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2Overview

• Concentration Inequalities

• Empirical Processes

•Modulus of Continuity

• Data-Dependent Modulus of Continuity

• Statistical Applications
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3Motivation

Let X1, . . . , Xn be n independent random variables

Define
Z = f (X1, . . . , Xn) ,

Given knowledge about the distribution of the Xi and the function f , what
can be said about the distribution of Z ?

We want tail bounds of the form

P [Z ≥ E [Z] + t] ≤ δ(t) ,

or with probability at least 1− δ,

Z ≤ E [Z] +B(δ) .

Concentration refers to the behavior as a function of n (cf isoperimetry, con-
centration of Gaussian measure on n-sphere).
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4Applications

• Sums of independent real-valued random variables

Z =
∑

Xi .

• Norms of sums of random vectors in a Banach space

Z =
∥∥∥∑Xi

∥∥∥ .
• Suprema of empirical processes (statistics, learning theory)

Z = sup
f∈F

∑
f (Xi) .

• Functionals of random matrices (e.g. trace, norms...)

Z = ‖(Xi,j)‖ .

• Combinatorics, random graphs (e.g. triangles)

Z =
∑
i 6=j 6=k

Xi,jXj,kXk,i .
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5Sums of real-valued random variables

Let Z = 1
n

∑n
i=1Xi.

Hoeffding’s inequality

Theorem 1 (Hoeffding, 1963) Assume Xi ∈ [0, 1] almost surely. Then
for all x > 0, with probability 1− e−x,

Z ≤ E [Z] +
√
x/2n .

Bennett’s inequality

Theorem 2 (Bennett, 1963) Assume E [Xi] = 0, Xi ≤ 1 and σ2 =
1
n

∑
Var [Xi]. Then for all x > 0, with probability 1− e−x,

Z ≤ E [Z] +
√

2xσ2/n + x/3n .
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6Concentration inequalities

Recall
Z = f (X1, . . . , Xn) .

Define for all k = 1, . . . , n,

Zk = fk(X1, . . . , Xk−1, Xk+1, . . . , Xn) .

Results on Z are based on conditions on the increments.

Z − Zk

McDiarmid’s inequality

Theorem 3 (McDiarmid, 1989) Assume n(Z−Zk) ∈ [0, 1], then for
all x > 0 with probability at least 1− e−x,

Z ≤ E [Z] +
√
x/2n .

Suprema of empirical processes with bounded functions.
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7Sub-additive functions

Theorem 4 (Boucheron, Lugosi and Massart 2000) Assume n(Z−
Zk) ∈ [0, 1] and

∑n
k=1Z − Zk ≤ Z. Then for all x > 0, with probability

at least 1− e−x,

Z ≤ E [Z] +
√

2xE [Z] /n + x/3n .

Size of the largest subsequence satisfying a certain (hereditary) property.
Suprema of empirical processes with non-negative bounded functions.

Theorem 5 (B. 2002) Assume Yk ≤ n(Z − Zk) ≤ 1, E [Yk] ≥ 0, σ2 =
1
n

∑n
k=1E

[
Y 2
k

]
and also

∑n
k=1Z − Zk ≤ Z. Then for all x > 0, with

probability at least 1− e−x,

Z ≤ E [Z] +
√

2x(σ2 + 2E [Z])/n + x/3n .

Suprema of empirical processes with upper bounded functions.
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8Idea of proof

Let φ be a convex non-negative function such that 1/φ′′ is concave. φ-entropy

Hφ(Z) = E [φ(Z)]− φ(E [Z]) .

Properties

• Non-negative, convex, lower semi-continuous

• Tensorization

Hφ(Z) ≤ E

[∑
k=1..n

Hφ,k(Z)

]
.

• φ(x) = x2 Efron-Stein inequality

Var [Z] ≤ E

[∑
k=1..n

(Z − Zk)
2

]
.

• φ(x) = x log x Modified log-Sobolev inequality (Ledoux, 1996)

E
[
ZeλZ

]
− E

[
eλZ
]
logE

[
eλZ
]
≤ E

[
n∑
k=1

ψ(λ(Z − Zk))e
λZ

]
.
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9Empirical Processes

Notation Pf = E [f (X)], Pnf = 1
n

∑n
i=1 f (Xi).

