0,1 —z), P(z) ==

e Squared hinge loss
¢(x) = max(0,1 — z)*, ¥(z) = 2

e Square loss
b(z) = (1 —2)%, P(a) = 2°

e Exponential

¢(z) = exp(—), ¢Y(x) =1— 1 —a?
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Low noise conditions

e Relationship can be improved under low noise conditions
e Under Tsybakov's condition with exponent a and constant c,

c(R(9) — R)"$((R(g) — B")'""/2¢) < L(g) — L’
e Hinge loss (no improvement)
R(g) — R" < L(g) — L’
e Square loss or squared hinge loss

R(g) — R < (4e(L(g) — L"))7=
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Estimation error

o Recall that Tsybakov condition implies Pf? < c(Pf)* for the
relative loss class (with O — 1 loss)

e What happens for the relative loss class associated to ¢ ?

e Two possibilities
* Strictly convex loss (can modify the metric on R)

* Piecewise linear
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Strictly convex losses

e Noise behavior controlled by modulus of convexity

e Result

L) < by

with K Lipschitz constant of ¢ and § modulus of convexity of L(g)
with respect to || f — gHLQ(P)

e Not related to noise exponent
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Piecewise linear losses

e Noise behavior related to noise exponent

e Result for hinge loss
Pf* < CPf"

if initial class G is uniformly bounded

O. Bousquet — Statistical Learning Theory — Lecture 6
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Estimation error

e With bounded and Lipschitz loss with convexity exponent -y, for a
convex class G,

X L2 lo L4 loglogn
L(g)—L<g>§c<<r>v+ 55T 08 g)

e Under Tsybakov's condition for the hinge loss (and general G)
Pf?< CPf™

1

n
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Examples

Under Tsybakov's condition

e Hinge loss

log i 4 log1

e Squared hinge loss or square loss § (x) = cz®, Pf* < CPf

1
. . . .. logt+4loglogn | 2@
R(g)—R §C<L(g>—L + O (4 22 T 2808 >>
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Classification vs Regression losses

e Consider a classification-calibrated function ¢
e It is a classification loss if L(t) = L*

e otherwise it is a regression loss
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Classification vs Regression losses

e Square, squared hinge, exponential losses

* Noise enters relationship between risk and loss

* Modulus of convexity enters in estimation error
e Hinge loss

* Direct relationship between risk and loss

* Noise enters in estimation error
— Approximation term not affected by noise in second case

— Real value does not bring probability information in second case
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Lecture 7

Regularization

e Formulation
e (Capacity measures
e Computing Rademacher averages

e Applications
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Equivalent problems

Up to the choice of the regularization parameters, the following
problems are equivalent

]Svnei}l L.(f) + 2Q(f)

i Q
feff?i?f)ﬁe <f)

) L,
fe]—“r:l;lll(?)SR (f)

The solution sets are the same
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Comments

e Computationally, variant of SRM
e variant of model selection by penalization
—> one has to choose a regularizer which makes sense
e Need a class that is large enough (for universal consistency)

e but has small balls
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Rates

e To obtain bounds, consider ERM on balls
e Relevant capacity is that of balls

e Real-valued functions, need a generalization of VC dimension, entropy
or covering numbers

e Involve scale sensitive capacity (takes into account the value and not
only the sign)
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Scale-sensitive capacity

e Generalization of VC entropy and VC dimension to real-valued func-
tions

e Definition: a set 1, ..., x, is shattered by F (at scale ¢) if there
exists a function s such that for all choices of a; € {—1, 1}, there
exists f € F

a;(f(xi) —s(x:)) > €

e The fat-shattering dimension of F at scale € (denoted vc(F,€)) is
the maximum cardinality of a shattered set
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Link with covering numbers

e Like VC dimension, fat-shattering dimension can be used to upper
bound covering numbers

e Result
Cl Covc(F,C3t)

e Note that one can also define data-dependent versions (restriction on
the sample)
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Link with Rademacher averages (1)

e Consequence of covering number estimates

Cy 00\/ C,
R, (F) < —= F., ) log =2 dt
()<= [ yfveF 010g

e Another link via Gaussian averages (replace Rademacher by Gaussian
N(0,1) variables)

gn(f) — E sSup — Z ng(Z>

fer n
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Link with Rademacher averages (2)
e Worst case average

. (F)= sup E,

L1yeee9dm

sup an]
feF

e Associated "dimension” t(F,e) =sup{n € N: £, (F) > €}
e Result (Mendelson & Vershynin 2003)

K
/
ve(F,ce) < t(F,e) < gvc(}", Ce)
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Rademacher averages and Lipschitz losses

e What matters is the capacity of F (loss class)
e If ¢ is Lipschitz with constant M

e then
Rn(F) < MR,(G)

e Relates to Rademacher average of the initial class (easier to compute)
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Dualization

e Consider the problem min g <r Ln(9g)
e Rademacher of ball
Es; | sup Rng
lgll<R
e Duality

n

Z 0'1'5)(1.

