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Overview

e Concentration Inequalities

e Empirical Processes

e Modulus of Continuity

e Data-Dependent Modulus of Continuity

e Statistical Applications
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Motivation

Let Xq,..., X, be n independent random variables

Define
Z:f(Xla'”aXn)a

Given knowledge about the distribution of the X; and the function f, what
can be said about the distribution of Z 7

We want tail bounds of the form
PZ >E|Z]+t] <d(t),
or with probability at least 1 — 9,
Z <E[Z]+ B(6).

Concentration refers to the behavior as a function of n (cf isoperimetry, con-
centration of Gaussian measure on n-sphere).
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Applications

e Sums of independent real-valued random variables

Z:ZXZ.

e Norms of sums of random vectors in a Banach space

|5

e Suprema of empirical processes (statistics, learning theory)
Z=swp ) f(Xi).

e Functionals of random matrices (e.g. trace, norms...)

Z = [[(Xi )l -

.

e Combinatorics, random graphs (e.g. triangles)

7 = Z Xi i XX
itk
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Sums of real-valued random variables

Let Z =131 X,
Hoeffding’s inequality

Theorem 1 (Hoeffding, 1963) Assume X; € |0, 1] almost surely. Then
for all x > 0, with probability 1 — e 7,

Z <E[Z]|++x/2n.

Bennett’s inequality

Theorem 2 (Bennett, 1963) Assume E[X;] = 0, X; < 1 and 0 =
%Z Var|X;|. Then for all x > 0, with probability 1 —e™",

Z <E[Z]++\/2x0*/n+x/3n.
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Concentration inequalities

Recall
Z = f(X1,...,Xn).

Define for all k =1,...,n,
Zr = fi(Xq, oo X, Xar, -, X))
Results on Z are based on conditions on the increments.
Z — Iy
McDiarmid’s inequality
Theorem 3 (McDiarmid, 1989) Assume n(Z — Zy) € |0, 1], then for

X

all x > 0 with probability at least 1 — e~ ",
Z <E[Z]++x/2n.

Suprema of empirical processes with bounded functions.
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Sub-additive functions

Theorem 4 (Boucheron, Lugosi and Massart 2000) Assume n(Z—
Zy) €10,1) and >, Z — Z, < Z. Then for all x > 0, with probability

at least 1 —e™",

7 <E[Z]+2zE[Z] /n+x/3n.

Size of the largest subsequence satisfying a certain (hereditary) property.
Suprema, of empirical processes with non-negative bounded functions.

Theorem 5 (B. 2002) Assume Y, < n(Z — Z;) < 1, E[Y;] > 0, 0% =
%ZZZHE [Y,f] and also Y ) Z — Z < Z. Then for all x > 0, with

X

probability at least 1 — e,
7 <E[Z]+ v/22(c? + 2E[Z])/n + 2/3n .

Suprema, of empirical processes with upper bounded functions.
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Idea of proof

Let ¢ be a convex non-negative function such that 1/¢" is concave. ¢-entropy
Hy(Z) = E[p(Z2)] — ¢(E[Z]).
Properties

e Non-negative, convex, lower semi-continuous

> Hyl(2)

k=1..n

e Tensorization

Hy(Z) <E

e ¢(x) = x° Efron-Stein inequality

Var [Z] < E

Y (Z2-2Z)

k=1..n
e ¢(x) = xlog z Modified log-Sobolev inequality (Ledoux, 1996)

> w(AZ - Z@)@Z] .

k=1

) [Ze)‘Z] — & [e)‘Z] log £ [6)\2] <E
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Empirical Processes

Notation Pf =E[f(X)], Pof = 5 221, [(X0).
e Let F be such that f € F implies f(x) € [0,1]. McDiarmid’s inequality

gives
sup Pf — P,f <E |supPf—P,f| +v2z/n.
feF feF
e Symmetrization
E|supPf—P,f| <2E |sup— Zazf
feF fer

e Consequence

sup Pf — P,f <2E,
feF

sup — Zazf 8x/n .

fern
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Empirical Processes

Theorem 6 (B. 2002) Let X; € X and let F be a class of functions
X — R such that f — Pf < 1. Then for all x > 0, with probability 1 —e™*,
for all f € F,

Supr/_Pnf/

Pf—P,f < inf ((1 +a)E

+ v 2xo?/n+ (1/3 + l/a):c/n> ,

with 02 = 237" sup,er Var[f(X;)].
How to improve it: — Making the right-hand side depend on f

1. restrict the supremum to functions with variance less than Var [ f]
2. replace o by Var [f]

Var[f| <7, Pf — P,f <cE| sup Pf —P,f'| +covar/n+cz/n.

fleF
i Var[f/]gr

Making this uniform in r 7
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Modulus of continuity

e Modulus of continuity at the origin

w(F,r)=E sup |Pf— P,f]

fEF, Pf2<r

e We want to have

Pf—P,f <ciw(F,Pf*) +con/xPf2/n+csz/n.

e T'ypical behavior of w:
w(F,r)~ VAr.

Note that A is the solution of w(F,r) =r.
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Fixed point

e Sub-root function.