• Let F be such that f ∈ F implies f (x) ∈ [0, 1]. McDiarmid’s inequality
gives

sup
f∈F

Pf − Pnf ≤ E

[
sup
f∈F

Pf − Pnf

]
+
√

2x/n .

• Symmetrization

E

[
sup
f∈F

Pf − Pnf

]
≤ 2E

[
sup
f∈F

1

n

n∑
i=1

σif (Xi)

]
.

• Consequence

sup
f∈F

Pf − Pnf ≤ 2Eσ

[
sup
f∈F

1

n

n∑
i=1

σif (Xi)

]
+
√

8x/n .
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10Empirical Processes

Theorem 6 (B. 2002) Let Xi ∈ X and let F be a class of functions
X → R such that f−Pf ≤ 1. Then for all x > 0, with probability 1−e−x,
for all f ∈ F ,

Pf−Pnf ≤ inf
α>0

(
(1 + α)E

[
sup
f ′∈F

Pf ′ − Pnf
′

]
+
√

2xσ2/n + (1/3 + 1/α)x/n

)
,

with σ2 = 1
n

∑n
i=1 supf∈F Var [f (Xi)].

How to improve it: → Making the right-hand side depend on f

1. restrict the supremum to functions with variance less than Var [f ]

2. replace σ2 by Var [f ]

Var [f ] ≤ r, Pf − Pnf ≤ c1E

 sup
f ′∈F

Var[f ′]≤r

Pf ′ − Pnf
′

 + c2
√
xr/n + c3x/n .

Making this uniform in r ?
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11Modulus of continuity

•Modulus of continuity at the origin

w(F , r) = E

[
sup

f∈F , Pf2≤r
|Pf − Pnf |

]
.

•We want to have

Pf − Pnf ≤ c1w(F , Pf 2) + c2
√
xPf 2/n + c3x/n .

• Typical behavior of w:
w(F , r) ≈

√
Ar .

Note that A is the solution of w(F , r) = r.
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12Fixed point

• Sub-root function.

φ non-negative, non-decreasing and φ(r)/
√
r is non-increasing.

• Fixed point.

If there exists φ sub-root with

w(F , r) ≤ φ(r) ,

then
φ(r) = r ,

has a unique solution r∗ > 0 and we have

w(F , r) ≤
√
r∗r .
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13Result

Let F be a class of functions with ranges in [−1, 1]

Theorem 7 (B. 2002) Let r∗ be the fixed point of φ(r). For all x > 0
and all K > 1, with probability at least 1− e−x

|Pf − Pnf | ≤ K−1Pf 2 + cKr∗ + c′K
x

n
.

More generally if κ ≥ 1,

|Pf − Pnf | ≤ K−1(Pf 2)κ + cK2γ−1(r∗)γ + c′K2γ−1(
x

n
)γ .

with γ = κ/(2κ− 1).

→ Further improvement ? Computing r∗ from the data ?
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14Data-dependent modulus of continuity

Eσ

[
sup

f∈F , Pnf2≤r

1

n

n∑
i=1

σif (Xi)

]
≤ φn(r) .

Theorem 8 (B. 2002) Let r∗n be the fixed point of φn(r). For all x > 0
and all K > 1, with probability at least 1− e−x

|Pf − Pnf | ≤ K−1Pf 2 + cKr∗n + c′K
x + log log n

n
.
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15The Learning Problem

Problem: Learning from examples

• Observe a set of objects (inputs) X1, . . . , Xn with their associated label
(output) Y1, . . . , Yn.

• Goal: for a new, unobserved object X , predict Y .

Formalization

• (X,Y ) ∼ P pair of random variables, values in X × Y , P unknown joint
distribution.

• Given n i.i.d. pairs (Xi, Yi) sampled according to P , find g : X → Y such
that P (g(X) 6= Y ) is small

More generally, ` measures the cost of errors. Minimize

L(g) = E [`(g(X), Y )]
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16Possible Algorithms

Goal: minimize L(g) = E [`(g(X), Y )].

• Empirical risk minimization (ERM): approximate the risk by
Ln(g) = 1

n

∑n
i=1 `(g(Xi), Yi) and solve

min
g∈G

Ln(g) .