1=1

R
Es | sup Rn.f = —E,
IfII<R n

*]
|II" dual norm, dx, evaluation at X; (element of the dual under
appropriate conditions)
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RHKS

Given a positive definite kernel k

e Space of functions: reproducing kernel Hilbert space associated to k
e Regularizer: rkhs norm ||-|| .

e Properties: Representer theorem

n

gn = Z O‘ik(Xia )

1=1
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Shattering dimension of hyperplanes

e Set of functions

G ={9(x) =w-x:[w| =1}

e Assume ||x|| < R

e Result
ve(G, p) < R*/p’
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Proof Strategy (Gurvits, 1997)

Assume that xy, . .., X, are p-shattered by hyperplanes with ||w|| = 1,
i.e., forall y1,...,y, € {1}, there exists a w such that

yi (W, x;) > p foralli=1,...,r. (2)
Two steps:

e prove that the more points we want to shatter (2), the larger
132 =1 ixi|| must be
e upper bound the size of || > _, yix;|| in terms of R

Combining the two tells us how many points we can at most shatter
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Part |

e Summing (2) yields {(w, (> _, yixi)) > 7p
e By Cauchy-Schwarz inequality

<w, (Z y> > < fwl

e Combine both:

'S
E YiX;
i=1

rp <

'S
E YiX;
i=1
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Part Il

Consider labels y; € {£1}, as (Rademacher variables).

r 2 r
E Z YiXi = K Z YiYj (Xi, Xj)
=1 0,J=1
= Z E[<Xi,xi>] + E Z <xi7xj>
i=1 ]

-

2

= > lxl
i=1
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Part Il, ctd.

e Since ||x;]| < R, we get E [||§3;":1 yixil?] < rR2.

e This holds for the expectation over the random choices of the labels,
hence there must be at least one set of labels for which it also holds
true. Use this set.

e Hence )

Z yixi| < rR°.
=1
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Part | and Il Combined

5 2
o PartI: (rp)” < ||Z::1 YixXi||

o PartlIl: ||>)_; yixi||” < rR?

e Hence
r’p? < rR?
l.e.,
R?
T S ?
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Boosting

Given a class 'H of functions
e Space of functions: linear span of 'H

e Regularizer: 1-norm of the weights ||g|| = inf{)_ |ay| : g =
2. cihi}

e Properties: weight concentrated on the (weighted) margin maximizers

gn = Z wph
Y diYih(X;) = mlnz d;Y;h'(X;)
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Rademacher averages for boosting

e Function class of interest

Gr={g € spanH : [|g]|, < R}

o Result

= Capacity (as measured by global Rademacher averages) not affected
by taking linear combinations !
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Lecture 8

SVM

e Computational aspects
e (Capacity Control
o Universality

e Special case of RBF kernel
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Formulation (1)

e Soft margin

min §|IWII +CZ &

yi({w, x;) +b) > - &i
§& >0
e (Convex objective function and convex constraints
e Unique solution

e Efficient procedures to find it

— Is it the right criterion 7
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Formulation (2)

e Soft margin

min = Jw? +OZ 3

yi(<W,X7;> + b) 2 1 — 'gza gz Z 0
e Optimal value of &;

§; = max(0,1 — y;({w, x;) + b))

e Substitute above to get

1 ™m
min — ||w|| +C ) max(0,1 — yi({w,x;) + b))

W.b -
1=1
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Regularization

General form of regularization problem

1 n
min — > c(yif (z:)) + A || £])°

feF m <
=1

— Capacity control by regularization with convex cost
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Loss Function

(Y f(X)) = max(0,1 — Y f(X))

e Convex, non-increasing, upper bounds 1y r(x)<o]
e (lassification-calibrated

e Classification type (L™ = L(t))
R(g) — R" < L(g) — L
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Regularization

Choosing a kernel corresponds to

e Choose a sequence (ay)

e Set

WW:Z%/WWM

k>0

=> penalization of high order derivatives (high frequencies)

—> enforce smoothness of the solution
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Capacity: VC dimension

e The VC dimension of the set of hyperplanes is d + 1 in R,
Dimension of feature space ?
oo for RBF kernel

e w choosen in the span of the data (w = ) a,y:x;)
The span of the data has dimension m for RBF kernel (k(., x;)
linearly independent)

e The VC bound does not give any information

h
— =1
m

= Need to take the margin into account
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Capacity: Shattering dimension