¢ non-negative, non-decreasing and ¢(r)/+/r is non-increasing.

e Fixed point.
[f there exists ¢ sub-root with

w(F,r) < ¢(r),

then
o(r)=r,

has a unique solution r* > 0 and we have

w(F,r) < Vrr.
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Result .

Let F be a class of functions with ranges in [—1, 1]

Theorem 7 (B. 2002) Let r* be the fized point of ¢(r). For all x > 0
and all K > 1, with probability at least 1 —e™"

Pf—P.f| < K'Pf> 4+ cKr* + K~ .
n

More generally if Kk > 1,
Pf—P.f] < KNP + KD ) + RPY )
n

with v = k/(2k — 1).

— Further improvement 7 Computing r* from the data 7
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Data-dependent modulus of continuity

n

1
E, | s —Y of(X)| <oulr).
feF. p,f2<r ;

Theorem 8 (B. 2002) Let r¥ be the fized point of ¢,(r). For all x > 0
and all K > 1, with probability at least 1 —e™"

log 1
Pf—Pof| < K'Pf2 1 eKrt 4 dKET06081
n
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The Learning Problem

Problem: Learning from examples

e Observe a set of objects (inputs) Xi,..., X, with their associated label
(output) Y7,...,Y,.

e Goal: for a new, unobserved object X, predict Y.
Formalization

o (X,Y) ~ P pair of random variables, values in X x ), P unknown joint
distribution.

e Given n i.i.d. pairs (X;,Y;) sampled according to P, find g : X — ) such
that P(g(X) # Y) is small

More generally, £ measures the cost of errors. Minimize

L(g) = Ell(g(X),Y)]
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Possible Algorithms K

Goal: minimize L(g) = E [{(g(X),Y)].

e Empirical risk minimization (ERM): approximate the risk by
Lu(g) = L2, 6(g(X;), Y;) and solve

min L,(g) .
9€G

e Structural risk minimization (SRM)/Model selection: several 'models’

{G, : m € M} and solve

1 min L. |
min min Ly(g) + p(m)

e Regularization: introduce a weight functional w(g) and solve

min L, (g) + Aw(g) .
S

This covers most algorithms (SVM, Boosting...).
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Application to estimation

D

Corollary 1 Let G be a class of functions such that
E[(4, — 2] < (L(g) — L(s))".

X

Then with probability 1 — e ™,
L(g) = L(s) < ¢ (L(g") = L{s) + ()1 o (/) 1)

e Assumption satisfied if noise benign (Tsybakov).
e Minimax rates under Tsybakov’s conditions for VC classes
e [ixed point of modulus of continuity as a measure of the complexity

e Modulus on the initial class (Gaussian contraction)
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Data-dependent error bounds

L, ZUZ — On Xz)) < Cbn(T)

gegy: P7I(g gﬂ 2<7“

e Conditional process (data is ﬁxed)

e Computed at the empirical error minimizer g,

Theorem 9 (B. 2002) Let G be a class of functions such that
B (6, - £,)?] < Llg) — L(s).
Let r} be the fized point of ¢,. Then with probability 1 —e™™,

L(g) — L(s) < c(L(g") — L(s) + 7, + (x + loglogn)/n) .

— 7 can be computed from the data only.
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Application to SVM

19

Consider Y € {—1,1}. The SVM algorithm solves

1
min =~ » (1 = Yig(X;))s + Allgll” ,

IS
1=1

in a reproducing kernel Hilbert space G; generated by k(x, x').

e Properties of the loss (with benign noise)

e Modulus of continuity ?
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Application to SVM .

Properties of the loss

Regression function: s(z) =PY =1| X =z (L(s) =inf L)
Bayes classifier: n*(z) = 1 if s(x) > 1/2 and —1 otherwise

Lemma 1 For any function g,
P[Yg(X) <0 -P[Yn(X) <0 <L(g)— L(n").
— Difference in misclassification error bouded by difference in loss

Lemma 2 Assume that |s(X) —1/2| > ny a.s. If ||g]lcc < M then
E [(t(g) — (")) < (M —1+mn5") (L(g) = L(n")).

— If noise is nice, variance linearly related to expectation
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Application to SVM
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Capacity Bound

Gram matrix from the data K = (k(X;, X))
Eigenvalues of K, A\ > Ay > ...

Space of functions ellipsoid shaped (eigenvalues)

e Volume-based (covering numbers) [ [,~; A;

e Rademacher /> ;o1 Ai/n
Theorem 10 (B. 2002)

C
re< —inf | d / by
n_nc%eN + 2‘7
J

e Trace corresponds to d = 0
e Exponential decay (RBF kernel) gives logn/n instead of 1/y/n

e Data-dependent, explicit constants
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Application to Boosting

Space of functions F

R
min_ — ) e VW& L) :
gEconV(}")n; Hng
Loss: treated by Lugosi and Vayatis

Capacity: w modulus of continuity of conditional Gaussian process

Theorem 11 (B., Koltchinskii and Panchenko 2002)
w(conv(F),r) < inf (2w(]—", r)+ry/ N(F, e)) ,

where N 1s the covering number.
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Conclusion

1. Data-dependent bounds

2. involving modulus of continuity of Rademacher conditional process

3. computed on the initial class G

4. minimax rates under various conditions

— New quantities involved in the bounds

— New algorithms
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