• Structural risk minimization (SRM)/Model selection: several ’models’
{Gm : m ∈M} and solve

min
m∈M

min
g∈Gm

Ln(g) + p(m) .

• Regularization: introduce a weight functional w(g) and solve

min
g∈G

Ln(g) + λw(g) .

This covers most algorithms (SVM, Boosting...).
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17Application to estimation

E

[
sup

g,g′∈G:P (g−g′)2≤r
|1
n

n∑
i=1

ηi(g(Xi)− g′(Xi))|

]
≤ φ(r) .

Corollary 1 Let G be a class of functions such that
E
[
(`g − `s)

2
]
≤ (L(g)− L(s))1/κ.

Then with probability 1− e−x,

L(g)− L(s) ≤ c
(
L(g∗)− L(s) + (r∗)κ/(2κ−1) + (x/n)κ/(2κ−1)

)
.

• Assumption satisfied if noise benign (Tsybakov).

•Minimax rates under Tsybakov’s conditions for VC classes

• Fixed point of modulus of continuity as a measure of the complexity

•Modulus on the initial class (Gaussian contraction)
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18Data-dependent error bounds

Eσ

[
sup

g∈G:Pn(g−gn)2≤r

1

n

n∑
i=1

σi(g(Xi)− gn(Xi))

]
≤ φn(r) .

• Conditional process (data is fixed)

• Computed at the empirical error minimizer gn

Theorem 9 (B. 2002) Let G be a class of functions such that
E
[
(`g − `s)

2
]
≤ L(g)− L(s).

Let r∗n be the fixed point of φn. Then with probability 1− e−x,

L(g)− L(s) ≤ c (L(g∗)− L(s) + r∗n + (x + log log n)/n) .

→ r∗n can be computed from the data only.
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19Application to SVM

Consider Y ∈ {−1, 1}. The SVM algorithm solves

min
g∈Gk

1

n

n∑
i=1

(1− Yig(Xi))+ + λ ‖g‖2 ,

in a reproducing kernel Hilbert space Gk generated by k(x, x′).

• Properties of the loss (with benign noise)

•Modulus of continuity ?
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20Application to SVM

Properties of the loss

Regression function: s(x) = P [Y = 1 | X = x] (L(s) = inf L)

Bayes classifier: η∗(x) = 1 if s(x) > 1/2 and −1 otherwise

L(η∗) = L(s) .

Lemma 1 For any function g,

P [Y g(X) ≤ 0]− P [Y η∗(X) ≤ 0] ≤ L(g)− L(η∗) .

→ Difference in misclassification error bouded by difference in loss

Lemma 2 Assume that |s(X)− 1/2| ≥ η0 a.s. If ‖g‖∞ ≤M then

E
[
(`(g)− `(η∗))2

]
≤
(
M − 1 + η−1

0

)
(L(g)− L(η∗)) .

→ If noise is nice, variance linearly related to expectation
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21Application to SVM

Capacity Bound

Gram matrix from the data K = (k(Xi, Xj))i,j

Eigenvalues of K, λ1 ≥ λ2 ≥ ...

Space of functions ellipsoid shaped (eigenvalues)

• Volume-based (covering numbers)
∏

i≥1 λi

• Rademacher
√∑

i≥1 λi/n

Theorem 10 (B. 2002)

r∗n ≤
c

n
inf
d∈N

d +

√∑
j>d

λj

 .

• Trace corresponds to d = 0

• Exponential decay (RBF kernel) gives log n/n instead of 1/
√
n

• Data-dependent, explicit constants
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22Application to Boosting

Space of functions F

min
g∈conv(F)

1

n

n∑
i=1

e−Yig(Xi) + λ ‖g‖1 .

Loss: treated by Lugosi and Vayatis

Capacity: ω modulus of continuity of conditional Gaussian process

Theorem 11 (B., Koltchinskii and Panchenko 2002)

ω(conv(F), r) ≤ inf
ε

(
2ω(F , r) + r

√
N(F , ε)

)
,

where N is the covering number.
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23Conclusion

1. Data-dependent bounds

2. involving modulus of continuity of Rademacher conditional process

3. computed on the initial class G

4. minimax rates under various conditions

→ New quantities involved in the bounds

→ New algorithms
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