Hyperplanes with Margin

If ||zl < R,
ve(hyperplanes with margin p, 1) < R*/p?
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Margin

e The shattering dimension is related to the margin
e Maximizing the margin means minimizing the shattering dimension

e Small shattering dimension = good control of the risk

=> this control is automatic (no need to choose the margin beforehand)

—> but requires tuning of regularization parameter
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Capacity: Rademacher Averages (1)

e Consider hyperplanes with ||w|| < M

e Rademacher average

\/_ Z k(x;,x;) < Rn < — Z k(x;, ;)

e Trace of the Gram matrix

e Notice that R, < / R2/(n2p?)
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Rademacher Averages (2)

E [supy,jca 2y i (w, 593i>]

_ n -
— & _Sup”wH§M<w,%Zi:1 O'Z(sz>

< E | SUP|juw | <M Jwl| %2121 70z, H
M n "
- ;E \/<Zzl Ti0u;; i=1 Ji(swi>]
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Rademacher Averages (3)

M
—E
n

\/<Z j:l 7i0a;, j:l Ui5$i>]
%\/E <Z j:l Ti0z;) j:l Ji(g%”
VB e (50085

_ %\/an k(zi, z:)

IA
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Improved rates — Noise condition

e Under Massart's condition (|| > no), with ||g||,, < M

E | (6(Yg(X)) = $(YH(X))?| < (M=1+2/n0)(L(g)~L").

— If noise is nice, variance linearly related to expectation

— Estimation error of order r* (of the class G)
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Improved rates — Capacity (1)

e 1 related to decay of eigenvalues of the Gram matrix

e Note that d = O gives the trace bound

e 1 always better than the trace bound (equality when A; constant)
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Improved rates — Capacity (2)

Example: exponential decay
e >\z — €
e Global Rademacher of order %

n

e 1 of order
logn

n
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Exponent of the margin

e Estimation error analysis shows that in Gy = {g : ||g|| < M}

R(gn) o R(g*) S M...

e Wrong power (M? penalty) is used in the algorithm
e Computationally easier
e But does not give A a dimension-free status

e Using M could improve the cutoff detection
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Kernel

Why is it good to use kernels ?

e Gaussian kernel (RBF)

2
lz—yll

b(z,y) = ¢ 207

e o is the width of the kernel

— What is the geometry of the feature space 7
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RBF

Geometry

e Norms
2 0
[@(2)||” = (P(x), ®(x)) = e =1
— sphere of radius 1
e Angles

_ o lle=ulr20? S

P(z) @(y) >
[@(@)|" @)
— Angles less than 90 degrees

o &(z) =k(x,.) >0
— positive quadrant

cos(B(2), B(y)) = <
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RBF
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RBF

Differential Geometry

e Flat Riemannian metric

— 'distance’ along the sphere is equal to distance in input space

e Distances are contracted

— 'shortcuts’ by getting outside the sphere
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RBF

Geometry of the span

Ellipsoid

XA2/at2 + yM2/b"2 = 1

—
N

—<
-

o K = (k(xi, x;)) Gram matrix

e Eigenvalues A\q,..., Ay

e Data points mapped to ellispoid with lengths v/ A1, ..
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RBF

Universality

e Consider the set of functions

H = span{k(x,-): © € X}

e H is dense in C'(X)

— Any continuous function can be approximated (in the ||||_ norm) by
functions in ‘H

—> with enough data one can construct any function
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RBF

Eigenvalues

e Exponentially decreasing

e Fourier domain: exponential penalization of derivatives

e Enforces smoothness with respect to the Lebesgue measure in input
space
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RBF

Induced Distance and Flexibility

e 0 — 0
1-nearest neighbor in input space
Each point in a separate dimension, everything orthogonal

® 0 — OO
linear classifier in input space

All points very close on the sphere, initial geometry

e Tuning o allows to try all possible intermediate combinations
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RBF

Ideas

e Works well if the Euclidean distance is good

e Works well if decision boundary is smooth

e Adapt smoothness via o

e Universal
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Choosing the Kernel
e Major issue of current research
e Prior knowledge (e.g. invariances, distance)
e Cross-validation (limited to 1-2 parameters)
e Bound (better with convex class)

— Lots of open questions...
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Learning Theory: some informal thoughts

e Need assumptions/restrictions to learn

e Data cannot replace knowledge

e No universal learning (simplicity measure)

e SVM work because of capacity control

e Choice of kernel = choice of prior/ regularizer

e RBF works well if Euclidean distance meaningful

e Knowledge improves performance (e.g. invariances)
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